
Astro 507

Lecture 11

Feb. 14, 2020

Announcements:

• Preflight 2 was due at noon

• Problem Set 2 due next Friday

• exciting cosmological Astronomy Colloquium Tue Feb 18

Rachel Mandelbaum, Carnegie-Mellon

“Cosmology with weak lensing

in ongoing and upcoming imaging surveys”
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GR on a T-Shirt

General Relativity spirit and approach:

like special relativity, only moreso

Special Relativity concepts retained:

• spacetime: events, relationships among them

• interval gives observer-independent (invariant)

measure of “distance” between events

• Special Relativity is a special case of GR

SR: no gravity → no curvature → “flat spacetime”

GR limit: gravity sources→0 give spacetime→Minkowski

GR: Special Relativity concepts generalized

• gravity encoded in spacetime structure

• spacetime can be curved

• coordinates have no intrinsic meaning
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The Metric

Fundamental object in GR: metric

consider two nearby events, separated by

coordinate differences dx = (dx0, dx1, dx2, dx3)

GR (in orthogonal spacetimes) sez:

interval between them given by “line element”

ds2 = A(x) (dx0)2 −B(x) (dx1)2 − C(x) (dx2)2 −D(x) (dx3)2

≡
∑

µν
gµνdx

µdxν ≡ gµνdx
µdxν

where the metric tensor gµν

• in this case (orthogonal spacetime): g = diag(A,B,C,D)

• components generally are functions of space & time coords

• is symmetric, i.e., gµν = gνµ

• encodes all physics (like wavefunction in QM)

Q: if no gravity=Minkowski, what’s the metric?
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physical interpretation of interval: like in SR

ds2 = (apparent elapsed time)2

− (apparent spatial separation)2

⋆ observers have timelike worldlines: ds2 > 0

⋆ light has null ds = 0 worldlines

dt
event 2

dx

x

t

ds
event 1

Simplest example: Minkowski space (Special Relativity)

gµν = diag(1,−1,−1,−1): constant values
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Relativistic Cosmology
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Cosmological Spacetimes

Want to describe spacetime of the universe

to zeroth order: homogeneous, isotropic

1. at each spacetime point

exactly one observer sees isotropy∗

call these fundamental observers

roughly: “galaxies” i.e., us

(strictly speaking, we don’t qualify) Q: why?

2. isotropy at each point → homogeneity

but can be homogeneous & not isotropic

∗We will see: observers moving w.r.t. FOs eventually come to rest w.r.t. FOs
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3. homogeneity and isotropy → symmetries

U. is “maximally symmetric”

→ greatly constrain allowed spacetimes

i.e., allowed metrics
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Cosmological Principle and Cosmic Spacetime
Executive Summary

Cosmo Principle → at any time, space is maximally symmetric

• strongly restricts allowed spacetime structure

• there exist a set of fundamental observers (FOs)

(or “frames” or “coordinate systems”)

who see U as homogenous and isotropic

• FOs “ride on” or are at rest w.r.t. comoving coordinates

which don’t change with expansion

but do of course physically move apart

• FO clocks all tick at same rate, measure cosmic time t

Note: in a generic spacetime, not possible to “synchronize clocks”

in this way
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Spaces of Constant Curvature

Amazing mathematical result:

despite enormous constraints of maximal symmetry

GR does not demand cosmic space to be flat (Euclidean)

as assumed in pre-relativity and special relativity

GR allows three classes of cosmic spatial geometry

each of which is a space of constant (or zero) curvature

• positive curvature → hyper-spherical

• negative curvature → hyperbolic

• zero curvature → flat (Euclidean)

www: cartoons

All of these are allowed by GR and maximal symmetry

but our universe can have only one of them

Q: how do we know which of these our U has “chosen”?
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Positive Curvature: A (Hyper-)Spherical Universe

to get an intuition: consider ordinary sphere (“2-sphere”)

using coordinates in Euclidean space (“embedding”)

sphere defined by

(x, y, z) ∈ x2 + y2 + z2 = R2 = const (1)

