Astro ⁵⁰⁷ Lecture ¹⁴Feb. 26, ²⁰²⁰

Announcements:

- Preflight 3 due Friday: the CMB!
- Office Hours after class (Instructor), tomorrow noon (TA)

Last time: cosmic distances

- lesson: in relativity distance are not unique or universal result depends on nature of measurement
- metersticks laid end-to-end give proper distance

 $\ell_{\mathsf{prop}}(t) = a(t) \,\, \ell_{\mathsf{com}}$ changes at rate ℓ

changes at rate $\dot{\ell}_{\text{prop}} = H \ell_{\text{prop}}$: Hubble flow!
reflects sum of small speeds between poigbb reflects sum of small speeds between neighboring observers which move slowly, never close to \overline{c} key scale: Hubble length $d_{\mathsf{H}} = H^{-1}$. Solucional significance? Q: physical significance?

 $\overline{}$

Hubble Length

 $d_{\mathsf{H}} = H^{-1}$, and comoving $d_{\mathsf{H},\mathsf{comov}} = d_{\mathsf{H}}/a = 1/aH$ measures physical and comoving distance where $\dot{\ell}_{\texttt{prop}}=c$

physically:

boundary of cosmic region currently out of causal contact estimate time until causally accessible: $t_{\mathsf{caus}} \sim d_{\mathsf{H}}/c = t_{\mathsf{H}}$

related to but differnt from comoving light travel distance at t :

$$
d_{\text{comov},\gamma}(t) \stackrel{\text{flat}}{=} r(t) = \eta(t) = \int_0^t \frac{dt'}{a(t')} = \int_0^{a(t)} \frac{da}{a H} = \int_0^{a(t)} \frac{da}{a} d_H(a)
$$

another key cosmic distance measure: **luminosity distance** \sim Q: ingredients? d_L =? Newtonian results? Cosmo effects?

Standard candle emitter: luminosity L_{em} at $a_{\mathsf{em}}, z_{\mathsf{em}}$ with average photon energy ϵ_{em}

- choose $r_{em} = 0$ as center
- light "cone" (sphere) today reaches us, has present area $A_{\mathsf{sph}} = 4\pi a_{\mathsf{obs}}^2 r^2 = 4\pi r^2$

key physical principle:

photon counts are invariant

i.e., all observers agree on how many detector registers Q: how to quantify photon number conservation?

 $\mathrm{s} A_\mathsf{S}$ ph δt_obs $= 4\pi r^2$ F_{obs} $\epsilon_{\textsf{obs}}$ δt_obs *r* L_{em} $F_{\rm obs}$

total photon counts from source

 $\epsilon_{\textsf{obs}}$

 $\delta \mathcal{N}_{\mathsf{em}}=% \begin{bmatrix} \omega_{0}-i\frac{\gamma_{\mathrm{p}}}{2} & \frac{\gamma_{\mathrm{p}}}{2} & \frac{\gamma_{\mathrm{p}}}{$ L_{em} $\epsilon_{\textsf{obs}}$ δt em

photon conservation: $\delta \mathcal{N}_{\mathsf{obs}}=\delta \mathcal{N}_{\mathsf{em}}$

$$
F_{\rm obs} = \frac{\epsilon_{\rm obs}}{\epsilon_{\rm em}} \frac{\delta t_{\rm em}}{\delta t_{\rm obs}} \frac{L_{\rm em}}{4\pi r^2}
$$
(1)

Q: and so? \rightarrow

 δ

 $\delta\mathcal{N}_{\mathsf{obs}}$

=

 F_{obs}

total photon counts through sphere at r :

$$
F_{\rm obs} = \frac{\epsilon_{\rm obs}}{\epsilon_{\rm em}} \frac{\delta t_{\rm em}}{\delta t_{\rm obs}} \frac{L_{\rm em}}{4\pi r^2} \tag{2}
$$

- energy redshifting $\epsilon_{\text{obs}} = a_{\text{em}} \epsilon_{\text{em}}$
- time dilation $\delta t_{\textsf{obs}} = \delta t_{\textsf{em}}/a_{\textsf{em}}$

So we have

$$
F_{\rm obs} = a_{\rm em}^2 \frac{L_{\rm em}}{4\pi r^2} = \frac{L_{\rm em}}{4\pi (1+z)^2 r^2}
$$
(3)

Q: and so?

5

Observed flux is

$$
F_{\rm obs} = a_{\rm em}^2 \frac{L_{\rm em}}{4\pi r^2} = \frac{L_{\rm em}}{4\pi (1+z)^2 r^2}
$$
(4)

identify luminosity distance via Newtonian/Euclidean result:

$$
d_L \equiv \sqrt{\frac{L_{\text{em}}}{4\pi F_{\text{obs}}}}
$$
 (5)

and so

$$
d_L = \frac{r}{a_{\text{em}}} = (1+z) r
$$

Q: why of practical observational interest?

