Astro ⁵⁰⁷Lecture ¹³Feb. 24, ²⁰²⁰

Announcements:

- Preflight 3 due Friday: the CMB!
- Prodigal Instructor returns, thanks for your patience

In the distant past:

 $\overline{}$

Robertson-Walker and relativistic cosmology

- re-derived redshift $z a$ relation, and cosmic time dilation
- PS2: explored RW metric, introduced "conformal time"

Today: last day of cosmological boot campNext time: apply tools to Dark Energy

Recap: Photon Propagation in FLRW

for ^a radial photon (i.e., coming to us)

 \mathcal{L}

$$
d\ell_{\text{com}} = \frac{dr}{\sqrt{1 - \kappa r^2/R^2}} = \frac{dt}{a(t)} = d\eta
$$

Why is η a "conformal" time? conformal transformation ⁼ angle-preserving $ds^2=a(\eta)^2$ (d η^2 $d\ell_{\mathsf{com}}^2) = a(\eta)^2 \times (\mathsf{Minkowski\ form})$ preserves Minkowski "angles" in spacetime \rightarrow lightcones keep straight slopes: $d\eta/d\ell_{\text{com}} = 1$ on cone

compare photon trajectory in (t, ℓ_{com}) plane: at early times: light cone "slope" $dt/d\ell_{\mathsf{com}}=a(t)\ll1$ Q: what does this look like? why inconvenient?www: light cones: (t, ℓ_{com}) vs $(\eta, \ell_{\mathsf{com}})$ plane

Cosmic Causality

Now RW metric: $ds^2 = dt^2 - a^2 d\ell_{\rm com}^2$ introduce new time variable η : conformal time defined by $d\eta = dt/a(t)$ (see PS2)

$$
ds^2 = a(\eta)^2 \left(d\eta^2 - d\ell_{\text{com}}^2 \right)
$$

 ω

Q: implications?

$$
ds^{2} = a(\eta)^{2} \left(d\eta^{2} - d\ell_{\text{com}}^{2} \right) = a(\eta)^{2} \times \text{(Minkowski structure)}
$$

has same features as Minkowski space⇒ *light cones still defined*
when use comoving lenc

when use comoving lengths and conformal time

For a flat universe $(\kappa = 0)$, it's even better:

$$
ds^{2} = a(\eta)^{2} (d\eta^{2} - dr_{\text{com}}^{2}) = a(\eta)^{2} \times \text{ (exact Minkowski form)}
$$

In either case \rightarrow spacelike, timelike, lightlike divisions same
and in (m ℓ) space: and in $(\eta, \ell_{\text{com}})$ space:

light cone structure the same \Rightarrow causal structure the same!

Namely:

- ^a spacetime point can only be influencedby events in past light cone
- ^a spacetime point can only influenceevents in future light cone

So far: like Minkowski

_o New cosmic twist: finite cosmic age Q: implications for causality?

Causality: Particle Horizon

past light cone at t defined by photon propagation over cosmic history:

$$
\int_{t_{\text{em}}=0}^{t_{\text{obs}}=t_{0}} \frac{d\tau}{a(\tau)} = \int_{0}^{r_{\text{em}}} \frac{dr}{\sqrt{1 - \kappa r^{2}/R^{2}}} \equiv d_{\text{hor},\text{com}}(t_{0})
$$

where $d_{\mathsf{hor},\mathsf{com}}$ is the comoving distance
photon has traveled since big bang photon has traveled since big bang

if $d_{\mathsf{hor},\mathsf{com}} = \int_0^t$ \mathbf{v} $\frac{\partial^{\tau} d\tau}{\partial(\tau)}$ converges then only a finite part of U has affected us \rightarrow $d_{\sf hor}$ defines *causal boundary* → comoving" particle horizon"

Q: physical implications of ^a particle horizon?

Q: role of finite age?

 σ

Q: sanity check–simple limiting case with obvious result?

Particle Horizons: Implications

our view of the Universe: \star astronomical info comes from events along *past light cone* \star geological info comes from

past world line

- if particle horizon finite (i.e., $\neq \infty$), then $d_{\mathsf{horiz,com}}$:
- **•** gives comoving size of **observable universe**
- encloses region which can communicate over cosmic time→ causally connected region
sets "zone of influence" eve
- sets "zone of influence" over which particles can"notice" and/or affect each each other
- and local physical processes can "organize" themselves e.g., shouldn't see bound structures large than particle horizon! $\overline{}$

So *is* d_{hor} *finite?* depends on details of $a(t)$ evolution as $t\rightarrow 0$: behavior near singularity crucial

will see in PS3: for matter, radiation domination:

- \bullet $d_{\sf hor}$ finite
- and $d_{\text{hor}} \rightarrow 0$ for $t \rightarrow 0$ n_1 0

Q: implications for CMB?Hint: observed $T_\mathsf{CMB}(\theta,\phi)$ isotropic to 5th decimal place...

will see in coming weeks

⊲ inflation (if real!) adds twist! ⁸

Cosmic Distance Measures

More examples of how spacetime properties impose relationships among observables

Warmup: Newtonian cosmologyanother sanity check, limiting caseQ: validity range?

Consider Newtonian cosmo:

- \bullet given observed z , what is distance $d_{\sf Newt}$?
- Q: good for which z ?
- Q: complications in full FLRW universe?

