Astro ⁵⁰⁷ Lecture ¹⁰Feb. 12, ²⁰²⁰

Announcements:

• Preflight ² posted, due noon Friday

includes discussion question on the Anthropic Principle!

• Office Hours: Instructor after class today, or by appt TA: noon- 1pm tomorrow, or by appt

Last time:

 $\overline{}$

- completed cosmic inventory: $\Omega_0 \approx 1$ and $\Omega_{\text{matter}} \approx 0.3$ Q: and so?
- high time to become relativisticintroduced invariant interval Δs^2 Q: wut? why? particle with mass m , relativistic energy E has speed:
 $v(E) = \sqrt{1 - m^2/E^2}$ Q: consequences?

Causality and Spacetime

2

t

any particle of total energy E , mass m

moves at speed $v(E) = \sqrt{\frac{2}{\pi}}$ 1− $\left(\frac{m}{E}\right)$ $\frac{m}{E}\Big)$

- \mathbf{a} and \mathbf{a} \overline{M} \cap \leq • massive particles have $0 \le v < c$
- massless particles (e.g., γ) have $v=c$
- $\Rightarrow v=c=1$ is universal speed limit
- \Rightarrow cannot transmit particles, info any faster

future light cone at spacetime point p encloses region within whichparticles/info can move

- i.e., $region$ p can influence
- ⇒ future light cone is spacetime region
€ sausally connected to \hat{r}
- causally connected to p \overline{C}

past light cone at p Q: significance?

past light cone at p

events in cone can send particles/info to p i.e., region which could have influenced p \Rightarrow past light cone=causally connected to p

 ω

Q: two events causally connected if?Q: sufficient or just necessary?

What About Gravity?

A. Einstein (1905):

 $\overline{4}$

Newtonian dynamics → relativistic dynamics
snace_time → snacetime forever more space, time \rightarrow spacetime forever more

Relativity and classical fields:

- E&M: Maxwell eqs relativistically $OK!$ (motivated Lorentz, SR)
- Newtonian gravity: $\vec{g} = -\nabla \phi = -Gm/r^2 \hat{r}$ and $\nabla^2 \phi = 4\pi G\rho$ an *unmitigated disaster Q: Why?*

How to fix?First attempt: analogy with electrostatics Q : why?

$$
\nabla^2 \phi - \partial_t^2 \phi = 4\pi G \rho \tag{1}
$$

- bad news: disagrees with expt (gives no light bending)
- good news: right "flavor"e.g., operator $\nabla^2-\partial_t^2\to$ $t^2_t \rightarrow$ waves \rightarrow gravitational radiation!

Mystic Pisa

Experiment: Galileo (Tower of Pisa?) free fall independent of mass, size, shape, compositionQ: lawyer's fine print?

Theory: Newtonalways: \vec{F} gravity: mass is "coupling strength" \Rightarrow \vec{F}_{9} \rightarrow free foll bas $\vec{s} = \vec{s}$, indep of object pr $= m\vec{a}$ grav $\equiv m\vec{g}$ \Rightarrow free fall has $\vec{a} = \vec{g} \rightarrow$ indep of object properties
interesting suriesity interesting curiosity

Theory: Einstein

gravity is acceleration, so maybe *acceleration is gravity* i.e., their physical effects indistinguishable/equivalent σ

Equivalence Principle

T-shirt summary (R. Wald):

all bodies fall the same way in ^a gravitational field

an observer in free fall Q: meaning?

cannot perform any experiment to determine whether she is in ^a gravitational field

an observer undergoing acceleration

cannot perform any experiment to determine whether she is in ^a gravity field or an accelerating spacecraft

Q: explain apple weight–Earth's surface

 σ

vs rocket accelerating $a = g$?
, avalain annle dren. Earth's

Q: explain apple drop–Earth's surface vs rocket with $a = g$?

