Astro 507 Lecture 16 March 1, 2020

Announcements:

- Problem Set 3 posted, due next Friday March 6
- Instructor F2F office hours 15 min after class Wed but online discussion available
- TA Office hours noon-1pm Thursday

Last time: evidence for acceleration data: SN fainter (lower F) than in coasting/decelerating U

⊢ Today: possible interpretations

SN Ia Survey Observations

www: SNIa survey data

Ν

★ luminosity distances show $d_L(obs) > d_L(non - accel)$ ★ standard candles appear faint!
in magnitudes, $m_{obs} > m_{non-accel}$ flux $F_{obs} < F_{non-accel}$

Why does acceleration give fainter candles than deceleration?

standard candle measurements gives luminosity distance

$$d_L(z) = (1+z) \ \ell_{\text{comov}}(z) = (1+z) \int_0^z \frac{dz'}{H(z')}$$

• for fixed z: fixed cosmic expansion during photon travel

• so higher $d_L \rightarrow$ higher photon comoving distance ℓ_{comov} during travel time, due to two effects Q: guesses?

ω

Faint Candles Point to Acceleration

 $d_L(z) = (1+z) \ \ell_{\text{comov}}(z) = (1+z) \int_0^z \frac{dz'}{H(z')} = (1+z) \int_{t_{\text{lookback}}(z)}^{t_0} \frac{dt}{a(t)}$

- photon travel time t_{lookback}(z) set by time Universe needs to expand by fixed amount least in declerating U, most in accelerating (fast/slow in past)
- also: photon comoving progress differs
 fast then slow in accelerating U: maximizes progress!

Q: possible explanations for faint supernovae/acceleration? ...(at least 3 distinct classes) *Q: pros and cons?*

▶ Q: how to observationally test?

Faint SN Ia: Whodunit?

***** Blame the Observations

maybe: SN Ia are *not* reliable standard(izable) candles i.e., $m(obs) \neq m(std candle)$ such that $L_{SN}(highz) < L_{SN}(lowz)$ systematically

***** Blame Einstein

(п

observations correct, but expectations based on gravity theory = GR maybe: GR incorrect/incomplete

\star Blame the Universe

observations correct, and GR correct as well, so infer existence of new cosmic contents which create acceleration e.g., acceleration points to an accelerant! maybe: Friedmann OK, but missing terms i.e., beyond matter (including DM!) and radiation new source(s) of ρ , P

What is to be done?

At face value

- SN Ia \Rightarrow U. is accelerating
- RW+Einstein \Rightarrow need new cosmic components

For now: assume these are true; then...

Our Mission

quantify—and ultimately identify—the new stuff see if we can live with the consequences

But don't forget:

- keep checking SN Ia systematics
- don't dismiss gravity beyond Einstein: GR may itself be a limiting case of larger theory just as Newtonian gravity is limit of GR

σ

First step:

Q: Friedmann–what are conditions for acceleration?

Acceleration in a FLRW Universe

Recall:

Cosmo principle (RW metric) + GR

= Friedmann

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3P}{c^2}\right) \tag{1}$$

But SNIa $\rightarrow \ddot{a} > 0$:

$$P < -\frac{1}{3}\rho c^2$$

Q: implications? interpretation?

 \neg

cosmic acceleration demands $P < -\rho c^2/3$

Cosmic pressure must be

- ★ non-negligible
- * negative! Q: meaning?
- ★ (for GR experts) violation of strong energy condition $\rho + 3P \ge 0$ fails!

Exotic substance mandatory!

- NR matter and/or radiation in *any* form even weirdo particle dark matter (WIMPs, axions, ...) have P ≥ 0: inadequate!
- new accelerant must be *dark*
 - i.e., has not been undetected in EM radiation
- ∞
- simplest solution is oldest...

Acceleration and the Cosmological Constant

Originally: Einstein modification of GR to allow for *static* universe (PS3): $\ddot{a} = \dot{a} = 0$

- forced to introduce new constant of nature
 cosmological constant ∧
- $[\Lambda] = [length^{-2}];$ alters cosmic geometry
- \bullet spoils GR \rightarrow Newtonian limit: instead,

$$\nabla^2 \phi = 4\pi G \rho - \frac{c^2}{3} \Lambda$$

Q: what does this do to Newtonian gravity?
 Q: why isn't this immediately fatal?