Coordinates on the sphere:

• usual spherical coords: center, origin outside of the space

• we will use coordinates with origin in the space

more convenient, closer to the physics Q: why?
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origin : at north pole

(x, y, z) = (0,0,+R)

r distance from z-axis

r ⇔ latitudes

r2 = x2 + y2 = R2 − z2

θ angle from x axis

θ → longitude

Rχ

arclength on sphere from pole

χ is usual spherical polar angle

x

y

z

r=0

χ

r θ

R
P

Rχ

1
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2-sphere metric:

in 3-D embedding space: dℓ2 = dx2+dy2+dz2 = dr2+r2dθ2+dz2

but points, intervals constrained to lie on sphere:

R2 = r2 + z2 = const

d(R2) = 0 = xdx+ ydy + zdz = rdr + zdz

so dz = −rdr/z → can eliminate z

thus in polar coords with origin at N Pole

dℓ2 = dr2 + r2dθ2 + dz2 =

(

1+
r2

R2 − r2

)

dr2 + r2dθ2 (2)

=

(

R2

R2 − r2

)

dr2 + r2dθ2 =
dr2

1− r2/R2
+ r2dθ2 (3)

not the Euclidean expression!

curved space: curvature R2 = const!
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Exploring Sphereland

coordinates for (2-D) observers on sphere, centered at N Pole:

dℓ2 = dℓ2r + dℓ2θ =
dr2

1− r2/R2
+ r2dθ2 = R2dχ2 +R2 sin2 χdθ2

N Pole inhabitant (2-Santa) measures radial distance from home:

dℓr = dr/
√

1− r2/R2 ≡ Rdχ

→ radius is ℓr = R sin−1(r/R) ≡ Rχ

Example: construct a circle

locus of points at same radius ℓr
• circumference dC = dℓθ = rdθ = R sinχdθ

→ C = 2πR sinχ < 2πℓr
• area dA = dℓrdℓθ = R2 sinχdχdθ

→ A = 2πR2(1− cosχ) < πℓ2r
Q: why are these right?
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3-D Life in a 4-D Sphere

generalize to 3-D “surface” of sphere in 4-D space

(“3-sphere”), constant positive curvature R:

3-D spherical coordinates centered on “N pole”

spatial line element

dℓ2 =
dr2

1− r2/R2
+ r2dθ2 + r2 sin2 θdφ2 (4)

• sky still has solid angle dΩ = sin θdθdπ,
∫

dΩ = 4π

• radial (proper) distance ∆ℓr = R sin−1(r/R) ≡ Rχ

• so we have found, for κ = +1,

RW metric has f(r) = 1/(1− r2/R2)

Q: guesses for zero, negative curvature metrics?
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Friedmann-Lemâıtre-Robertson-Walker Metric

Robertson & Walker:

maximal symmetry imposes metric form

Robertson-Walker line element (in my favorite units, coords):

ds2 = dt2 − a(t)2
(

dr2

1− κr2/R2
+ r2dθ2 + r2 sin2 θdφ2

)

where cosmic geometry encoded via κ:

κ =











+1 pos curv: “spherical”
0 flat: “Euclidean”
−1 neg curv: “hyperbolic”

(5)
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Friedmann-Lemâıtre-Robertson-Walker Metric

Robertson & Walker:

maximal symmetry imposes metric form

ds2 = dt2 − a(t)2
(

dr2

1− κr2/R2
+ r2 dθ2 + r2 sin2 θ dφ2

)

where cosmic geometry encoded via κ:

κ =











+1 pos curv: “spherical”
0 flat: “Euclidean”
−1 neg curv: “hyperbolic”

(6)

gives interval for neighboring events

Consider event pairs (t, r, θ, φ) and (t+ δt, r, θ, φ)

• Q: what is ds2?

