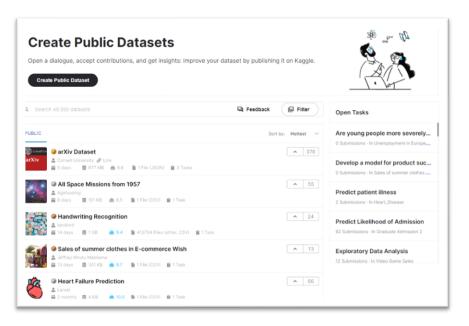


Introduction to the STAT207 Course

Case Study:

What datasets do you find interesting?


Purpose of this Lecture:

In this lecture we will cover the following topics.

- 1. About you
- 2. About me
- 3. What is data science?
- 4. Data science vs. statistics
- 5. Course Goals
- 6. Why use Python for data science?
- 7. Why study data science?
- 8. Skills needed by a data scientist
- 9. Course website and syllabus
- 10. Course Github enterprise organization
- 11. Lecture format
- 12. Lab format

1. ABOUT YOU!

What types of data sets would you like to gain insights from, make predictions with, and/or use to help make better decisions?

https://www.kaggle.com/datasets

What places have you been able to find fun and interesting datasets from in the past?

2. ABOUT ME

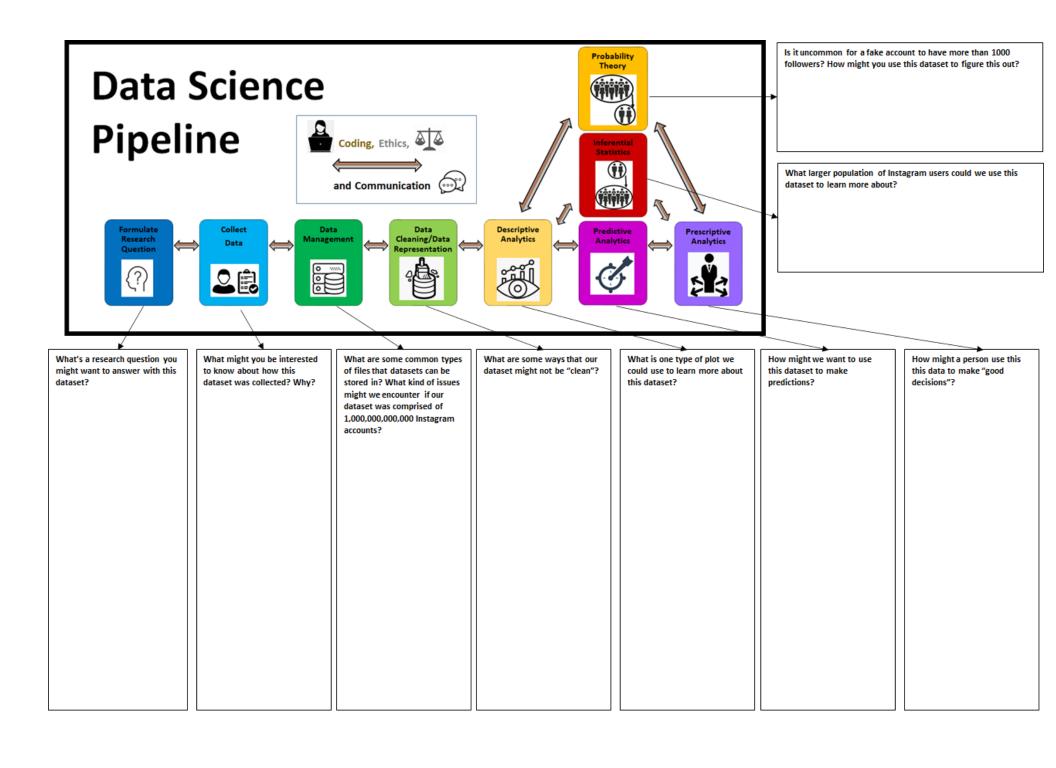
- Online Advertising
- TV Advertising
- Narcotics Detection
- Gene Expression Analysis

