Astro ⁵⁰⁷ Lecture ²² March 23, ²⁰²⁰

Announcements:

- Welcome to Shelter in Place Cosmology!
- Lecture in real time on Zoom, video posted after
- Problem Set ⁴ due Friday

Today:

- Cosmology in quarantine–how we will muddle through
- the CMB and cosmic recombination

Checking In

We are in stressful uncharted territory

Most importantly, ^I want you to be safe and healthy

If you have problems, let me know!

We will figure out how to get through this

Course Revisions

Modified Course Requirements

We will proceed with the same material But now we will revise the requirements:

• drop the lowest PS score

replace it with the average of the other PS scoes

• drop the lowest Preflight score

replace it with the average of the other preflights

Modified Course Meetings

on Zoom, at the usual time

^I can't see your faces! Turns out that's useful feedback Please ask questions: unmute and speak, or use chat ω

Before Break

Last time: theory of isotropic CMB spectrumkey aspect: the *only* process acting is Thompson scattering photon scattering on free electrons $e^-\gamma\rightarrow e^-\gamma$

Given a photon spectrum I_{ν} prior to decoupling
Curricht is spectrum ofter Thempson freezeo Q: what is spectrum after Thompson freezeout?

Observed (post-decoupling) CMB spectrum: thermal Q: implications?

Q: what physically controls onset of decoupling?

 \rightarrow

The CMB Demands ^a Hot Big Bang

observe *thermal* (Planck) CMB spectrum today

- \Rightarrow thermal CMB spectrum pre-decoupling!
 \Rightarrow in early U: photons thermalized, sounle
- \Rightarrow in early U: photons thermalized, coupled to matter!

Cosmic matter & radiation once in "good thermal contact"

- \rightarrow but this requires much higher T, ρ than seen today
- → CMB demands Universe went through *hot*, *dense* early phase
→ CMB Abot his hang
- \Rightarrow $\begin{array}{|l|} \textsf{CMB} \rightarrow \textsf{hot big bang} \end{array}$

ဟ

Compton/Thomson scattering conserves photon number but Planck spectrum has fixed number density at T ⇒ early Universe needed photon number-changing processes
e.e.s. bremsstrablung e.l. pusieus a.e. l. pusieus Lac e.g., bremsstrahlung $e+$ nucleus $\rightarrow e+$ nucleus $+$ γ

The Ratio of Baryons to Photons

The number of barons per photon is the "baryon-to-photon ratio" $\boxed{\eta \equiv n_B/n_\gamma}$

photons not conserved in general: e.g., Bremsstrahlung $e \rightarrow e + \gamma$ so chem pot $\mu_e = \mu_e + \mu_\gamma \rightarrow \mu_\gamma = 0$. . d hu $T\lnot$ $\rightarrow n_{\gamma} \sim T^{\textsf{3}}$: fixed by T alone

baryons conserved: $#$ baryons $=$ const in comoving vol $d(n_Ba$ $\sqrt{2}$ $(3) = 0$ $\rightarrow n_{B} \propto a^{-3}$ \rightarrow so $\mu_B(T) \neq 0$ enforces this scaling

Thus we have

 σ

$$
\eta = \frac{n_{B,0}a^{-3}}{n_{\gamma,0}(T/T_0)^3} = \left(\frac{T_0}{aT}\right)^3 \eta_0 \tag{1}
$$

baryon number conservation: $n_\mathsf{B} \propto a^{-3}$ thermal photons: $n_\gamma \propto T^3$

so as long as $T \sim 1/a$ *then* $\eta=const!$ baryon-to-photon ratio conserved!
 $\eta=const!$ thus we expect $\eta_{\rm BBN}=\eta_{\rm CMB}=\eta_0!$

numerically (from BBN, CMB anisot):

$$
\frac{n_{\rm b}}{n_{\gamma}} = \eta_0 \sim 6 \times 10^{-10} \ll 1 \tag{2}
$$

$$
n_{\gamma} \sim 10^9 n_{\rm b} \tag{3}
$$

huge number of photons per baryon! never forget! \Rightarrow early U had huge photon source! Q: ideas?

