Astro 507 Lecture 12 Feb. 17, 2020

Announcements:

- Problem Set 2 due Friday
- No Class Meeting this Wed and Fri, Feb 19 and 21 time off for good behavior, instructor travel
 Instructor available via Homework Discussion page on Compass TA Office Hours noon-1pm Thursday
- exciting cosmological Astronomy Colloquium Tue Feb 18 Rachel Mandelbaum, Carnegie-Mellon
 "Cosmology with weak lensing in ongoing and upcoming imaging surveys"

Last time: Robertson-Walker metric

Q: what is it?

Q: parameters? variables?

Q: what coordinate system?

Q: what does it mean physically?

Friedmann-Lemaître-Robertson-Walker Metric

Robertson & Walker:

maximal symmetry imposes metric form

$$ds^{2} = dt^{2} - a(t)^{2} \left(\frac{dr^{2}}{1 - \kappa r^{2}/R^{2}} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2} \right)$$

- variables s, t, r, θ, ϕ
- parameters: R gives comoving curvature length, and cosmic geometry encoded via κ :

$$\kappa = \begin{cases} +1 \text{ pos curv: "spherical"} \\ 0 \text{ flat: "Euclidean"} \\ -1 \text{ neg curv: "hyperbolic"} \end{cases}$$
(1)

^{ω} metric gives **interval** for neighboring events *Q: interval and meaning for* (t, r, θ, ϕ) $(t, r + \delta r, \theta, \phi)$?

Exploring the Robertson-Walker Metric

consider a spacetime region with

- dt = dr = 0, and
- θ and ϕ independently sweep $d\theta, d\phi \neq 0$

Q: physical significance?

Q: relevant quantity?

a spacetime region with dt = dr = 0and $d\theta, d\phi \neq 0$:

- fixed time coordinate: events give spatial separation
- fixed radial coordinate r: separation is angular only
- both angular coordinates vary: sweeps 2-D region on sphere
- physical area of region is

$$dA = d\ell_{\theta} \ d\ell_{\phi} = a(t)^2 \ r^2 \ \sin(\theta) \ d\theta \ d\phi = a(t)^2 \ r^2 \ d\Omega$$
 (2)

lesson:

- physical area of sphere with radius r is $A_{sph} = 4\pi a(t)^2 r^2$ note $A \propto a^2$ scaling appropriate for a physical area
- solid angle is $d\Omega = dA/A_{sph} = \sin(\theta) \ d\theta \ d\phi$ as usual!

consider a region with

- dt = 0
- (r, θ, ϕ) independently sweep $dr, d\theta, d\phi \neq 0$

Q: physical significance? relevant quantity?

for spacetime region with dt = 0and $dr, d\theta, d\phi \neq 0$ all vary independently:

• sweep out 3-D *spatial volume* on sphere

$$dV = d\ell_r \ d\ell_\theta \ d\ell_\phi \tag{3}$$

$$= a(t)^{3} \frac{r^{2}}{\sqrt{1 - \kappa r^{2}/R^{2}}} dr \sin(\theta) d\theta d\phi \qquad (4)$$
$$= a(t)^{3} \frac{r^{2}}{\sqrt{1 - \kappa r^{2}/R^{2}}} dr d\Omega \qquad (5)$$

- physical volume scales as $dV \propto a^3$: check!
- for $\kappa \neq 0$ sphere volume not just r^3 !

Friedmann-Lemaître-Robertson-Walker Cosmology

Friedmann & Lemaître: solve GR dynamics (Einstein equation) for stress-energy of "perfect fluid" (no dissipation)

The Einstein Equation and Robertson-Walker

Einstein eq: $R_{\mu\nu} - 1/2 Rg_{\mu\nu} = 8\pi GT_{\mu\nu}$ derivatives in Einstein eq come from curvature tensor $R_{\mu\nu}$ \rightarrow schematically: " $R \sim \partial^2 g \sim G\rho$ " – like Newtonian Poisson eq but the only undetermined function in the metric

is the scale factor a, which only depends on t: so: Einstein eqs \rightarrow ODEs which set evolution of a(t) \Rightarrow these are the Friedmann equations! and: in RW metric, local energy conservation $\nabla_{\nu}T^{\mu\nu} = 0$ \Rightarrow gives 1st Law: $d(\rho a^3) = -pd(a)^3$

More detail in today's Director's Cut Extras

Life in a FRLW Universe

FLRW metric + Friedmann eqs for a(t) \rightarrow all you need to calculate anything particle motions, fluid evolution, observables...