 \circ

"Newtonian Distance"

Newtonian cosmology:

• small speeds, weak gravityignore curvature

Hubble's Law:

$$
H_0 d_{\text{Newt}} \equiv v \simeq cz \tag{1}
$$

applicability: $z\ll1$ solve:

$$
d_{\text{Newt}} = \frac{c}{H_0} z = d_H z
$$

- naïve distance d_{Newt} is linear in z
- it is proportional to the Hubble length d_H
	- fraction $d_{\rm Newt}/d_{\rm H}=z$; compare $t_{\rm lookback}/t_{\rm H}\approx z$

 \overline{C}

Distances and Relativity

Basic but crucial distinction, important to remember:

In *Newtonian/pre-Relativity* physics: space is *absolute*

- "distance" has unique, well-defined meaning: ⇒ Euclidean separation between points
san think of as "intrinsis" to objects ar
- can think of as "intrinsic" to objects and points

In *Special and General Relativity*: space *not* absolute

- distance observer-dependent, not intrinsic to objects, events
- different well-defined measurements can lead todifferent results for distance

In FLRW universe, "distance" not unique: answer depends on

• what you measure

11

• how you measure it

Proper Distance

So far: have constructed *comoving* coordinates which expand with Universe ("home" of fundamental observers)

RW metric: encodes **proper distance**

i.e., *physical* separations as measured by metersticks/calipers:

⊳ in RW frame i.e., by comoving observers=FOs

 \triangleright at one fixed cosmic instant t

$$
d\ell_{\text{prop}}^2 = a(t)^2 d\ell_{\text{com}}^2 = a(t)^2 \left(\frac{dr^2}{1 - \kappa r^2/R^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right)
$$

Can read off proper distances for small displacements as measured by FOs at time t :

- • \bullet dl^{prop} = $= a(t) d\ell_r^{\text{com}} = a(t) dr/\sqrt{1 - \kappa r^2/R^2}$
- • $\begin{array}{l}\n\bullet \ d\ell_{\theta}^{\text{prop}} = a(t) \, d\ell_{\theta}^{\text{com}} = a(t) \, r d\theta \\
\bullet \ d\ell_{\theta}^{\text{prop}} = a(t) \, d\ell_{\theta}^{\text{com}} = a(t) \, r d\theta\n\end{array}$

 $\overline{2}$

•
$$
d\ell_{\phi}^{\text{prop}} = a(t) d\ell_{\phi}^{\text{com}} = a(t) r \sin \theta d\phi
$$

Or how to find distance for finite.

Q: how to find distance for finite displacements?

for finite displacements: integrate small ones

e.g., radial distance (at t) between $r=0$ and r is

$$
\ell_r^{\text{prop}} = a(t)\ell_r^{\text{com}} = a(t) \int_0^r d\zeta / \sqrt{1 - \kappa \zeta^2 / R^2} \tag{2}
$$

Note: $d\ell_r^{\sf prop}/dt = \dot{a}\,\ell_r^{\sf com} =$ \rightarrow i.e., at a fixed cosmic time t $= H \ell_r^{\rm prop}$ $r^{p_1o_1p}$ exactly! proper distance increase exactly obeys Hubble Law! Q: what does this mean for points with $\ell_{\mathsf{r}}^{\mathsf{prop}} > d_H$? Q: is this ^a problem?

Q: how would you in practice measure $\ell_r^{\sf prop}$ for large r ?

13

Apparent Brightness of ^a Standard Candle

consider a "**standard candle**"

• object of known rest-frame luminosity

$$
L_{\text{em}} = \frac{dE_{\text{em}}}{dt_{\text{em}}}
$$

- emitting isotropically
- at epoch with a_{em} and at rest in cosmic frame
- also, assume no absorbing medium anywhere on sightline

if unresolved = **point source**, observables:
1 redabift

1. redshift $z_{\sf em}$

14

2. observed flux (apparent brightness)

 $F_{\text{obs}} = dE_{\text{obs}}/dt_{\text{obs}} dA$

 $F_{\rm obs}$ *rL*em

summed over all wavelengths: "bolometric"

 Q : Newtonian relation between L and F ?

<u>Goal:</u> given std candle L_{em} , want to relate observed $z_{\textsf{em}}$ and $F_{\textsf{obs}}$

 \Rightarrow find expression for luminosity distance
closined by Newtonian (Euclidean formula defined by Newtonian/Euclidean formula:

$$
d_{\mathsf{L}}(z_{\mathsf{em}}) \equiv \sqrt{\frac{F_{\mathsf{obs}}}{4\pi L_{\mathsf{em}}}}
$$
(3)

Q: effects in cosmological setting?15

Strategy: start with observation, work back

Observation:

FO with telescope, area $A_{\sf det}$ in time interval $\delta t_{\rm obs}$ measures total energy $\delta\mathcal{E}_{\mathsf{obs}}$, avg photon energy ϵ_{obs} ;

observed flux (bolometric, λ -integrated) given by

$$
\delta \mathcal{E}_{\text{obs}} = F_{\text{obs}} A_{\text{det}} \delta t_{\text{obs}} \tag{4}
$$

 F_{obs} is rate of energy flow per unit area as measured in observer frame

 $Q:$ what's invariant/observer independent as signal propagates?

Standard candle emitter: luminosity L_{em} at $a_{\mathsf{em}}, z_{\mathsf{em}}$ with average photon energy ϵ_{em}

- choose $r_{em} = 0$ as center
- light "cone" (sphere) today reaches us, has present area $A_{\mathsf{sph}} = 4\pi a_{\mathsf{obs}}^2 r^2 = 4\pi r^2$

key physical principle:

photon counts are invariant

i.e., all observers agree on how many detector registers Q: how to quantify photon number conservation?