• Q: what does ds2 tell us physically?
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ds2 = dt2 − a(t)2
(

dr2

1− κr2/R2
+ r2 dθ2 + r2 sin2 θ dφ2

)

= (apparent elapsed time)2 − (apparent distance)2

event separation (dt, dr, dθ, dφ) = (δt,0,0,0)

• spatial coords unchanged:

events at rest w.r.t. FO frame

• FO’s apparent elapsed time is

ds = δt

t

r

dt

lesson: dt is FO clock rate = cosmic time

now consider pair: (t, r, θ, φ) and (t, r + δr, θ, φ)

Q: what is ds2? physical significance?
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ds2 = dt2 − a(t)2
(

dr2

1− κr2/R2
+ r2 dθ2 + r2 sin2 θ dφ2

)

= (apparent elapsed time)2 − (apparent distance)2

event separation (dt, dr, dθ, dφ) = (0, δr,0,0)

• time coords unchanged:

events simultaneous in FO frame

⇒ ds2 gives −(apparent distance)2 = −dℓ2

• separation is radial only

⇒ FO finds physical radial distance is

origin

drtfixed

r

dℓ = dℓr = a(t)
δr

√

1− κr2/R2

Q: lessons?
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for event separation (dt, dr, dθ, dφ) = (0, δr,0,0)

physical radial distance is

dℓ = dℓr = a(t)
δr

√

1− κr2/R2
(7)

lessons:

• radial distances sensitive to curvature R

not directly measured by r unless κ = 0

• radial distances evolve as a(t) – of course!

• cosmoving radial distance is dℓr,com = δr/
√

1− κr2/R2

now consider pair (t, r, θ, φ) and (t, r, θ + δθ, φ)

Q: what is ds2? physical significance?
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ds2 = dt2 − a(t)2
(

dr2

1− κr2/R2
+ r2 dθ2 + r2 sin2 θ dφ2

)

= (apparent elapsed time)2 − (apparent distance)2

event separation (dt, dr, dθ, dφ) = (0,0, δθ,0)

• time coords unchanged: events give FO distance

• separation is angular only

⇒ FO finds distance = arc length

tfixed

origin

r
δθ

dl

dℓ = dℓθ = a(t) r δθ (8)

• arc lengths depend on radial coord r

6= physical radial distance unless κ = 0

• arc lengths evolve as a(t) – of course!

• comoving angular distance is dℓθ,com = r δθ

• similarly, dℓφ = a(t) r sin(θ) δφ
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consider a region with

• dt = dr = 0, and

• dθ, dφ 6= 0

Q: physical significance?

Q: relevant quantity?

consider a region with

• dt = 0

• dr, dθ, dφ 6= 0

Q: physical significance?

Q: relevant quantity?

2
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region with dt = dr = 0 and dθ, dφ 6= 0:

• fixed time coordinate: events give spatial separation

• fixed radial coordinate r: separation is angular only

• both angular coordinates vary: sweeps 2-D region on sphere

• area of region is

dA = dℓθ dℓφ = a(t)2 r2 sin(θ) dθ dφ = a(t)2 r2 dΩ (9)

lesson:

• solid angle is usual dΩ = dA/a(t)2r2 = sin(θ) dθ dφ

• physical area of sphere at r is Asph = 4π a(t)2 r2

region with dt = 0 and dr, dθ, dφ 6= 0:

• sweep out 3-D spatial volume on sphere

dV = dℓr dℓθ dℓφ = a(t)3
r2

√

1− κr2/R2
dr dΩ (10)2
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Friedmann-Lemâıtre-Robertson-Walker Cosmology

Friedmann & Lemâıtre:

solve GR dynamics (Einstein equation)

for stress-energy of “perfect fluid” (no dissipation)

The Einstein Equation and Robertson-Walker

Einstein eq: Rµν − 1/2Rgµν = 8πGTµν
derivatives in Einstein eq come from curvature tensor Rµν

→ schematically: “R ∼ ∂2g ∼ Gρ” – like Newtonian Poisson eq

but the only undetermined function in the metric

is the scale factor a, which only depends on t:
so: Einstein eqs → ODEs which set evolution of a(t)
⇒ these are the Friedmann equations!

and: in RW metric, local energy conservation ∇νTµν = 0

⇒ gives 1st Law: d(ρa3) = −pd(a)3

More detail in today’s Director’s Cut Extras
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Life in a FRLW Universe

FLRW metric + Friedmann eqs for a(t)

→ all you need to calculate anything

particle motions, fluid evolution, observables...