Excellent first example: propagation of light

We want to know

- photon path through spacetime
- evolution of photon λ, E during propagation
- detected redshift
- *Q: how to calculate these?*
- $^{\circ}$ Q: relevant equations?
 - Q: coordinate choices?

Worked Example: Photon Propagation

between comoving points $r \rightarrow 0$ must have

 $\int_{t_{\text{em},1}}^{t_{\text{obs},1}} \frac{dt}{a(t)} = \int_{t_{\text{em},2}}^{t_{\text{obs},2}} \frac{dt}{a(t)}$ (6)

consider two sequential emission events, lagged by $\delta t_{\rm em}$ subsequently seen as sequential observation events with $\delta t_{\rm obs}$

time-independence of propagation integral means

$$\int_{t_{\rm em}}^{t_{\rm obs}} \frac{dt}{a(t)} = \int_{t_{\rm em}+\delta t_{\rm em}}^{t_{\rm obs}+\delta t_{\rm obs}} \frac{dt}{a(t)}$$

rearranging...

$$\int_{t_{\rm em}}^{t_{\rm em}+\delta t_{\rm em}} \frac{dt}{a(t)} = \int_{t_{\rm obs}}^{t_{\rm obs}+\delta t_{\rm obs}} \frac{dt}{a(t)}$$

if δt small (*Q*: compared to what?) then $\delta t_{\rm em}/a(t_{\rm em}) = \delta t_{\rm obs}/a(t_{\rm obs})$ and so

$\frac{\delta t_{\sf obs}}{-}$	$a(t_{obs})$
$\delta t_{\rm em}$ –	$\overline{a(t_{em})}$

Observational implications:

 \star for *any* pairs of photons

$$\frac{\delta t_{\rm obs}}{\delta t_{\rm em}} = \frac{a(t_{\rm obs})}{a(t_{\rm em})}$$

observed pulse interval differs from emitted duration due to scale factor change

• Consider monochromatic photons with rest wavelength λ_{em} Q: what if duration $\delta t_{em} = \lambda_{em}/c$?

Implications of Photon Propagation: Redshift Revisited

for monochromatic emission, $\delta t_{\rm em} = \lambda_{\rm em}/c = 1/f_{\rm em}$ is the time between wave crests, i.e., the wave period which changes as

$$\frac{\lambda_{\rm obs}}{\lambda_{\rm em}} = \frac{a(t_{\rm obs})}{a(t_{\rm em})}$$

- wavelengths grow with scale factor!
- verifies the "wavelengths are lengths" heuristic argument
- and using the definition of redshift, we again have

$$\frac{a_{\rm obs}}{a_{\rm em}} = \frac{1 + z_{\rm em}}{1 + z_{\rm obs}}$$

Note: one-to-one relationships

redshift $z \leftrightarrow$ emission time $t_{em} \leftrightarrow$ comov. dist. at emission r_{em} any/all of these denote a cosmic **epoch**

13

now consider monitoring a dynamical process in a distant source *Q: what would you notice?*

Cosmic Time Dilation

when monitoring a distant dynamical process ("standard clock") in addition to redshift will note *duration* change

$$\frac{\delta t_{\text{obs}}}{\delta t_{\text{em}}} = \frac{a(t_{\text{obs}})}{a(t_{\text{em}})} = \frac{1 + z_{\text{em}}}{1 + z_{\text{obs}}}$$

since cosmic expansion gives $a(t_{obs}) > a(t_{em})$

 $\rightarrow \delta t_{\rm obs} > \delta t_{\rm em}$

14

- \rightarrow distant happenings appear in slow motion!
- \rightarrow time dilation!

Note: effect depends only on redshift, not on geometry

cosmic time dilation recently observed! Q: how would effect show up? Q: why non-trivial to observationally confirm? www: cosmic time dilation evidence

Cosmic Causality

Now RW metric: $ds^2 = dt^2 - a^2 d\ell_{com}^2$ introduce new time variable η : **conformal time** defined by $d\eta = dt/a(t)$ (see PS2)

$$ds^2 = a(\eta)^2 \left(d\eta^2 - d\ell_{\text{com}}^2 \right)$$

15

Q: implications?

$$ds^2 = a(\eta)^2 \left(d\eta^2 - d\ell_{\text{com}}^2 \right) = a(\eta)^2 \times \text{ (Minkowski structure)}$$

has same features as Minkowski space \Rightarrow *light cones still defined*

when use comoving lengths and conformal time

For a flat universe ($\kappa = 0$), it's even better:

$$ds^2 = a(\eta)^2 \left(d\eta^2 - dr_{\rm com}^2 \right) = a(\eta)^2 \times \text{(exact Minkowski form)}$$

In either case \rightarrow spacelike, timelike, lightlike divisions same and in (η, ℓ_{com}) space:

light cone structure the same \Rightarrow *causal structure the same*!