Newton's Apple Experiment: Two Views

Isaac Newton on Earth's surface:

- holds an apple in his hand, **pushes up with force** $F = mg$
says: must oppose weight so net force zero says: must oppose weight so net force zero
- releases apple, observes downward accelerationsays: motion due to net gravity force

Albert Einstein in rocket with constant acceleration $a=g$:

- holds apple in hand, **pushes up with force** $F = mg$
says: to keep apple in my pop-inertial accelerating **b** says: to keep apple in my non-inertial accelerating handmust push so it accelerates too
- releases apple, observes downward accelerationsays: motion due to my non-inertial frame

Note: identical physical results, radically different explanations

Q: what about horizontal ball toss?

 $\overline{}$

Q: what about horizontal light beam?

Gravity Bends Light

Rocket Experiment: www: illuminating animation in accelerating rocket, shoot ^a horizontal beam \star light ray deflected \star entire light path bent (in fact, a parabola!) "gravity's rainbow"

But by equivalence principle: must find same result due to gravity, so: * gravity bends light rays gravitational lensing

 ∞

Acceleration and Photons

Still consider accelerating spaceship

Experiment: light signals between top & bottomeach flashes every $\tau_{\mathsf{em}} = 1$ sec according to emitter's clockemission frequency $t_{\mathsf{em}} = 1/\tau_{\mathsf{em}}$

Q: what is change in top clocks' speed when pulse arrives?Q: what frequency does top clock observe?

asymmetry: top clock accelerates away from bottom flash \rightarrow relative speed changes during light transit
by amount $\delta v = e^{\delta t} e^{\gamma} - e^{\gamma t} e^{\gamma}$ by amount $\delta v_\textbf{top}=-a\delta t\simeq -a h/c$ $sign \rightarrow$ receding from source

 \rightarrow top observer sees freq Doppler shifted downward: redshift

$$
f_{\rm obs,top} \approx \left(1 - \frac{\delta v}{c}\right) f_{\rm em,bottom} \tag{2}
$$

so top observer sees bottom flash period as

$$
\frac{\tau_{\text{obs}} - \tau_{\text{em}}}{\tau_{\text{em}}} = \frac{\delta \tau}{\tau} = -\frac{\delta f}{f} \approx \frac{\delta v}{c} = +\frac{ah}{c^2} \tag{3}
$$

Q: which means? and upon applying equivalence principle... ?

Equivalence Principle and Photon Properties

Equivalence principle: gravitational results identical to rocket

- shifted frequencies: gravitational redshift/blueshift!
- period shift: gravitational time dilation

$$
\frac{\delta t}{t} = \frac{\delta \lambda}{\lambda} \approx \frac{gh}{c^2} = \frac{\phi}{c^2} \tag{4}
$$

 attic clocks faster than basement clocks: verified experimentally! www: Pound-Rebka exp^t

in weak gravity:

- fractional shift $\approx \phi/c^2$
- \bullet set by change in gravitational potential ϕ

 $\overline{1}$

Consequences of the Equivalence Principle

equivalence principle implies that gravity

- bends light trajectory: distorts path in space
- changes apparent frequency: *distorts apparent flow of time*

together these mean \rightarrow gravity alters spacetime!

Einstein (1915): include gravity in spacetime

General Relativity

Newton (1687): Universal Gravitation gravity is ^a force (field) that couples to mass ⊲ matter tells gravity how to force

⊳ gravity force tells matter how to move

Einstein (1915): General Relativity

gravity is spacetime curvature: not ^a force!

- **★ "matter tells spacetime how to curve**
- \star spacetime tells matter how to move" $-J.$.A. Wheeler

Curved Spacetime?

Curved space: geometric constructions in space(triangles, rectangles, circles... Q : how define?) give non-Euclidean results Q: namely?

 $\overline{5}$

Q: so–curved spacetime?

Spacetime Curvature

Test: (Feynman Lectures II, Chapter 42)

- construct geometric object in spacetime
- are properties Euclidean?

Case 1: Minkowski Space (i.e., special relativity, no accel) (1-D) interval ("line element") for events separated by (dt, dx)

$$
ds^2 = dt^2 - dx^2 \tag{5}
$$

Construct rhombus: in *spacetime* two observers go from events A to B \triangleright obs 1: go left at $v = 0.5c$ for 10 s, then wait 10 s \triangleright obs 2: wait 10 s, then go left at $v = 0.5c$ for 10 s

14

Q: spacetime diagram?

result <mark>is Euclidean</mark> Q: why?