Excellent first example: Propagation of light

We want to know

• photon path through spacetime

• evolution of photon λ,E during propagation

• detected redshift

Q: how to calculate these?

Q: relevant equations?

Q: coordinate choices?
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Worked Example: Photon Propagation

photon path: radial null trajectory ds = 0 (Fermat)

⋆ emitted at rem, tem
⋆ observed at robs = 0, tobs

for FOs at rem and robs = 0,

any tem and tobs pairs have

∫ tobs

tem

dt

a(t)
=

∫ rem

0

dr
√

1− κr2/R2

time-dep time-indep

Since RHS is time-independent Q: why?

then any two pairs of emission/observation events

between comoving points r→0 must have
∫ tobs,1

tem,1

dt

a(t)
=

∫ tobs,2

tem,2

dt

a(t)
(11)
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consider two sequential emission events, lagged by δtem

subsequently seen as sequential observation events with δtobs

time-independence of propagation integral means

∫ tobs

tem

dt

a(t)
=

∫ tobs+δtobs

tem+δtem

dt

a(t)

rearranging...

∫ tem+δtem

tem

dt

a(t)
=

∫ tobs+δtobs

tobs

dt

a(t)

if δt small (Q: compared to what?)

then δtem/a(tem) = δtobs/a(tobs) and so

δtobs
δtem

=
a(tobs)

a(tem)

Q: observational implications?
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Observational implications:

⋆ for any pairs of photons

δtobs
δtem

=
a(tobs)

a(tem)
=

1+ zem

1+ zobs

and since a(tobs) > a(tem)

→ δtobs > δtem

→ distant happenings appear in slow motion!

→ time dilation!

cosmic time dilation recently observed!

Q: how would effect show up?

Q: why non-trivial to observationally confirm?

www: cosmic time dilation evidence

2
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Director’s Cut Extras
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proper spatial distances:

• i.e., results using meter sticks

• measured simultaneously (dx0 = 0)

length element:

dℓ2 = −ds2 = dℓ21 + dℓ22 + dℓ23 = g11(dx
1)2 + g22(dx

2)2 + g33(dx
3)2

space (3-)volume element:

dV3 = dℓ1dℓ2dℓ3

=
√

|g11g22g33| dx
1dx2dx3

spacetime 4-volume element:

dV4 = dℓ0dV3 =
√

|g00g11g22g33| dx
0dx1dx2dx3

=
√

|det g| dx0dx1dx2dx3

2
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Example: Minkowski space, Cartesian coords

ds2 = dt2 − dx2 − dy2 − dz2

length: dℓ2 = dx2 + dy2 + dz2

3-volume: dV3 = dx dy dz

4-volume: dV4 = dx dy dz dt

Example: Minkowski space, spherical coords

ds2 = dt2 − dr2 − r2dθ2 − r2 sin2 θdφ2

length: dℓ2 = dr2 + r2(dθ2 + sin2 θdφ2)

3-volume: dV3 = r2 sin θ drdθdφ ≡ r2drdΩ

4-volume: dV4 = r2drdΩdt

3
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The Cosmic Line Element

cosmological principle:

can divide spacetime into time “slices”

i.e., 3-D spatial (hyper) surfaces

⊲ populated by fundamental observers

⊲ with coords, e.g., (t, x, y, z)

⊲ choose FO’s to have d~x = 0

i.e., spatial coords are comoving (“fixed to expanding grid”)

on surface: fundamental observers must all have

ds2 = dt2 → i.e., gtt = const = 1 Q: why?