Namely:

- a spacetime point can only be influenced by events in past light cone
- a spacetime point can only influence events in future light cone

So far: like Minkowski

↓ New cosmic twist: finite cosmic age Q: implications for causality?

Causality: Particle Horizon

past light cone at t defined by photon propagation over cosmic history:

$$\int_{t_{\rm em}=0}^{t_{\rm obs}=t_0} \frac{d\tau}{a(\tau)} = \int_0^{r_{\rm em}} \frac{dr}{\sqrt{1 - \kappa r^2/R^2}} \equiv d_{\rm hor,com}(t_0)$$

where $d_{\rm hor,com}$ is comoving distance photon has traveled since big bang

if $d_{\text{hor,com}} = \int_0^t d\tau / a(\tau)$ converges then only a finite part of U has affected us $\rightarrow d_{\text{hor}}$ defines *causal boundary* \rightarrow "particle horizon"

- \rightarrow "particle horizon"
- Q: physical implications of a particle horizon?
- Q: role of finite age?

18

Q: sanity check–simple limiting case with obvious result?

Particle Horizons: Implications

our view of the Universe:
* astronomical info comes from events along past light cone
* geological info comes from

past world line

- if particle horizon finite (i.e., $\neq \infty$), then $d_{\text{horiz,com}}$:
- gives comoving size of observable universe
- encloses region which can communicate over cosmic time \rightarrow causally connected region
- sets "zone of influence" over which particles can "notice" and/or affect each each other
- and local physical processes can "organize" themselves e.g., shouldn't see bound structures large than particle horizon!

So *is* d_{hor} finite? depends on details of a(t) evolution as $t \rightarrow 0$: behavior near singularity crucial

Hint: observed $T_{CMB}(\theta, \phi)$ isotropic to 5th decimal place...

will see in coming weeks≥ inflation (if real!) adds twist!

Sketch of Friedmann Derivation in General Relativity

Assume universe mass-energy described by perfect fluid:

- "perfect" \rightarrow no dissipation (i.e., viscosity)
- stress-energy: given density, pressure fields ρ, p and 4-velocity field $u_{\mu} \rightarrow (1, 0, 0, 0)$ for FO

$$T_{\mu\nu} = \rho u_{\mu} u_{\nu} + p(g_{\mu\nu} - u_{\mu} u_{\nu})$$
(7)
= diag(\(\rho, p, p, p)\)_{FO} (8)

Recall: stress-energy conservation is

$$\nabla_{\nu} T^{\mu\nu} = 0 \tag{9}$$

where ∇_{μ} is covariant derivative For RW metric, this becomes:

$$d(a^{3}\rho) = -p \ d(a^{3}) \tag{10}$$

1st Law of Thermodynamics!

Einstein equation

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu}$$
(11)

Given RW metric (orthogonal, max symmetric):

- Q: how many nonzero Einstein eqs generally? here?
- Q: what goes into $G_{\mu\nu}$? what will this be for RW metric?

Einstein eq:

 $G_{\mu\nu}, T_{\mu\nu}$ symmetric 4×4 matrices \rightarrow 10 independent components in general, Einstein \rightarrow 10 equations but cosmo principle demands: space-time terms $G_{0i} = 0$ and off-diagonal space-space $G_{ij} = 0$ else pick out special direction \Rightarrow only diagonal terms nonzero

and all 3 "p" equations same

Einstein \rightarrow two independent equations

$$G_{00} = 3\left(\frac{\dot{a}}{a}\right)^2 + \frac{3\kappa}{R^2 a^2} \tag{12}$$

$$= 8\pi G T_{00} = 8\pi G \rho \tag{13}$$

$$G_{ii} = 6\frac{\ddot{a}}{a} + 3\left(\frac{\dot{a}}{a}\right)^2 + \frac{3\kappa}{R^2 a^2}$$
(14)
= $8\pi G T_{ii} = 8\pi G p$ (15)

After rearrangement, these become

the Friedmann "energy" and acceleration equations!