Astro 507
Lecture 11
Feb. 14, 2020

Announcements:
e Preflight 2 was due at noon
e Problem Set 2 due next Friday

e exciting cosmological Astronomy Colloquium Tue Feb 18
Rachel Mandelbaum, Carnegie-Mellon
“Cosmology with weak lensing
iIn ongoing and upcoming imaging surveys”



GR on a T-Shirt

General Relativity spirit and approach:
like special relativity, only moreso

Special Relativity concepts retained:
e spacetime: events, relationships among them
e interval gives observer-independent (invariant)
measure of “distance” between events
e Special Relativity is a special case of GR
SR: no gravity — no curvature — ‘“flat spacetime”
GR limit: gravity sources—0 give spacetime—MinkowskKi

GR: Special Relativity concepts generalized
e gravity encoded in spacetime structure

e Spacetime can be curved

e coordinates have no intrinsic meaning



T he Metric

Fundamental object in GR: metric

consider two nearby events, separated by
coordinate differences dx = (dz°, dzt, dx?, da3)
GR (in orthogonal spacetimes) sez:

interval between them given by “line element”

ds® = A(z) (dz®)? — B(z) (dz1)? — C(z) (dz?)? — D(z) (dz>)?
= Zgw/d:c'“dwy = guvdatdx”
[ %

where the metric tensor | g,
e in this case (orthogonal spacetime): g = diag(A,B,C, D)
e components generally are functions of space & time coords
e iS symmetric, i.e., guv = guu
e encodes all physics (like wavefunction in QM)
Q: If no gravity=Minkowski, what’s the metric?




physical interpretation of interval: like in SR

ds® = (apparent elapsed time)?

X
s event 2

— (apparent spatial separation)? dt /ds

event 1

observers have timelike worldlines: ds2 > 0

light has null ds = 0 worldlines

Simplest example: Minkowski space (Special Relativity)
guw = diag(1l,—1,—1,—1): constant values



Relativistic Cosmology




Cosmological Spacetimes

Want to describe spacetime of the universe
to zeroth order: homogeneous, isotropic

1. at each spacetime point

exactly one observer sees isotropy*

call these fundamental observers

roughly: “galaxies” i.e., us

(strictly speaking, we don't qualify) Q: why?

2. isotropy at each point — homogeneity
but can be homogeneous & not isotropic

*We will see: observers moving w.r.t. FOs eventually come to rest w.r.t. FOs



3. homogeneity and isotropy — symmetries
U. is “maximally symmetric”
— greatly constrain allowed spacetimes
I.e., allowed metrics



Cosmological Principle and Cosmic Spacetime
Executive Summary

Cosmo Principle — at any time, space is maximally symmetric
e strongly restricts allowed spacetime structure
e there exist a set of fundamental observers (FOs)
(or “frames” or ‘coordinate systems”)
who see U as homogenous and isotropic
e FOs ‘“ride on” or are at rest w.r.t. comoving coordinates
which don’t change with expansion
but do of course physically move apart
e FO clocks all tick at same rate, measure cosmic time ¢

Note: in a generic spacetime, not possible to ‘‘synchronize clocks”
in this way



Spaces of Constant Curvature

Amazing mathematical result:

despite enormous constraints of maximal symmetry

GR does not demand cosmic space to be flat (Euclidean)
as assumed in pre-relativity and special relativity

GR allows three classes of cosmic spatial geometry
each of which is a space of constant (or zero) curvature
e positive curvature — hyper-spherical

e Negative curvature — hyperbolic

e zero curvature — flat (Euclidean)

WWW cartoons

All of these are allowed by GR and maximal symmetry
but our universe can have only one of them
Q. how do we know which of these our U has ‘chosen”?
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Positive Curvature: A (Hyper-)Spherical Universe

to get an intuition: consider ordinary sphere (“2-sphere’)
using coordinates in Euclidean space (“embedding’)
sphere defined by

(z,y,2) € x°+y°+ 22 = R? = const (1)

Coordinates on the sphere:
e usual spherical coords: center, origin outside of the space
e we Wwill use coordinates with origin in the space

more convenient, closer to the physics Q: why?
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origin|: at north pole

(z,y,2) = (0,0, +R)

r| distance from z-axis

r < latitudes
r2=x2+y2:R2—22

0| angle from x axis
0 — longitude

Rx
arclength on sphere from pole
x IS usual spherical polar angle

.-
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2-sphere metric:
in 3-D embedding space: df? = dz?+dy?+dz? = dr?4r2df?+dz?
but points, intervals constrained to lie on sphere:
R2 = 2 -+ 22 = const
d(R?) = 0 = zdx + ydy + zdz = rdr + zdz
SO dz = —rdr/z — can eliminate z

thus in polar coords with origin at N Pole

r2

— T

de? = dr® +r?do° + d=° = (1 + 2) dr? 4+ r2d6% (2)

R? 2, 2,0 dr? 2 12
222 dr< 4+ r<dé :1—r2/R2+r do (3)

not the Euclidean expression!
= curved space: curvature R? = const!