→ gtt indep of space, time

these give:

ds2 = dt2 − gii(dx
i)2 (12)

3
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Cosmological Principle and the Cosmic Metric

homogeneity and time

no space dependence on dℓ0 = dt

• can define cosmic time t (FO clocks)

• at fixed t, time lapse dt not “warped”across space

homogeneity and space

• at any t, properties invariant under translations

• no center

• can pick arbitrary point to be origin

• e.g., here!

3
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Cosmological spacetime encoded via cosmic metric

which determines how the interval depends on coordinates

any observer computes interval between events as

ds2 = (elapsed time)2 − (spatial displacement)2

Cosmic metric so far:

ds2 = dt2 − gii(dx
i)2 (13)

where: t is cosmic time

now impose isotropy

• at any cosmic t, interval invariant under rotations

• pick arbitrary origin, then (comoving) spherical coords

the usual r, θ, φ, with r2 = x2 + y2 + z2

and arbitrary origin (usually, but not always, here!)

Q: now that does metric look like?
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For fundamental observers, maximal symmetry

demands metric which can∗ be written as:

ds2 = dt2 − a(t)2dℓ2com (14)

= dt2 − a(t)2
[

f(r)dr2 + r2(dθ2 + sin2 θdφ2)
]

(15)

a(t) is the cosmic scale factor

f(r) is as yet undetermined

• for flat (Euclidean) space, f(r) = 1

• so f 6= 1 → non-Euclidean spatial geometry = curved space!

Q: why same time dep for radial and angular displacements?

Note power of cosmo principle

→ only allowed dynamics is uniform expansion a(t)!

∗other space & time coordinates possible and sometimes useful

but in all cases space and time must factor in this way
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Curvature

maximal symmetry requires that Universe spatial “3-volume”

is a “space of constant curvature”

at any time t: cosmic curvature is a length R(t)

• today: R(t0) ≡ R

• Q: dependence on scale factor?

For the relativists: max symmetry means spatial

curvature tensor must take the form

R
(3)
ijkℓ =

κ

R(t)2

(

hikhjl − hjkhil
)

(16)

where κ = −1, 0, or +1

and h is the spatial part of metric g

Note: the curvature scalar is really one single number K

but for K 6= 0 one can identify a sign κ ≡ K/‖K‖ and lengthscale R2 ≡ 1/‖K‖
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Perfect fluid:

• “perfect” → no dissipation (i.e., viscosity)

• stress-energy: given density, pressure fields ρ, p

and 4-velocity field uµ→(1,0,0,0) for FO

Tµν = ρuµuν + p(gµν − uµuν) (17)

= diag(ρ, p, p, p)FO (18)

Recall: stress-energy conservation is

∇νT
µν = 0 (19)

where ∇µ is covariant derivative

For RW metric, this becomes:

d(a3ρ) = pd(a3) (20)

1st Law of Thermodynamics!
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Einstein equation

Gµν = Rµν −
1

2
Rgµν = 8πGTµν (21)

Given RW metric (orthogonal, max symmetric):

• Q: how many nonzero Einstein eqs generally? here?

• Q: what goes into Gµν? what will this be for RW metric?
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Einstein eq:

Gµν, Tµν symmetric 4×4 matrices → 10 independent components

in general, Einstein → 10 equations

but cosmo principle demands: space-time terms G0i = 0

and off-diagonal space-space Gij = 0

else pick out special direction ⇒ only diagonal terms nonzero

and all 3 “p” equations same
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Einstein → two independent equations

G00 = 3

(

ȧ

a

)2

+
3κ

R2a2
(22)

= 8πGT00 = 8πGρ (23)

Gii = 6
ä

a
+3

(

ȧ

a

)2

+
3κ

R2a2
(24)

= 8πGTii = 8πGp (25)

After rearrangement, these become

the Friedmann “energy” and acceleration equations!
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