
Astro 507

Lecture 12

Feb. 17, 2020

Announcements:

• Problem Set 2 due Friday

• No Class Meeting this Wed and Fri, Feb 19 and 21

time off for good behavior, instructor travel

Instructor available via Homework Discussion page on Compass

TA Office Hours noon-1pm Thursday

• exciting cosmological Astronomy Colloquium Tue Feb 18

Rachel Mandelbaum, Carnegie-Mellon

“Cosmology with weak lensing

in ongoing and upcoming imaging surveys”
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Last time: Robertson-Walker metric

Q: what is it?

Q: parameters? variables?

Q: what coordinate system?

Q: what does it mean physically?

2



Friedmann-Lemâıtre-Robertson-Walker Metric

Robertson & Walker:

maximal symmetry imposes metric form

ds2 = dt2 − a(t)2
(

dr2

1− κr2/R2
+ r2 dθ2 + r2 sin2 θ dφ2

)

• variables s, t, r, θ, φ

• parameters: R gives comoving curvature length, and

cosmic geometry encoded via κ:

κ =











+1 pos curv: “spherical”
0 flat: “Euclidean”
−1 neg curv: “hyperbolic”

(1)

metric gives interval for neighboring events

Q: interval and meaning for (t, r, θ, φ) (t, r + δr, θ, φ)?

3



Exploring the Robertson-Walker Metric

consider a spacetime region with

• dt = dr = 0, and

• θ and φ independently sweep dθ, dφ 6= 0

Q: physical significance?

Q: relevant quantity?
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a spacetime region with dt = dr = 0

and dθ, dφ 6= 0:

dl

r

dd

dl

φ θ

θ

φ

• fixed time coordinate: events give spatial separation

• fixed radial coordinate r: separation is angular only

• both angular coordinates vary: sweeps 2-D region on sphere

• physical area of region is

dA = dℓθ dℓφ = a(t)2 r2 sin(θ) dθ dφ = a(t)2 r2 dΩ (2)

lesson:

• physical area of sphere with radius r is Asph = 4π a(t)2 r2

note A ∝ a2 scaling appropriate for a physical area

• solid angle is dΩ = dA/Asph = sin(θ) dθ dφ as usual!
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consider a region with

• dt = 0

• (r, θ, φ) independently sweep dr, dθ, dφ 6= 0

Q: physical significance? relevant quantity?
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for spacetime region with dt = 0

and dr, dθ, dφ 6= 0 all vary independently:

dr φ

dlr

dl

r

dd

dl

φ θ

θ

• sweep out 3-D spatial volume on sphere

dV = dℓr dℓθ dℓφ (3)

= a(t)3
r2

√

1− κr2/R2
dr sin(θ) dθ dφ (4)

= a(t)3
r2

√

1− κr2/R2
dr dΩ (5)

• physical volume scales as dV ∝ a3: check!

• for κ 6= 0 sphere volume not just r3!
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Friedmann-Lemâıtre-Robertson-Walker Cosmology

Friedmann & Lemâıtre:

solve GR dynamics (Einstein equation)

for stress-energy of “perfect fluid” (no dissipation)

The Einstein Equation and Robertson-Walker

Einstein eq: Rµν − 1/2Rgµν = 8πGTµν
derivatives in Einstein eq come from curvature tensor Rµν

→ schematically: “R ∼ ∂2g ∼ Gρ” – like Newtonian Poisson eq

but the only undetermined function in the metric

is the scale factor a, which only depends on t:
so: Einstein eqs → ODEs which set evolution of a(t)
⇒ these are the Friedmann equations!

and: in RW metric, local energy conservation ∇νTµν = 0

⇒ gives 1st Law: d(ρa3) = −pd(a)3

More detail in today’s Director’s Cut Extras
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Life in a FRLW Universe

FLRW metric + Friedmann eqs for a(t)

→ all you need to calculate anything

particle motions, fluid evolution, observables...

Excellent first example: propagation of light

We want to know

• photon path through spacetime

• evolution of photon λ,E during propagation

• detected redshift

Q: how to calculate these?

Q: relevant equations?

Q: coordinate choices?
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Worked Example: Photon Propagation

photon path: radial null trajectory ds = 0 (Fermat)

⋆ emitted at rem, tem

⋆ observed at robs = 0, tobs

for FOs at rem and robs = 0,

any tem and tobs pairs have

(t    ,r    )

(t    ,r    )

emitted

observed

emem

obs obs
∫ tobs

tem

dt

a(t)
=

∫ rem

0

dr
√

1− κr2/R2

time-dep time-indep

Since RHS is time-independent Q: why?

then any two pairs of emission/observation events

between comoving points r→0 must have
∫ tobs,1

tem,1

dt

a(t)
=

∫ tobs,2

tem,2

dt

a(t)
(6)
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consider two sequential emission events, lagged by δtem

subsequently seen as sequential observation events with δtobs

time-independence of propagation integral means

∫ tobs

tem

dt

a(t)
=

∫ tobs+δtobs

tem+δtem

dt

a(t)

rearranging...

∫ tem+δtem

tem

dt

a(t)
=

∫ tobs+δtobs

tobs

dt

a(t)

if δt small (Q: compared to what?)

then δtem/a(tem) = δtobs/a(tobs) and so

δtobs
δtem

=
a(tobs)

a(tem)

Q: observational implications?

1
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Observational implications:

⋆ for any pairs of photons

δtobs
δtem

=
a(tobs)

a(tem)

observed pulse interval differs from emitted duration

due to scale factor change

• Consider monochromatic photons with rest wavelength λem

Q: what if duration δtem = λem/c?

1
2



Implications of Photon Propagation: Redshift Revisited

for monochromatic emission, δtem = λem/c = 1/fem
is the time between wave crests, i.e., the wave period

which changes as

λobs
λem

=
a(tobs)

a(tem)

• wavelengths grow with scale factor!