Exploring Sphereland

coordinates for (2-D) observers on sphere, centered at N Pole:

dr?

Yy + r2df? = R?dx? 4+ R?sin?y do?

A0 = de? + dis =

N Pole inhabitant (2-Santa) measures radial distance from home:
dly = dr/\/l — r2/R? = Rdy
— radius is 4, = Rsin~1(r/R) = Ry

Example: construct a circle
locus of points at same radius /4,
e circumference dC' = dfy = rdf = R sin xdo
— C = 27w Rsiny < 27ty
e area dA = dlrdly = R?sin x dxdb
“ 5 A=27R?(1 —cosy) < wl?
Q. why are these right?
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3-D Life in a 4-D Sphere

generalize to 3-D “surface” of sphere in 4-D space
(“3-sphere’ ), constant positive curvature R:
3-D spherical coordinates centered on “N pole”

spatial line element

B dr?
- 1—7r2/R?
e sky still has solid angle dS2 = sin6dfdr, [d2 = 4x
e radial (proper) distance A¢. = Rsin~1(r/R) = Rx
e SO we have found, for kK = +1,

RW metric has f(r) = 1/(1 — r2/R?)

de?

+ 72d9? + v sin? 0d¢?

Q. guesses for zero, negative curvature metrics?

(4)
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Friedmann-Lemaitre-Robertson-Walker Metric

Robertson & Walker:
maximal symmetry imposes metric form

Robertson-Walker line element (in my favorite units, coords):

dr?
1 — kr2/R?

ds® = dt? — a(t)? ( + r2dh? 4 r2 sin? 0d¢2>

where cosmic geometry encoded via k:

+1 pos curv: ‘spherical”
K = O flat: “Euclidean” (5)
—1 neg curv: “hyperbolic”



o1

Friedmann-Lemaitre-Robertson-Walker Metric

Robertson & Walker:
maximal symmetry imposes metric form

dr?
1 — kr2/R2

ds® = dt° — a(t)? ( + r2 d92 + r?sin? 0 d¢2>

where cosmic geometry encoded via k:

+1 pos curv: ‘spherical”
K = 0O flat: “Euclidean” (6)
—1 neg curv: “hyperbolic”

gives interval for neighboring events

Consider event pairs (t,7,0,¢) and (¢t 4 6t,r,0,¢)
e Q: what is ds??
e Q: what does ds? tell us physically?



dr?
ds® = dt° — a(t)? 2 402 + r?sin? 0 do?
i a(t) (1—/4:7“2/R2+r . ¢
— (apparent elapsed time)2 — (apparent distance)2
event separation (dt, dr,d0,d¢) = (6t,0,0,0) t
e spatial coords unchanged:
events at rest w.r.t. FO frame
e FO’s apparent elapsed time is Idt
ds = 0t

lesson: dt is FO clock rate = cosmic time

now consider pair: (t,r,0,¢) and (¢t,r + 6r,0,¢)
~ Q: what is ds2? physical significance?



d 2
ds> dt? — a(t)2 ( z 1+ r2 462 4 +2sin2 0 d¢2>

1 — kr2/R2
(apparent elapsed time)? — (apparent distance)?

event separation (dt,dr,df,d¢) = (0,6r,0,0)
e time coords unchanged:
events simultaneous in FO frame

fixed t

= ds? gives —(apparent distance)? = —d¢?
e separation is radial only origin
= FO finds physical radial distance is
or

dl = dlr = a(t)
\/1 — kr?/R?

=
@ Q: lessons?
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for event separation (dt, dr,df,do) = (0,dr,0,0)
physical radial distance is

or

dl = dlr = a(t)
\/1 — kr?/R?

lessons:

e radial distances sensitive to curvature R
not directly measured by r unless Kk = 0O

e radial distances evolve as a(t) — of course!

e cosmoving radial distance is d/; com = 5r/\/1 — kr?/R?

now consider pair (t,r,60,¢) and (t,r,0 + 56, ¢)
Q: what is ds?? physical significance?