Cosmo-Sociology: The Checkered History of A

 Λ often invoked to solve cosmo problems, then abandoned when observations improved

example: early measurements gave $H_0 \sim 500 \text{ km s}^{-1} \text{ Mpc}^{-1}$ $\rightarrow t_{\text{H}} \sim 2 \text{ Gyr} \ll \text{age of Earth!}$ Lemaître (1931): Λ can give "loitering" Universe quasi-static for a long time, then begins expanding recently

"My greatest blunder."

– A. Einstein, allegedly, on inventing Λ

"The cosmological constant is the last refuge of scoundrels."

– famous Chicago cosmologist and current Λ enthusiast, circa 1990

Living with \wedge

With $\Lambda \neq 0$, new term in both Friedmann eqs

$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{\kappa c^{2}}{R^{2}a^{2}} + \frac{c^{2}}{3}\Lambda \qquad (2)$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\left(\rho + \frac{3P}{c^{2}}\right) + \frac{c^{2}}{3}\Lambda \qquad (3)$$

Note appearance & sign in acceleration $\Rightarrow \Lambda$ an "accelerant" \rightarrow "antigravity" *Q: intuitive reason? Hint: original purpose?*

convenient to introduce $\Omega_{\Lambda} = \Lambda c^2 / 3H^2$ allows easy comparison of Λ term with others $\Box Q$: but you can guess which larger, based on observed accel?

The Data: \land **Emerges**

SN Ia data in Λ cosmology:

- allow for $\Omega_{\Lambda}=\Lambda c^2/3H^2\neq 0$
- find best fit to d_L data:
 "concordance universe"

www: $\Omega_{\Lambda} - \Omega_{M}$ plane

$$\Omega_{\Lambda} \simeq 0.7 \qquad \Omega_{\rm m} \simeq 0.3 \tag{4}$$

This is amazing! *Q: why?*

∧ Looms Large

acceleration demands $\Omega_{\Lambda}\sim 0.7$ roughly independent of CMB

- Einstein-de Sitter expectations of $\Omega_m = \Omega_0 = 1$ totally ruled out!
- $\Omega_{\Lambda} \neq 0$: cosmo constant (or worse!) seems to exist!
- $\Omega_{\Lambda} \gtrsim 2\Omega_{m}$: U dominated by Λ now!
- two mysteries seem related quantitatively: CMB + galaxy clusters: $\Omega_0 - \Omega_m = \Omega_{other} \approx 0.7$ $SNe Ia: \Omega_\Lambda \approx 0.7$

a consistent picture of a bizarre universe!

Q: if this is all true, cosmic fate?

A and Cosmic Fate: Big Chill and Dark Sky

if acceleration is truly due to Λ then:

- already dominates Friedmann
- as *a* increases, matter & curvature terms drop
 - \rightarrow Λ dominates even more!

The bleak Λ -dominated future:

- ★ future $a(t) \simeq e^{\sqrt{\Omega_{\Lambda} H_0(t-t_0)}} \rightarrow \text{exponential expansion forever!}$ fate is not only big chill but supercooling
- ★ event horizon exists: $d_{\text{event,comov}}(t_0) \simeq \Omega_{\Lambda}^{-1/2} d_H \sim 6400 \text{ Mpc}$ we will never see beyond this! worse still: later on.

 $d_{\text{event,comov}}(t_0 + \Delta t) = e^{-\sqrt{\Omega_{\Lambda}}H_0\Delta t} d_{\text{event,comov}}(t_0)$ event horizon shrinks exponentially with time!

 \rightarrow ever less to see!

observational astronomy from data mining only!