Your Ad Preferences

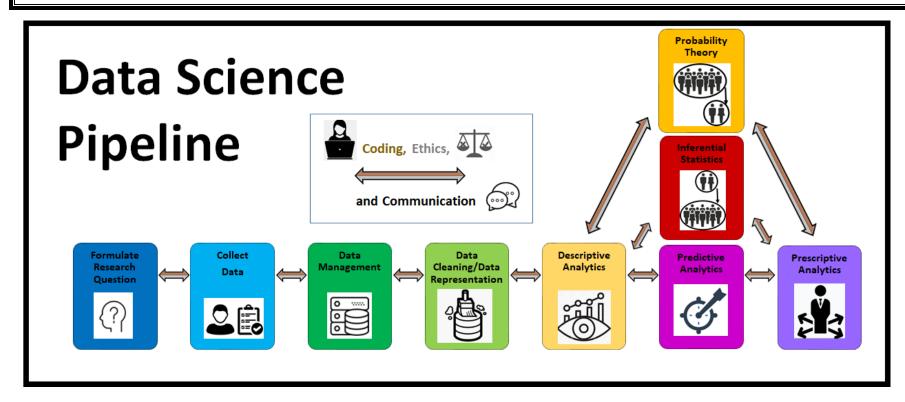
f Search

3. WHAT IS DATA SCIENCE?

Do you think this is a real or fake Instagram account?

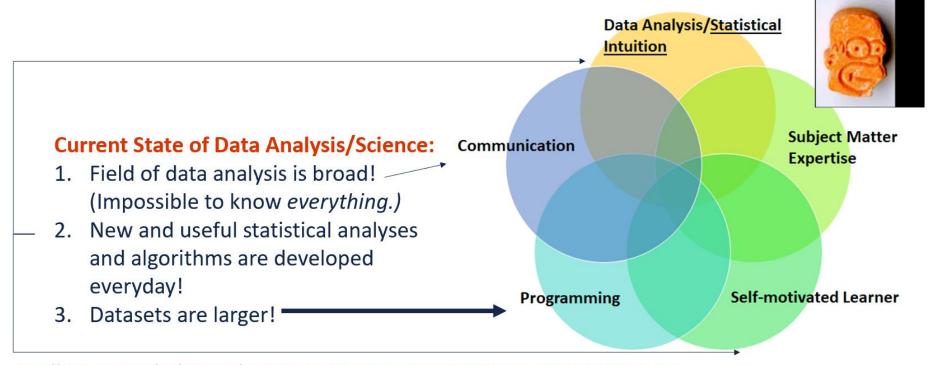


Dataset

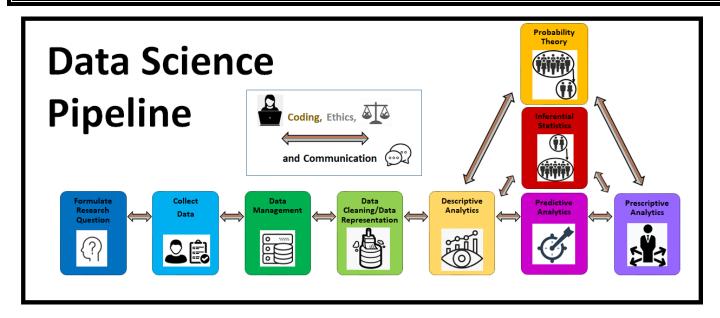

Suppose that we have at our disposal the dataset below that is comprised of 60 fake Instagram accounts and 60 real Instagram accounts.

	has_a_profile_pic	number_of_words_in_name	num_characters_in_bio	number_of_posts	number_of_followers	number_of_follows	account_type
0	yes	1	30	35	488	604	real
1	yes	5	64	3	35	6	real
2	yes	2	82	319	328	668	real
3	yes	1	143	273	14890	7369	real
4	yes	1	76	6	225	356	real
115	yes	1	0	13	114	811	fake
116	yes	1	0	4	150	164	fake
117	yes	2	0	3	833	3572	fake
118	no	1	0	1	219	1695	fake
119	yes	1	0	3	39	68	fake

Statistics vs. Data Science


Data Science

Data science places more focus on the ______ nature of this pipeline and how decisions or insights discovered made _____ in the pipeline can influences insights or decisions made _____ in the pipeline (or vice versa).


Statistics

Mostly focuses on just: 1.) probability theory, 2.) inferential statistics, and 3.) _____ predictive analytics techniques in a way that focuses less on the other parts of the data science pipeline.