(7)
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dr?
ds® = dt° — a(t)? 2 d0? + r?sin? 0 dg?
i a(t) (1—/4:7“2/R2+r . ¢
— (apparent elapsed time)? — (apparent distance)?
event separation (dt, dr,d0,d¢) = (0,0,466,0) Ced t dl
e time coords unchanged: events give FO distance ¢
e separation is angular only '
= FO finds distance = arc length origin
dl = dly = a(t) r 60 (8)

e arc lengths depend on radial coord r
# physical radial distance unless Kk =0
e arc lengths evolve as a(t) — of course!
e comoving angular distance is dfy com = r 00
e similarly, dly = a(t) r sin(0) é¢
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consider a region with

e di = dr = 0, and

e df,dp =0

Q. physical significance?
Q. relevant quantity?

consider a region with

o di =0

e dr,df,dp = 0O

Q. physical significance?
Q. relevant quantity?



[

region with dt = dr = 0 and df,d¢ #* O:

e fixed time coordinate: events give spatial separation

e fixed radial coordinate r: separation is angular only

e both angular coordinates vary: sweeps 2-D region on sphere
e area of region is

dA = dbg dby = a(t)? 2 sin(0) d d¢ = a(t)? r% d2  (9)

lesson:
e solid angle is usual d<2 = dA/a(t)2r2 = sin(#) db do
e physical area of sphere at r is Agpp = 47 a(t)? r2

region with dt = 0 and dr, df,d¢ #* O:
e sweep out 3-D spatial volume on sphere

r2

dV = db, dly dly = a(t)> dr d (10)
i \/1 — mrz/RQ
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Friedmann-Lemaitre-Robertson-Walker Cosmology

Friedmann & Lemarttre:
solve GR dynamics (Einstein equation)
for stress-energy of “perfect fluid” (no dissipation)

The Einstein Equation and Robertson-Walker

Einstein eq: Ruyy — 1/2 Rguw = 8nGT
derivatives in Einstein eq come from curvature tensor R,
— schematically: "R ~ 829 ~ Gp” — like Newtonian Poisson eq
but the only undetermined function in the metric
is the scale factor a, which only depends on t:
so: Einstein eqs —+ ODEs which set evolution of a(t)
= these are the Friedmann equations!
and: in RW metric, local energy conservation V, T =0
= gives 1st Law: d(pa3) = —pd(a)3

More detail in today’s Director's Cut Extras
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Life in a FRLW Universe

FLRW metric + Friedmann eqgs for a(t)
— all you need to calculate anything
particle motions, fluid evolution, observables...

Excellent first example: Propagation of light

We want to know

e photon path through spacetime

e evolution of photon A, £ during propagation
e detected redshift

Q. how to calculate these?
Q). relevant equations?
Q). coordinate choices?
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Worked Example: Photon Propagation

photon path: radial null trajectory ds = 0 (Fermat)
* emitted at Tem, tem
* observed at rops = 0, tops

for FOs at rem and rgps = 0O,
any tem and typs Pairs have

/tobs dt /
tem a(t) \/1 /4:7“2/R2
time-dep time-indep

Since RHS is time-independent Q: why?
then any two pairs of emission/observation events
between comoving points r—0 must have

/tobs,l dt _/tobs,2 dt (11)
t t

em,1 a(t) em,2 a<t)



consider two sequential emission events, lagged by dtem
subsequently seen as sequential observation events with dtgpg

time-independence of propagation integral means

tobs dt o tobst0lops dt
/tem @ /tem+5tem @
rearranging...
tem—+dtem dt . tobstlobs dt
/tem E N /tobs @
if 6t small (Q: compared to what?)
then dtem/a(tem) = dtops/a(tops) and so

Otobs _ a(tobs)
Otem a(tem)
Q. observational implications?

N
o
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Observational implications:

for any pairs of photons

6lops _ allops) _ 1+ zem
Stem  altem) 14 zops
and since a(tops) > a(tem)
— 5tObS > Otem
— distant happenings appear in slow motion!
— |time dilation!

cosmic time dilation recently observed!
Q. how would effect show up?
Q. wWhy non-trivial to observationally confirm?