 $\overline{}$

but note $\rho_B/\rho_\gamma \sim m_B n_B/T n_\gamma \sim \eta m_B/T \ne const$

Last Scattering: Including Recombination

Recombination $p+e^-\rightarrow H+\gamma$

For simplicity, we will assume baryons are only protons and will consider only Thomson scattering (excellent approx!) www: laboratory hydrogen ^plasma

Then: scattering rate per photon is

$$
\Gamma_{\gamma} = n_{e, \text{free}} \sigma_{\text{T}} c \propto n_{e, \text{free}}
$$
\nand last scattering when $\Gamma_{\gamma} \simeq H$

last scattering/decoupling controlled by free electron density $n_{e,\mathrm{free}}$ changes due to

- cosmic volume expansion $\propto a^{-3}$ ∞
	- recombination: free e^- lost to neutral H

rewrite to account for each $n_{e,\text{free}}$ effect separately:

$$
n_{e,\text{free}} = X_e n_{e,\text{tot}} = X_e n_{\text{baryon}} \tag{5}
$$

• baryon density
$$
n_b \propto a^{-3} \propto T^3
$$

gives volume dilution

• "ionization fraction"

$$
X_e \equiv \frac{n_{e,\text{free}}}{n_{e,\text{free}} + n_{e,\text{bound}}} = \frac{n_p}{n_p + n_{\text{H}}} = \frac{n_p}{n_{\text{b}}}
$$
(6)

unchanged by volume dilution

only depends on recombination thermodynamics:

i.e., $X_e = X_e(T) = X_e(z)$

$$
\circ
$$

 Q : limiting values of X_e at high and low T ? Q: naïve estimate of recombination $T_{\rm rec}, z_{\rm rec}$? Q: zeroth-order treatment of $X_e(T)$?

Recombination: Naïve View

Given hydrogen binding energy

 $B_{\mathsf{H}}=E(p) +E(e)$ $E(\mathsf{H}) = 13.6 \,\, \mathrm{eV}$

simple estimate of recomb epoch goes like this:

Binding sets energy scale, so

- \star when particle energies above B_H : U ionized,
- * otherwise: U neutral
- \rightarrow naïvely expect transition at $T_{\sf rec,naive}=B_h\sim 150,000$ K

But we know $T=T_0/a$, so estimate recomb at

$$
a_{\text{rec},\text{naive}} = \frac{T_0}{T_{\text{rec},\text{naive}}} \sim 2 \times 10^{-5}
$$

\n
$$
z_{\text{rec},\text{naive}} = \frac{T_{\text{rec},\text{naive}}}{T_0} - 1 \sim 50,000
$$

\n
$$
S_{\text{osc, as to what's wrong?}} \sim 2 \times 10^{-5}
$$

 $\overline{0}$

Q: guesses as to what's wrong?

Q: how to do this right?

Recombination: Equilibrium Thermodynamics

dominant cosmic plasma components γ, p, e , H (ignore He, Li) equilibrium: equal forward and reverse rates for

 $p + e \leftrightarrow H + \gamma$

and so chem potentials have

$$
\mu_p + \mu_e = \mu_H \tag{7}
$$

Extras today: for non-rel species $n=g(mT/2\pi\hbar^2)$)3 $3/$ 2 $2e^{$ $m{-}\mu$ $\mu)/T$ thus we have **Saha equation**

$$
\frac{n_e n_p}{n_{\rm H}} = \frac{g_e g_p}{g_{\rm H}} \left(\frac{m_e m_p}{m_{\rm H}}\right)^{3/2} \left(\frac{T}{2\pi\hbar^2}\right)^{3/2} e^{-(m_e + m_p - m_{\rm H})/T} \quad (8)
$$
\n
$$
\approx \left(\frac{m_e T}{2\pi\hbar^2}\right)^{3/2} e^{-B/T} \quad (9)
$$

 $\overline{1}$

where $B\equiv m_e+m_p-m_\mathsf{H}=13.6$ eV: binding energy

introduce "free electron fraction" $X_e=n_e/n_B$ use $n_B = \eta n_\gamma \propto \eta T^3$

 \mathbf{c}_{max} \mathbf{c}_{max} from Extras: $n_{\gamma} = 2\zeta(3)/\pi^2$ ² T^3 , with $\zeta(3) = \sum_{1}^{\infty}$ $\sum_{1}^{\infty} 1/n^3 = 1.20206...$ and note that $n_p=n_e$ $_e$ Q: why?, so

$$
\frac{n_e^2}{n_{\rm H}n_B} = \frac{X_e^2}{1 - X_e} = \frac{\sqrt{\pi}}{4\sqrt{2}\zeta(3)}\frac{1}{\eta} \left(\frac{m_e}{T}\right)^{3/2} e^{-B/T} \tag{10}
$$

 Q : sanity checks? what sets characteristic T scale?