• verifies the “wavelengths are lengths” heuristic argument

• and using the definition of redshift, we again have

aobs
aem

=
1+ zem

1+ zobs
Note: one-to-one relationships

redshift z ↔ emission time tem ↔ comov. dist. at emission rem
any/all of these denote a cosmic epoch

now consider monitoring a dynamical process in a distant source

Q: what would you notice?
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Cosmic Time Dilation

when monitoring a distant dynamical process (“standard clock”)

in addition to redshift will note duration change

δtobs
δtem

=
a(tobs)

a(tem)
=

1+ zem

1+ zobs

since cosmic expansion gives a(tobs) > a(tem)

→ δtobs > δtem
→ distant happenings appear in slow motion!

→ time dilation!

Note: effect depends only on redshift, not on geometry

cosmic time dilation recently observed!

Q: how would effect show up?

Q: why non-trivial to observationally confirm?

www: cosmic time dilation evidence

1
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Cosmic Causality

Recall special relativity (Minkowski space)

ds2 = dt2 − dx2 − dy2 − dz2

light: ds = 0 → cone dt2 = dx2 + dy2 + dz2

t

x

light cone

future

now

can be affected by p

cannot be affected by p

cannot have affected p

can have affected p

past

p

Now RW metric: ds2 = dt2 − a2dℓ2com
introduce new time variable η: conformal time

defined by dη = dt/a(t) (see PS2)

ds2 = a(η)2
(

dη2 − dℓ2com
)

Q: implications?
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ds2 = a(η)2
(

dη2 − dℓ2com
)

= a(η)2 × (Minkowski structure)

has same features as Minkowski space

⇒ light cones still defined

when use comoving lengths and conformal time

light cone

p

η
conformal time

0

0

η

comoving distance l
com

now

1
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For a flat universe (κ = 0), it’s even better:

ds2 = a(η)2
(

dη2 − dr2com
)

= a(η)2 × (exact Minkowski form)

In either case → spacelike, timelike, lightlike divisions same

and in (η, ℓcom) space:

light cone structure the same ⇒ causal structure the same!

Namely:

• a spacetime point can only be influenced

by events in past light cone

• a spacetime point can only influence

events in future light cone

So far: like Minkowski

New cosmic twist: finite cosmic age

Q: implications for causality?
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Causality: Particle Horizon

past light cone at t defined by

photon propagation over cosmic history:
∫ tobs=t0

tem=0

dτ

a(τ)
=

∫ rem

0

dr
√

1− κr2/R2
≡ dhor,com(t0)

where dhor,com is comoving distance

photon has traveled since big bang

if dhor,com =
∫ t
0 dτ/a(τ) converges

then only a finite part of U has affected us

→ dhor defines causal boundary

→ “particle horizon”

Q: physical implications of a particle horizon?

Q: role of finite age?

Q: sanity check–simple limiting case with obvious result?
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Particle Horizons: Implications

our view of the Universe:

⋆ astronomical info comes from

events along past light cone

⋆ geological info comes from

past world line
0

now:
0

η
0

η
conformal time

horizon today
d

t
here: r=0

ge
ol

og
y

as
tro

no
m

y

astronom
y

lcom
big bang: t=0

hor,com

if particle horizon finite (i.e., 6= ∞), then dhoriz,com:

• gives comoving size of observable universe

• encloses region which can communicate over cosmic time

→ causally connected region

• sets “zone of influence” over which particles can

“notice” and/or affect each each other

and local physical processes can “organize” themselves

e.g., shouldn’t see bound structures large than particle horizon!
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So is dhor finite?

depends on details of a(t) evolution as t→0:

behavior near singularity crucial

will see in PS3:

for matter, radiation domination:

• dhor finite

• and dhor→0 for t→0 0

η
1

now:

t
1

t
0

η
0

η
conformal time

horizon today
horizon at epoch 1

lcom

Q: implications for CMB?

Hint: observed TCMB(θ, φ) isotropic to 5th decimal place...

will see in coming weeks

⊲ inflation (if real!) adds twist!
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Director’s Cut Extras
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Sketch of Friedmann Derivation in General Relativity

Assume universe mass-energy described by perfect fluid:

• “perfect” → no dissipation (i.e., viscosity)

• stress-energy: given density, pressure fields ρ, p

and 4-velocity field uµ→(1,0,0,0) for FO

Tµν = ρuµuν + p(gµν − uµuν) (7)

= diag(ρ, p, p, p)FO (8)

Recall: stress-energy conservation is

∇νT
µν = 0 (9)

where ∇µ is covariant derivative

For RW metric, this becomes:

d(a3ρ) = −p d(a3) (10)

1st Law of Thermodynamics!
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Einstein equation

Gµν = Rµν −
1

2
Rgµν = 8πGTµν (11)

Given RW metric (orthogonal, max symmetric):

• Q: how many nonzero Einstein eqs generally? here?

• Q: what goes into Gµν? what will this be for RW metric?
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Einstein eq:

Gµν, Tµν symmetric 4×4 matrices → 10 independent components

in general, Einstein → 10 equations

but cosmo principle demands: space-time terms G0i = 0

and off-diagonal space-space Gij = 0

else pick out special direction ⇒ only diagonal terms nonzero

and all 3 “p” equations same
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Einstein → two independent equations

G00 = 3

(

ȧ

a

)2

+
3κ

R2a2
(12)

= 8πGT00 = 8πGρ (13)

Gii = 6
ä

a
+3

(

ȧ

a

)2

+
3κ

R2a2
(14)

= 8πGTii = 8πGp (15)

After rearrangement, these become

the Friedmann “energy” and acceleration equations!
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