WWW: cosmic time dilation evidence
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Director’'s Cut Extras
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proper spatial distances:
e i.e., results using meter sticks
e measured simultaneously (dz® = 0)

length element:
d? = —ds? = d0f + dl5 + dt3 = g11(dz)? + goo(dz?)? + g33(da>)?
space (3-)volume element:

01 dlodl
= \/lg11922933| dzlda?dz®

dV3

spacetime 4-volume element:

dVa = dlodV3 = \/|goog11922933| dx?da! dz®da

= /|detg| dz®dz!dz?dz>
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Example: Minkowski space, Cartesian coords
ds® = dt? — dz°® — dy? — dz?

length: d¢? = dz? + dy? + dz°?
3-volume: dV3 = dx dydz
4-volume: dVy = dx dydzdt

Example: Minkowski space, spherical coords
ds® = dt? — dr? — r2df? — r? sin? 0d¢?

length: d¢2 = dr? + r2(d6? + sin? 8d¢?)
3-volume: dVz = r2sin 0 drdfd¢ = r2drd2
4-volume: dVy = r2drd2dt



T he Cosmic Line Element

cosmological principle:
can divide spacetime into time ‘slices”
i.e., 3-D spatial (hyper) surfaces

> populated by fundamental observers
> with coords, e.g., (t,z,vy, 2)

> choose FO's to have dr = 0
i.e., spatial coords are comoving ( “fixed to expanding grid")
on surface: fundamental observers must all have
ds? = dt? — i.e., g = const =1 Q: why?
— gt Indep of space, time

@ these give:
ds® = dt® — g;;(dz")? (12)
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Cosmological Principle and the Cosmic Metric

homogeneity and time

No space dependence on dlg = dt

e can define cosmic time t (FO clocks)

e at fixed ¢, time lapse dt not “warped” across space

homogeneity and space

e at any t, properties invariant under translations
e NO center

e Can pick arbitrary point to be origin

e €.g., here!
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Cosmological spacetime encoded via cosmic metric
which determines how the interval depends on coordinates
any observer computes interval between events as

ds? = (elapsed time)2 — (spatial displacement)?

Cosmic metric so far:
ds® = dt® — g;;(dz")? (13)

where: t is cosmic time

NOW impose isotropy

e at any cosmic t, interval invariant under rotations

e pick arbitrary origin, then (comoving) spherical coords
the usual r,60, ¢, with r2 = 22 4+ y2 + 22
and arbitrary origin (usually, but not always, here!)

Q. nhow that does metric look like?
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For fundamental observers, maximal symmetry
demands metric which can®™ be written as:

dt® — a(t)?dlZ,m (14)
= dt? — a(1)? [f(r)drz + r2(d6? + sin? 9d¢2)] (15)

ds?

a(t) is the cosmic scale factor

f(r) is as yet undetermined

e for flat (Euclidean) space, f(r) =1

e SO f # 1 — non-Euclidean spatial geometry = curved space!

Q. why same time dep for radial and angular displacements?
Note power of cosmo principle
— only allowed dynamics is uniform expansion a(t)!

*other space & time coordinates possible and sometimes useful

but in all cases space and time must factor in this way
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Curvature

maximal symmetry requires that Universe spatial “3-volume”
is a ‘‘space of constant curvature”

at any time ¢: cosmic curvature is a length R(t)
e today: R(tg) = R
e (Q: dependence on scale factor?

For the relativists: max symmetry means spatial
curvature tensor must take the form

3 _ _F ot — b
Rijkg — R(t}z <hzkhjl h]khzl) (16)

where k = —1, 0, or +1
and h is the spatial part of metric g

Note: the curvature scalar is really one single number K

but for K # 0 one can identify a sign « = K/||K|| and lengthscale R? = 1/||K||
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Perfect fluid:

e ‘“perfect” — no dissipation (i.e., viscosity)

e stress-energy:. given density, pressure fields p,p
and 4-velocity field u,—(1,0,0,0) for FO

Ty pPULUY + p(g,uz/ — U,uuz/)

diag(p,p, p,P)FO

Recall: stress-energy conservation is
VVTMV — O

where V, is covariant derivative
For RW metric, this becomes:

d(a’p) = pd(a>)

1st Law of Thermodynamics!

(17)
(18)

(19)

(20)
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Einstein equation

1

Given RW metric (orthogonal, max symmetric):
e Q. how many nonzero Einstein eqs generally? here?
e Q. what goes into G, ? what will this be for RW metric?
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Einstein eq:
Guv, Tyy symmetric 4 x4 matrices — 10 independent components
in general, Einstein — 10 equations
but cosmo principle demands: space-time terms Ggp; = 0
and off-diagonal space-space G;; =0
else pick out special direction = only diagonal terms nonzero
and all 3 "p" equations same



6€

Einstein — two independent equations
2
a 3k
3 _
(a) +R2a2
8nG'Tog = 8mGp
a a 3K
— 87TGT7;7; — 87TGp

Goo

After rearrangement, these become
the Friedmann “energy’ and acceleration equations!

(22)
(23)
(24)
(25)