 \bm{Q} : when is X_e $e = 0$ (exactly)?

At last–recombination!

- Q: how define physically?
- Q: how define operationally, in terms of X_e ?
- Q: given some $X_{e,\mathsf{rec}}$, how to get z_{rec} ?

12

The Epoch of Recombination

Saha gives

13

$$
\frac{1 - X_e}{X_e^2} = \frac{4\sqrt{2}\zeta(3)}{\pi^{1/2}} \eta \left(\frac{B}{m_e}\right)^{3/2} \left(\frac{T}{B}\right)^{3/2} e^{B/T} \tag{11}
$$

if always equilib, then strictly $X_e = 0$ only but note $e^{B/T}$: X_e exponential $\bar{f}_e = 0$ only at $T = 0$ \bar{e} exponentially small when $T\ll B$

viewed as a function of $B/T\equiv u$

$$
\frac{1 - X_e}{X_e^2} = \frac{4\sqrt{2}\zeta(3)}{\pi^{1/2}} \eta \left(\frac{B}{m_e}\right)^{3/2} u^{3/2} e^u \equiv A u^{3/2} e^u \qquad (12)
$$

where $A = 4\sqrt{2}/\pi^1$ $\frac{1}{\sqrt{2}}$ 2 2 ζ(3) η $(B/m_e)^3$ $3/$ 2

Q: what is order-of-magnitude of A? Q: implications for recombination?Q: physical picture?

in recombination Saha expression (1 $-X_e)/X_e=A(B/T)^3$ $3/$ 2 $2e^{B/T}$ prefactor is tiny! $A\sim \eta (B/m_e)^{3/2}\sim 10^{-9} (10^{-5})^{3/2}\sim 10^{-16}$! کر دہار در why? largely due to *tiny baryon-to-photon ratio*

but when recombine: 1 X_e \simeq X_e so require $1\sim 10^{-16} (B/T_{\rm rec})^{3/2}e^{-\frac{1}{2}}$ ⇒ so need $B/T_{\text{rec}} \gg 1$ to offset prefactor

→ and thus $T_{\text{rec}} \ll R$ $2e^{B/T_{\sf rec}}$ \Rightarrow and thus $T_{\sf rec} \ll B!$

more carefully define recomb: $X_e=X_{e,\mathsf{rec}}=0.1$ (arbitrary, but not crazy; see PS4) then solve for $T_{\sf rec}$:

$$
\frac{B}{T_{\text{rec}}} = \ln\left(\frac{\pi^{1/2}}{4\sqrt{2}\zeta(3)}\right) + \ln\left(\frac{1 - X_{e,\text{rec}}}{X_{e,\text{rec}}^2}\right) + \ln \eta^{-1} + \frac{3}{2} \ln \frac{m_e}{B} - \frac{3}{2} \ln \frac{B}{T}
$$

(ignore or iterate $\ln B/T$ term)

Recombination Quantified

and so

 $\overline{5}$

$$
T_{\text{rec}} \approx \frac{B}{40} \simeq 0.3 \text{ eV} \ll B \tag{13}
$$

$$
z_{\text{rec}} \approx 1400 \ll z_{\text{rec},\text{naive}} \tag{14}
$$

$$
t_{\rm rec} \approx \frac{2}{3\sqrt{\Omega_{\rm m}}} H_0^{-1} (1+z_{\rm rec})^{-3/2} = 350,000 \text{ yrs} \qquad (15)
$$

PS4: try it yourself!

Implications for CMB frequency spectrum:

- at recomb: emission lines created at $h\nu_{rec} \gtrsim 3B/4$ and thus at $h\nu_{\sf rec} \gtrsim$ $\gtrsim 30 kT$ rec $_{\rm rad}$, hoth
- post-recomb: T and ν both redshift the same way, so
- CMB spectrum *distorted* from Planck at high freq: $h\nu \gtrsim$ $\gtrsim 30kT$
- small signal, difficult to observe, but tantalizing www: predictions

 Q : what physically is responsible for $T_{\sf rec} \ll B$?