∧ as Vacuum Energy

Can rewrite Λ as energy density: ρ_{Λ} : in Friedmann, put

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{\kappa c^2}{R^2 a^2} + \frac{\Lambda c^2}{3} \equiv \frac{8\pi G}{3}(\rho + \rho_{\Lambda}) - \frac{\kappa c^2}{R^2 a^2}$$
 so that

$$\rho_{\Lambda} = \frac{\Lambda c^2}{8\pi G} \text{ and } \Omega_{\Lambda} = \frac{\rho_{\Lambda}}{\rho_{\text{crit}}}$$

Then introduce pressure P_{Λ} in Fried accel:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P) + \frac{\Lambda c^2}{3} \equiv -\frac{4\pi G}{3}(\rho + \rho_{\Lambda} + 3P + 3P_{\Lambda})$$

can show:

$$P_{\Lambda} = -\frac{\Lambda c^2}{8\pi G} = -\rho_{\Lambda}$$

15

i.e., $P_{\Lambda} = w \rho_{\Lambda}$, with w = -1

Note:

- Λ is strict constant $\rightarrow \rho_{\Lambda}$ constant in space and time "energy density of the vacuum" \rightarrow **dark energy**
- $P_{\Lambda} < 0$: as needed for acceleration
- equation of state parameter w = -1 preserves Λ constancy

So: Λ is equivalently a length scale or an energy density *Q: what sets its value?*

Dark Energy: Parameterized Ignorance

Theoretical Ignorance

No good (i.e., pre-existing) candidates for cosmic acceleration unlike dark matter: high-E theory predicts stable exotic particles

Lacking guidance, look for general way to describe cosmic substance responsible for acceleration: **dark energy** recall: matter, radiation, Λ described by $P = w\rho c^2$ with w a constant

Write dark energy density and pressure with

 $P_{\mathsf{DE}} = w \ \rho_{\mathsf{DE}} c^2$

"parameterize our ignorance" in w (possibly not constant) cosmo constant is limiting case Q: Namely? Q: what can we say about w values?

Dark Energy: the Little We Know

What is w today?

In DE-only case

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P) = -\frac{4\pi G}{3}\rho(1 + 3w)$$
(5)

 \rightarrow acceleration requires w < -1/3 today

Recall: cosmic first law is

$$d(\rho a^{3}) = -p \ d(a^{3}) = -w\rho \ d(a^{3})$$
(6)

For constant w:

$$\rho_{\mathsf{DE}} \propto a^{-3(1+w)} \tag{7}$$

- Q: sanity check-results for w = matter, radiation, Λ ?
- *Q:* connection between "w" dark energy and Λ ?

Data: generalize Ω_{Λ} limits to Ω_w and w (now two parameters) www: current limits

 $\Omega_w \sim 0.7$, w < -0.76 (95%CL)

- w close to -1: cosmo constant value!
- tests for w change weak but null \rightarrow also like cosmo const!

What if w not constant? Empirical approach: Taylor expand

$$w(a) = w_0 + w_a (1 - a)$$
(8)

observations constraint parameters (w_0, w_a) \overrightarrow{b} Q: does this allow for \wedge result? if so how? www: present data

\wedge and its Discontents

In Classical GR:
∧ is a (optional) parameter to be measured
> no a priori insight as to its value (beyond escaping solar system limits)

But quantum mechanics & particle physics offer a new perspective on vacuum energy

Recall: blackbody radiation usually write total energy density:

$$\varepsilon_{bb}(T) = \int \overline{n} \hbar \omega \ \frac{d^3 p}{h^3} = \frac{1}{2\pi^2 c^2} \int_{\omega=0}^{\infty} \frac{\hbar \omega}{e^{\hbar \omega/kT} - 1} \omega^2 \ d\omega = a_{\text{Boltz}} T^4$$

note that $\varepsilon \to 0$ as $T \to 0$: vacuum has no energy
...but (Λ aside) this was always a cheat!
 Q : why? what omitted?

Uncertainty principle \rightarrow nothing ''at rest''

- \rightarrow ground state "zero point motion"
- \rightarrow zero point modes have energy $E_0 \neq 0$

Blackbody result: treats photon modes as harmonic oscillators but threw away zero point energy $E_0 = \hbar \omega/2!$ Cheated!