 $\sigma_{\overline{\omega}} \Rightarrow$ Minkowski spacetime is **not curved = flat**

Case 2: Surface of Earth (i.e., const accel: gravity) (1-D) line element:

$$
ds^{2} = \left(1 + \frac{2\phi}{c^{2}}\right)dt^{2} - \left(1 + \frac{2\phi}{c^{2}}\right)^{-1}dx^{2}
$$
 (6)

where $\phi = \phi(x)$: time-independent Newtonian potential

Construct rhombus in *spacetime* two observers go from events A to B \triangleright obs 1: go up 1 km, then wait 10 s \triangleright obs 2: wait 10 s, then go up 1 km

Q: spacetime diagram?

result is not Euclidean:

$$
(\text{wait time}) = (\delta s)_{\text{wait}} = \sqrt{1 + 2gh/c^2} \ (\delta t)_{\text{wait}} \tag{7}
$$

why? waiting time "advance differently" – time dilation!

 \Rightarrow Earth's spacetime is curved! gravity [⇔] spacetime curvature 17

GR on ^a T-Shirt

General Relativity spirit and approach: like special relativity, only moreso

Special Relativity concepts retained:

- **spacetime**: events, relationships among them
- **interval** gives observer-independent (invariant) measure of "distance" between events
- Special Relativity is ^a special case of GR SR: no gravity [→] no curvature [→] "flat spacetime" GR limit: gravity sources→⁰ give spacetime→Minkowski

GR: Special Relativity concepts generalized

- gravity encoded in spacetime structure
- spacetime can be curved
- coordinates have no intrinsic meaning

 18

The Metric

Fundamental object in GR: **metric**

consider two nearby events, separated bycoordinate differences $dx = (dx^0, dx^1, dx^2, dx^3)$ GR (in orthogonal spacetimes) sez: interval between them given by "line element"

$$
ds^{2} = A(x) (dx^{0})^{2} - B(x) (dx^{1})^{2} - C(x) (dx^{2})^{2} - D(x) (dx^{3})^{2}
$$

$$
\equiv \sum_{\mu\nu} g_{\mu\nu} dx^{\mu} dx^{\nu} \equiv g_{\mu\nu} dx^{\mu} dx^{\nu}
$$

where the ${\sf metric \,\, tensor\,}$ $g_{\mu\nu}$

- in this case (orthogonal spacetime): $g = diag(A, B, C, D)$
- components generally are functions of space & time coords
- is symmetric, i.e., $g_{\mu\nu}=g_{\nu\mu}$
- encodes all physics (like wavefunction in QM) Q: if no gravity=Minkowski, what's the metric? $\overline{6}$

physical interpretation of interval: like in SR

$$
ds2 = (apparent elapsed time)2
$$

– (apparent spatial separation

$$
\frac{dx}{dt} = \frac{1}{\int ds}
$$
\n
$$
\frac{dx}{dt} = \frac{1}{\int x}
$$

t

)2

 \star observers have *timelike* worldlines: ds^2 \leq $>$ 0 \star light has *null ds* $=$ 0 worldlines

Simplest example: Minkowski space (Special Relativity) $g_{\mu\nu}=\mathsf{diag}(1,-1,-1,-1)$: constant values

proper spatial distances:

- i.e., results using meter sticks
- measured simultaneously $(dx^0 = 0)$

length element:

21

 $d\ell^2=$ $= -ds^2 = d\ell_1^2 + d\ell_2^2 + d\ell_3^2 = g_{11}(dx^1)^2 + g_{22}(dx^2)^2 + g_{33}(dx^3)^2$ space (3-)volume element:

$$
dV_3 = d\ell_1 d\ell_2 d\ell_3
$$

= $\sqrt{|g_{11}g_{22}g_{33}|} dx^1 dx^2 dx^3$

spacetime 4-volume element:

$$
dV_4 = d\ell_0 dV_3 = \sqrt{|g_{00}g_{11}g_{22}g_{33}|} dx^0 dx^1 dx^2 dx^3
$$