- Q: ^r unmeasured–how relate to observables?
- Q : sanity checks? non-expanding? small z ?
- Q: why is $d_L \neq \ell_{\mathsf{com}}$?
- Q: why is $d_L > r$? 6
	- Q: what if measure spectrum $F_{\nu}=dF/d\nu$?

luminosity distance: $d_L = (1 + z) r(z)$

Note: relate r to emission redshift z via trusty photon propagation eq:

$$
\int_0^{r_{\text{em}}} \frac{dr}{\sqrt{1 - \kappa r^2 / R^2}} = \int_{t_{\text{em}}}^{t_{\text{obs}}} \frac{dt}{a(t)}
$$

$$
= \int_{a_{\text{em}}}^{a_{\text{obs}}} \frac{da}{a\dot{a}} = \int_{a_{\text{em}}}^{a_{\text{obs}}} \frac{da}{a^2 H(a)}
$$

$$
= \int_0^{z_{\text{em}}} \frac{dz}{H(z)} = \eta(z_{\text{em}})
$$

where Friedmann gives $H(z)$

 $\rightarrow r$ and thus d_L manifestly depends on cosmology
(i.e., cosmic geometry, parameters)

(i.e., cosmic geometry, parameters)

 \star d_L for SN Ia \to cosmic acceleration!

Note: for alt radial variable χ $d_L = (1 + z) S_{\kappa}(\chi)$

 $\overline{}$

Extended Objects: Angular Diameter Distance

if object resolved as extended source on sky, not point sourcethen new observable available:

- \star angular size $\delta\theta$
- \bullet and as usual, redshift z and flux (apparent bolometric brightness) F

input/assumption: "standard ruler"known rest-frame size: diameter D_{em}

Goal: Tfor std rulers, want to relate observed z and $\delta\theta$

 ∞

Q: effects in cosmological setting? Q: relevant equations? calculation strategies?Q: sanity check(s)?

To visualize, consider closed universe

- observer at $r=0$
- ^a pair of radial photons from edges of sourcetrace longitudes

Invariant:

 \circ

angular (longitude) separation $\delta\theta$ remains same ...while physical separation evolves, due to propagationand cosmic expansion

At *emission* epoch, physical separation of photons is standard ruler size D_{em} but also related to $\delta\theta$ and $r=r_{\textsf{em}}$ via RW metric
Or house Q: how?

At $emission$ epoch, standard ruler size D_{em} at emission point r fixes angular separation $\delta\theta$:

$$
D_{\text{em}} = \delta \ell_{\theta}^{\text{prop,em}} = a_{\text{em}} \delta \ell_{\theta}^{\text{com}} = a_{\text{em}} r \delta \theta
$$

But $\delta\theta$ remains fixed over propagation so today we observe

$$
\delta\theta = \frac{D_{\text{em}}}{a_{\text{em}}r}
$$

identify angular diameter distance via Newtonian/Euclidean result:

$$
d_A \equiv \frac{D_{\text{em}}}{\delta \theta} \tag{6}
$$

and so

$$
d_A = a_{\text{em}}r = \frac{r}{1+z} = \frac{S_\kappa(\chi)}{1+z}
$$

10

Angular diameter distance: $\frac{d_A=r(z)}{(1+z)}$)

- Q: why of practical observational interest?
- Q: sanity checks?
- Q : why is $d_A < r$?
- Q: what if resolve at different λ?

Note:

- d_A depends on cosmological history via $r(z)$
- $d_A=a_e^2$ $_{\rm em}^2d_L=d_L/(1+z)^2$

different measures!

but ratio is cosmology independent

Q: implications for CMB fluctuations?

```
\mathbf{u} www: WMAP
```
Cosmic Acceleration & Dark Energy

Cosmic Conundrum: Observations vs Good Taste

- 1990's Cosmology:
- \triangleright theory (Dicke coincidence Q: whazzat?, inflation), good taste, and some observational hints on large scales
- $\rightarrow \Omega_0 = 1$ \rhd observation (e.g., galaxy halos, clusters) $\rightarrow \Omega_{\rm m} \sim 0.3$
- Q: possible reasons for discrepancy?
- Q: observational tests?

Probing Cosmic Expansion as Far as the Eye Can See

Friedmann: cosmic *contents* control cosmic *dynamics*

 \rightarrow cosmic ingredients encoded in *history* of cosmic expansion

Strategy: <mark>measure</mark> $H(z)$ over large range in z

- \overline{H} $\overline{$ • Friedmann: $H = H(z; \Omega_0) \rightarrow$ data over large z range
determine O determine Ω_0
- alternatively, Friedmann accel:

$$
H^2 = -2\frac{\ddot{a}}{a} - 8\pi GP - \frac{\kappa c^2}{R^2 a^2}
$$

 $H(z)$ sensitive to acceleration, pressure, curvature

 $\frac{1}{2}$ Q: what observables trace $H(z)$? what needed for large z range?