- handwaving excuse: E_0 cost of "assembling" oscillators/quanta ...and then only energy *differences* count
- in practice, usual Planck result is really

 $\varepsilon_{\text{usual}} = \varepsilon_{\text{tot}}(T) - \varepsilon_{T=0} = \varepsilon_{\text{tot}}(T) - \varepsilon_{\text{zeropoint}}$

 but in GR: curvature ↔ mass-energy density absolute energy scales matter!

e.g., $(\dot{a}/a)^2 \sim 8\pi G/3 \ \varepsilon/c^2$

22

Q: what if we keep the zero-point energy?

Try keeping zero point energy:

$$\varepsilon \sim \int_0^\infty \langle E(\omega) \rangle \ \omega^2 \ d\omega$$
 (9)

$$= \int_0^\infty \left(\overline{n} + \frac{1}{2}\right) \hbar \omega \ \omega^2 \ d\omega \tag{10}$$

$$= \int_0^\infty \left(\frac{1}{e^{\hbar\omega/kT} - 1} + \frac{1}{2}\right) \omega^3 \, d\omega \tag{11}$$

$$= \varepsilon_{\text{usual}} + \varepsilon_{\text{zeropoint}} \tag{12}$$

where the zero pont contribution is

$$\varepsilon_{\text{zeropoint}} \sim \int_0^\infty \omega^3 \ d\omega = \infty^4$$

"ultraviolet catastrophe"!

Q: possible cures?

Vacuum Energy in Particle Physics

what is cause of catastrophe?

$$\varepsilon_{\text{zeropoint}} \sim \int_0^{\omega_{\text{max}}} \omega^3 \ d\omega \sim \omega_{\text{max}}^4$$

allowed $\omega_{\max} \rightarrow \infty$

 \rightarrow included modes of arbitrarily high energy arbitrarily small wavelength

If quanta energy has upper limit E_{max} i.e., a minimum wavelength $\lambda_{\min} = \hbar c / E_{\max}$ then $\varepsilon_{\text{zeropoint}} \neq \infty$

Q: what might such a limit be? $\stackrel{\text{N}}{\leftarrow}$ Q: i.e., at what scale might energies "max out"?

The Planck Scale and Λ

Highest known energy scale in physics: **Planck Scale** when *quantum effects become important for gravity*

a particle of mass m, energy mc^2 has quantum scale $\lambda_{quantum} = \hbar/mc$ (Compton wavelength) equal to GR scale $\lambda_{GR} = 2Gm/c^2$ (Schwarzchild radius) if $m = M_{Pl}$: the **Planck mass**

$$M_{\rm Pl}c^2 = \sqrt{\frac{c}{G\hbar}}c^2 \sim 10^{19} \text{ GeV}$$
 (13)
 $\ell_{\rm Pl} = \frac{\hbar}{M_{\rm Pl}c} \sim 10^{-33} \text{ cm}$ (14)

if quanta have $E_{max} = M_{PI}$ and $\lambda_{min} = \ell_{PI}$ then estimate vacuum energy density

 \wp $\rho_{\rm Vac,PI} \sim M_{\rm PI}^4 \sim 10^{110} \text{ erg/cm}^3 \sim 10^{89} \text{ g/cm}^3$ Q: implications? Compare to the vacuum density in Λ :

$$ho_{
m Vac,Pl} \sim 10^{89}~{
m g/cm^3} \sim 10^{120}
ho_{
m Lambda}$$

mismatch is \sim 120 orders of magnitude!!

So the real question is not: "Why have Λ at all?" but rather: "Why isn't Λ gi-normous?"

```
quantum gravity?
maybe some underlying symmetry set \Lambda = 0
```

to avoid "fine-tuning" Λ

if so, then dark energy is not vacuum energy but some other energy density with negative pressure

high-energy phase transitions/symmetry breaking? maybe symmetry breaking processes set vacuum energy e.g., GUT, SUSY, electroweak, QCD if so, how does each contribute to total vacuum? run the numbers: best case is QCD

$$\varepsilon_{qcd} \sim \Lambda_{qcd}^4 \sim (100 \text{ MeV})^4 \sim 10^{30} \varepsilon_{dark\,energy}$$
 (15)

many orders of magnitude improvement, but not quite a fix!

Bottom line:

known quantum fields do not provide viable candidate for source of vacuum energy $\rho_{\rm Vac} = \rho_{\Lambda}$