= $\sqrt{|det g|} dx^0 dx^1 dx^2 dx^3$

Example: Minkowski space, Cartesian coords

$$
ds^2 = dt^2 - dx^2 - dy^2 - dz^2
$$

length: $d\ell^2 = dx^2 + dy^2 + dz^2$ 3-volume: $dV_3 = dx dy dz$ 4-volume: $dV_4= dx dy dz dt$

Example: Minkowski space, spherical coords

$$
ds^2 = dt^2 - dr^2 - r^2 d\theta^2 - r^2 \sin^2 \theta d\phi^2
$$

length: $d\ell^2 = dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2)$
3-volume: $dV_3 = r^2 \sin \theta dr d\theta d\phi \equiv r^2 dr d\Omega$
4-volume: $dV_4 = r^2 dr d\Omega dt$

22

Relativistic Cosmology

Cosmological Spacetimes

Want to describe spacetime of the universeto zeroth order: homogeneous, isotropic

1. at each spacetime point exactly <mark>*one* observer sees isotropy</mark>* call these fundamental observers roughly: "galaxies" i.e., us (strictly speaking, we don't qualify) Q: why?

2. isotropy at each point \rightarrow homogeneity
chut san be homogeneous ℓ_L not isotropi but can be homogeneous & not isotropic

24

[∗]We will see: observers moving w.r.t. FOs eventually come to rest w.r.t. FOs

3. homogeneity and isotropy \rightarrow symmetries

U. is "maximally symmetric"

- \rightarrow greatly constrain allowed spacetimes
	- i.e., allowed metrics

The Cosmic Line Element

cosmological principle: can divide spacetime into time "slices"i.e., 3-D spatial (hyper) surfaces

⊲ populated by fundamental observers

```
\triangleright with coords, e.g., (t,x,y,z)
```
 \triangleright choose FO's to have $d\vec{x} = 0$

i.e., spatial coords are comoving ("fixed to expanding grid") on surface: fundamental observers must all have $ds^{\mathbf{2}}$ \rightarrow g_{tt} indep of space, time $2 = dt^2$ $\epsilon^2 \rightarrow$ i.e., $g_{tt} = const = 1$ Q: why?
den of space, time

these give: 26

$$
ds^2 = dt^2 - g_{ii}(dx^i)^2
$$
 (8)

Cosmological Principle and the Cosmic Metric

homogeneity and time

no space dependence on $dl_0 = dt$

- can define cosmic time t (FO clocks)
- \bullet at fixed t , time lapse dt not "warped" across space

homogeneity and space

- \bullet at any t , properties invariant under translations
- no center
- can pick arbitrary point to be origin
- e.g., here!

Cosmological spacetime encoded via cosmic metricwhich determines how the interval depends on coordinates any observer computes interval between events as $ds^2 =$ (elapsed time)² – - (spatial displacement)²

Cosmic metric so far:

$$
ds^2 = dt^2 - g_{ii}(dx^i)^2
$$
 (9)

where: t is cosmic time

now impose *isotropy*

28

- \bullet at any cosmic t , interval invariant under rotations
- pick arbitrary origin, then (comoving) spherical coords the usual r, θ, ϕ , with $r^2=x^2+y$ and arbitrary origin (usually, but not always, here!) $2 + z^2$

Q: now that does metric look like?

For *fundamental* observers, maximal symmetry demands metric which can[∗] be written as:

$$
ds^{2} = dt^{2} - a(t)^{2}d\ell_{\text{com}}^{2}
$$
 (10)
= $dt^{2} - a(t)^{2} \left[f(r)dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$ (11)

 $a(t)$ is the cosmic scale factor $f(r)$ is as yet undetermined

- for flat (Euclidean) space, $f(r) = 1$
- so $f \neq 1 \rightarrow$ non-Euclidean spatial geometry $=$ curved space!

Q: why same time dep for radial and angular displacements?Note power of cosmo principle

 \rightarrow only allowed dynamics is uniform expansion $a(t)$!

[∗]other space & time coordinates possible and sometimes useful but in all cases space and time must factor in this wav

29