Supernovae as Standard Candles

```
long"baseline"in z → requires luminous sources<br>supernova explosions—can outshine a galaxy

supernova explosions–can outshine a galaxyat peak, L_{\mathsf{SN},\mathsf{max}} \sim

www: SN 1994D; SN2014J in M82
                          \sim 10^{10} L_{\odot}
```
Procedure:

- identify SNe to use as standard candles
- measure flux F for events over wide range in z
- \mathbf{F} $\mathbf{$ \bullet find $d_L(z)=$ $\sqrt{L_{\mathsf{SN}}/4\pi F}$ \overline{F} $\stackrel{\text{flat}}{=}$ $(1 +$ z) \int_0^z 0 $\int_0^z dz/H(z)$
- $\sim \pi L$ \overline{C} • infer $H(z) \rightarrow$ cosmic dynamics, parameters

First step:

 $\overline{1}$

all SN not created equal!

Q: what are basic SN classes observationally? how distinct physically?

Director's Cut Extras: Surface Brightness

Extended Objects Part Deux: Surface Brightness

if object is resolved, extended source on skycan measure angular area and determinesurface brightness $I = \textrm{flux}/(\textrm{angular area } \Delta\Omega)$

- Q: physical effects: "normal" environment?
- Q: effects in cosmological setting?
- Q: relevant equations? calculation strategies?
- Q: sanity check(s)?

 $\overline{1}$

Newtonian/Euclidean Surface Brightness

For intuition: review Newtonian/Euclidean result

- flat space
- no redshifting, time dilation

consider an **extended source**, i.e., not pointlike which is resolved by your telescope

i.e., apparent angular size $>$ point spread function

observables:

- flux $F = dE/dt$ dA as before, but also
- angular dimensions \rightarrow angular area $d\Omega$

detector *dA*
detector *dA d*Ω

Wavelength-integrated (bolometric) surface brightness is wavelength-integrated flux per unit source angular area:

$$
I_{\rm obs} = \frac{dE_{\rm obs}}{dA \ dt_{\rm obs} \ d\Omega} = \frac{dF_{\rm obs}}{d\Omega}
$$

 $\overline{8}$

Dependence on source distance r ?

• as usual, $F = L/4\pi r^2$

 10

the contract of the contract of the contract of the • source sky area $\Delta\Omega \Rightarrow$ physical area $S=r$ $^2\Delta\Omega$, so

$$
I_{\rm obs} = \frac{F_{\rm obs}}{\Delta \Omega} = \frac{L/4\pi r^2}{S/r^2} = \frac{L}{4\pi S}
$$

Newtonian/Euclidean result *independent* of source distance!

"conservation of surface brightness"

fun consequences of surface brightness conservation:

- similar resolved, unobscured Galactic objects (e.g., nebulae) have similar surface brightness
- nearby large Galaxies have similar surface brightness to MW
- in daily life you rarely experience inverse square law
	- e.g., brightness of faces of nearby vs distant classmates

Generalize to cosmological context: observed (bolometric) surface brightness

$$
I_{\rm obs} = \frac{F_{\rm obs}}{\Delta \Omega_{\rm obs}}
$$

- 1. already know $F_{\text{obs}}=a_{\text{e}}^2$ $_{\rm em}^{2}$ Lem/4 πr^{2}
- $591/57$ 2. RW metric says angular area

$$
\Delta\Omega_{\rm obs} \simeq \frac{\delta\ell_{\theta}^{2}}{4\pi r^{2}} = \frac{D_{\rm em}^{2}}{4\pi a_{\rm em}^{2}r} = \frac{A_{\rm em}}{4\pi a_{\rm em}^{2}r^{2}}
$$

Combine:

$$
I_{\rm obs} = \frac{a_{\rm em}^2 L_{\rm em} / 4\pi r^2}{4\pi A_{\rm em} / a_{\rm em}^2 r^2} = a_{\rm em}^4 \frac{L_{\rm em}}{A_{\rm em}}
$$
(7)
= $a_{\rm em}^4 I_{\rm em} = \frac{I_{\rm em}}{(1+z)^4}$ (8)

20

Intensity of resolved, unobscured source at $z_{\sf em}$:

$$
I_{\rm obs} = \frac{I_{\rm em}}{(1+z)^4}
$$

- conservation of surface brightness" no longer true! vestige: no explicit dependence on r
- cosmic dimming $\propto (1+z)^4$
- • dimming is independent of cosmology! useful consistency check!

Q: implications for CMB brightness?

CMB implications:

for blackbody, Stefan-Boltzmann sez

$$
I = \frac{\sigma}{\pi} T^4
$$

consider CMB, emitted at ^zemwith temperature $T_{\sf em}$

today, observe surface brightness

$$
I_{\text{obs}} = (1 + z_{\text{em}})^{-4} I_{\text{em}} = (1 + z_{\text{em}})^{-4} \frac{\sigma}{\pi} T_{\text{em}}^4 = \frac{\sigma}{\pi} \left(\frac{T_{\text{em}}}{1 + z_{\text{em}}} \right)^4
$$

still follows blackbody law, but with

$$
T_{\rm obs} = \frac{T_{\rm em}}{1 + z_{\rm em}}
$$

22

which we have already derived by other means!