SKILLS NEEDED BY A DATA SCIENTIST AND WHY

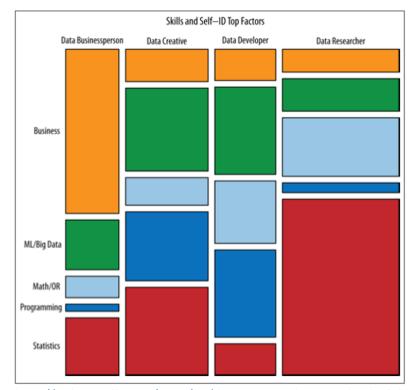
https://www.amstat.org/asa/education/Curriculum-Guidelines-for-Undergraduate-Programs-in-Statistical-Science.aspx

- 1. Survey of the data science pipeline
- 2. Using Python, complete a beginning-to-end data science project.
- 3. When conducting a more advanced data science project, **develop an intuition** for:
 - a. what questions to ask
 - b. how to efficiently learn new algorithms, models, functions etc
 - c. What search terms to look up
 - d. what to research

4. Topics covered:

a. http://courses.las.illinois.edu/fall2022/stat207/course_topics.html

WHY STUDY DATA SCIENCE?


Data Scientist Roles and Average Salaries (in \$)

Source: Dice.com

Dice*

 $\underline{https://www.superdatascience.com/blogs/learn-all-the-pros-and-cons-of-python-vs-r-programming}$

- •Data Businesspeople are the product and profit-focused data scientists. They're leaders, managers, and entrepreneurs, but with a technical bent. A common educational path is an engineering degree paired with an MBA.
- •Data Creatives are eclectic jacks-of-all-trades, able to work with a broad range of data and tools. They may think of themselves as artists or hackers, and excel at visualization and open source technologies.
- •Data Developers are focused on writing software to do analytic, statistical, and machine learning tasks, often in production environments. They often have computer science degrees, and often work with so-called "big data".
- •Data Researchers apply their scientific training, and the tools and techniques they learned in academia, to organizational data. They may have PhDs, and their creative applications of mathematical tools yields valuable insights and products.

http://radar.oreilly.com/2013/06/theres-more-than-one-kind-of-data-scientist.html

Course Website and Syllabus

Canvas Page: https://canvas.illinois.edu/courses/30296

- 1. Your grades
- 2. Lecture markups (in Files tab)
- 3. Post-Lecture videos
 - Note: There was a 9% difference between:
 - the median final grade of students who regularly attended lecture last semester and
 - the median final grade students **who did not regularly attend lecture** last semester.

Course Website: http://courses.las.illinois.edu/fall2022/stat207/

- 1. Course schedule and incomplete lecture notes (to be filled out in the lecture).
- 2. Syllabus
- 3. Assignment and Project Information
- 4. Tech Guides
- 5. Course Content
- 6. Course Staff Info

UIUC Coursework Github Enterprise Organization

https://github.com/illinois-cs-coursework

1. Your netid repository

URL Format: https://github.com/illinois-cs-coursework/fa22_stat207_YOUR_NETID

push your completed lab assignments here for grading

- 2. fa22_stat207_.release repository
 - fetch and merge (ie. download) your weekly lab assignments from here
 https://github.com/illinois-cs-coursework/fa22 stat207 .release

Lecture Format

During Lecture

- Lectures are Synchronous and In-Person: attendance strongly encouraged if you are able to, but not required! (+1 Bonus Point for Attendance and Completing the Summary)
- "Skeleton" Lecture Unit Materials Posted Before Class
 - o http://courses.las.illinois.edu/fall2022/stat207
- Lecture Unit Folder Includes:
 - Slides pdf (conceptual)
 - Jupyter Notebook (applications)
 - Jupyter Notebook pdf copy
 - o csv files (sometimes)

After Lecture

- Lecture Markups Posted on Canvas
- Lecture Video Posted on <u>Canvas</u>

Lab Format

During Lab

Labs are Synchronous and In-Person:

- 5 points for attendance at each lab
- 50 total points for lab attendance
- 4 lab misses penalty free

Lab Purpose

Work on lab assignments and ask the TA and CAs questions

- Individual lab assignment [25 points]
- Group lab assignment [5 points]
 - o Groups of 2-3
 - o Contribution report
 - o Only one team member needs to submit

After Lab

Submit your lab assignment materials to Github by the following **Tuesday night 11:59pm CST** at the latest.