Recombination "Delay"

Why is *T*_{rec} *≤ B*?
\n⇒ because for small *X*_e, Saha says *X*_e *∞* 1/
$$
\eta
$$
^{1/2} *≥* 1
\n⇒ many photons per baryon: even if typically *E*_γ *≤ B*,
\nhigh-E tail of Planck distribution not negligible (at first)
\nlots of ionizing photons with *E*_γ *≥ B*
\nH dissociated as soon as formed

When does dissociation stop? can show that fraction of photons with $E_\gamma>B$ is roughly $f_{\sf ionizing} \sim e^{-B/T}$ so ratio of ionizing photons per baryon is

16

$$
\frac{n_{\gamma,\text{ionizing}}}{n_B} \sim \frac{e^{-B/T}}{\eta}
$$
\n
$$
\Rightarrow T \sim B/\ln \eta^{-1} \ll B \quad \text{(check!)}
$$
\n
$$
\Rightarrow \text{recombination} \quad \text{when} \quad n_{\gamma,\text{ionizing}}/n_B \sim 1
$$
\n
$$
\Rightarrow \text{recombination} \quad \text{the level} \quad \text{to huge photon-to-harvon ratio}
$$
\n
$$
\Rightarrow \text{recombination} \quad \text{the level} \quad \text{to huge photon-to-harvon ratio}
$$

⇒ recombination "delayed" to huge photon-to-baryon ratio

Director's Cut Extras

Statistical Mechanics and Cosmology

For much of cosmic time contents of U. in *thermal equilibrium*

statistical mechanics: at fixed $T \rightarrow$ matter & radiation n, ρ, P
then cosmic $T(a)$ evolution \rightarrow p e P at any enoch then cosmic $T(a)$ evolution \rightarrow n, ρ, P at any epoch

Boltzmann: consider ^a particle (elementary or composite) with ^a series of energy states: for two sets of states with energies E_1 and $E_2>E_1$ and degeneracies ($\#$ states at each $E)$ g_1 and g_2 ratio of number of particles in these states is *E*2*E*

$$
\frac{n(E_2)}{n(E_1)} = \frac{g_2}{g_1}e^{-(E_2 - E_1)/T}
$$

E $\frac{1}{1}$ *g*1

*g*2

where I put $k=1$, i.e., $kT\rightarrow T$

19

Example: atomic hydrogen, at T Q : ratio of ground $(1S)$ to 1st excited state $(2P)$ populations? Atomic hydrogen (H ^I):

20

• energy levels: $E_n = -B_H/n^2$ for $n \ge 1$

- angular momenta degeneracies: $g_{\ell} = 2\ell + 1$
- 1S: $n = 1 \rightarrow E(1S) = -B; \ \ell = 0 \rightarrow g(1S) = 1$

2B: $n = 2 \rightarrow E(2B) = -B/4; \ \ell = 1 \rightarrow g(2B) =$ 2P: $n = 2 \rightarrow E(2P) = -B/4$; $\ell = 1 \rightarrow g(2P) = 3$

$$
\frac{n(2P)}{n(1S)} = 3e^{-3B/4T} = 3e^{-120,000 \text{ K}/T}
$$
 (17)

Q: sanity checks–is this physically reasonable?

Q: how does this ratio change if plasma is partially ionizedi.e., contains both H I and H II $=$ H $^{+}$ $=$ p ?

Note: H is bound system → discrete energies
we now breaden analysis to include unbound we now broaden analysis to include unbound systems \rightarrow continuous energies, momenta

Statistical Mechanics in ^a Nutshell

classically, **phase space** (\vec{x}, \vec{p}) completely describes particle state but quantum mechanics \rightarrow uncertainty $\Delta x \Delta p \geq \hbar/2$ semi-classically: min phase space "volume" $(dx \, dp_x)(dy \, dp_y)(dz \, dp_z) = h^3 = (2\pi\hbar)^3$ per quantum state of fixed \vec{p}

define "occupation number" or "distribution function" $f(\vec{x}, \vec{p})$: number of particles in each phase space "cell" Q:f range for fermions? bosons?

$$
dN = gf(\vec{x}, \vec{p}) \frac{d^3 \vec{x} \ d^3 \vec{p}}{(2\pi\hbar)^3}
$$
 (18)

21

where g is $\#$ internal (spin/helicity) states: Q: $g(e^-)$? $g(\gamma)$? $g(p)$?

Fermions: $0 \le f \le 1$ (Pauli) Bosons: $f \ge 0$ $g(e^-) = 2s(e^-) + 1 = 2$ electron, same for p $g(\gamma) = 2$ (polarizations) photon

Particle phase space occupation f determines bulk properties

Number density

22

$$
n(\vec{x}) = \frac{d^3 N}{d^3 x} = \frac{g}{(2\pi\hbar)^3} \int d^3 \vec{p} f(\vec{p}, \vec{x}) \tag{19}
$$

Mass-energy density

$$
\varepsilon(\vec{x}) = \rho(\vec{x})c^2 = \langle En \rangle = \frac{g}{(2\pi\hbar)^3} \int d^3\vec{p} \ E(p) \ f(\vec{p}, \vec{x}) \tag{20}
$$

Pressure see director's cut extras for more

$$
P(\vec{x}) = \langle p_i v_i n \rangle_{\text{directioni}} \stackrel{\text{isotrop}}{=} \frac{\langle p v n \rangle}{3} = \frac{g}{(2\pi\hbar)^3} \int d^3 \vec{p} \, \frac{p v(p)}{3} \, f(\vec{p}, \vec{x}) \tag{21}
$$

Q: these expressions are general–simplifications in FLRW?

FRLW universe:

- homogeneous \rightarrow no \vec{x} dep
• isotropic \rightarrow only \vec{x} magnit
- isotropic \rightarrow only \vec{p} magnitude important $\rightarrow f(\vec{p}) = f(p)$

in **thermal equilibrium** at <mark>T</mark>:
S Boson occupation number

⊲ Boson occupation number

$$
f_{\mathsf{b}}(p) = \frac{1}{e^{(E-\mu)/kT} - 1} \tag{22}
$$

⊲ Fermion occupation number

$$
f_{f}(p) = \frac{1}{e^{(E-\mu)/kT} + 1}
$$
 (23)

Note: μ is "*chemical potential*" or "Fermi energy" $\mu=\mu(T)$ but is independent of E

If $E - \mu \gg T$: both $f_{\mathsf{f},\mathsf{b}} \longrightarrow f_{\mathsf{Boltz}} = e^{-(E-\mu)/kT}$ \rightarrow Boltzmann distribution 23

The Meaning of the Chemical Potential

For ^a particle species in thermal equilibrium

$$
f(p;T,\mu) = \frac{1}{e^{[E(p) - \mu]/kT} \pm 1}
$$
 (24)

What is μ , and what does it mean physically?

First, consider what if $\mu = 0$?

- then f depends only on T and particle mass and thus so do n, ρ, P Q: why?
- all samples of a substance at fixed T have exactly the same $n, \rho, P!$
- and hotter \rightarrow larger n, ρ, P

sometimes true! Q: examples? but not always! Q: examples?

```
24
```
 Q : what is physics behind μ ?

Chemical Potential & Number Conservation

particle number often conserved

 \rightarrow $n = n_{\text{cons}}$ fixed by initial conditions, not T

if particle number conserved, then $\mu \neq 0$ and μ determined by solving $n_{\mathsf{cons}} = n(\mu, T) \to \mu(n_{\mathsf{cons}}, T)$

so:
$$
\mu \neq 0 \Leftrightarrow
$$
 particle number conservation

Chemical Potential and Reactions

reactions change particle numbers among species

in "chemical" equilibrium: forward rate $=$ reverse rate for example: "two-to-two" reaction $a+b \leftrightarrow A+B$

conservation laws (charge, baryon number, etc.) force relations between chemical potentials so in above example: $\mu_a + \mu_b = \mu_A + \mu_B$ sum of chemical potentials "conserved"

in general:

initial particlesⁱ
$$
\mu_i = \sum_{\text{final particles}f} \mu_f
$$
 (25)

26

Equilibrium Thermodynamics

Gas of mass m particles at temp T : n , ρ , and P in general complicated because of $E(p)=\sqrt{p}$ \sim 100 \pm 2 $2 + m^2$ but simplify in ultra-rel and non-rel limits

Non-Relativistic Species

27

 $E(p) \simeq m+p$ $f_{\alpha k}$ \sim π \hbar $\Delta_{\alpha k}$ $^2/2m, \; T \ll m$ for $\mu\ll T$: Maxwell-Boltzmann, same for Boson, Fermions

for non-relativistic particles = matter
energy density number density vs /73 energy density, number density vs T ? Q : recall $n(a),\rho(a)$ and $T(a)$?

Non-Relativistic Species

number density

$$
n = \frac{g}{(2\pi\hbar)^3}e^{-(mc^2-\mu)/kT} \int d^3p \ e^{-p^2/2mkT} \tag{26}
$$

$$
= \tge e^{-(mc^2 - \mu)/kT} \left(\frac{mkT}{2\pi\hbar^2}\right)^{3/2} \t\t(27)
$$

energy density:

$$
\rho c^2 = \langle En \rangle = \varepsilon_{\text{rest mass}} + \varepsilon_{\text{kinetic}} \tag{28}
$$

$$
= mc^2 n + \frac{3}{2} kT n \tag{29}
$$

$$
\simeq \varepsilon_{\text{rest mass}} = mc^2 n \tag{30}
$$

pressure

$$
P = \frac{\langle pvn \rangle}{3} = \frac{\langle p^2n/m \rangle}{3} = \frac{2}{3}\varepsilon_{\text{kinetic}}
$$
(31)
= $nkT \ll \rho c^2$ (32)

28

recover the ideal gas law!

Kinetic Theory of Pressure due to Particle Motions

 $\mathsf{consider}\ \mathsf{cubic}\ \mathsf{box},\ \mathsf{sidelength}\ \mathit{L}\ \mathsf{(doesn't\ really\ need\ to\ be\ cubic)}$ contain "gas" of N particles: can be massive or massless particles collide with walls, bounce back elastically particles exert force on wall ↔ wall on particles
this lead to bulk pressure this lead to bulk *pressure*

focus on one particle, and its component of motion in one (arbitrary) axis x : speed v_x , momentum p_x

- elastic collision: $p_{x,init} = -p_{x,fin} \rightarrow \delta p_x = 2p_x$
• collision time interval for same wall: $\delta t = v$ $\mathcal{X}% =\mathbb{R}^{2}\times\mathbb{R}^{2}$ $x = 2p_x$
- collision time interval for same wall: $\delta t_x = v_x$ $x=v_x/2L$
- \overline{C} • single-particle *momentum transfer* (force) per wall: $F_x = \delta p_x / \delta t_x = p_x v_x / L$
- inala narticl • single-particle force per wall area:

$$
P = F_x/L^2 = p_x v_x/L^3 = p_x v_x/V
$$

29

Q: total pressure?

total pressure is sum over all particles:

$$
P = \sum_{\text{particles}}^{N} \sum_{\ell=1}^{p_x^{(\ell)} v_x^{(\ell)}} \tag{33}
$$

can rewrite in terms of an average momentum flux

$$
P = \frac{N}{V} \frac{\sum_{\ell=1}^{N} p_x^{(\ell)} v_x^{(\ell)}}{N} = \langle p_x v_x \rangle n \tag{34}
$$

where $n=N/V$ is number density $\langle p_{x}\rangle\,n$ would be average momentum density along x and $\langle p_xv_x\rangle\,n$ is average *momentum flux* along x

if particle gas has isotropic momenta, then

$$
p_x v_x \rangle = \langle p_y v_y \rangle = \langle p_z v_x \rangle = \frac{1}{3} \langle \vec{p} \cdot \vec{v} \rangle = \frac{1}{3} \langle pv \rangle \tag{35}
$$

30

so l \red{P} =13 $\langle pv\rangle\,n$

 \langle

Ultra-Relativistic Species

 $E(p) \simeq cp \gg mc$
Also take $v = 0$ Also take $\mu = 0 \, (\mu \ll kT)$ ² (i.e., $kT \gg mc$ ²):

energy density, number density? Q: recall the answers?

for relativistic bosons number density

$$
n_{\text{rel,b}} = \frac{g}{(2\pi\hbar)^3} \int d^3p \, \frac{1}{e^{cp/kT} - 1}
$$

= $\frac{4\pi g}{(2\pi\hbar)^3} \int dp \, p^2 \, \frac{1}{e^{cp/kT} - 1} = \frac{g}{2\pi^2} \left(\frac{kT}{\hbar c}\right)^3 \int_0^\infty du \, u^2 \, \frac{1}{e^u - 1}$
= $g\frac{\zeta(3)}{\pi^2} \left(\frac{kT}{\hbar c}\right)^3 \propto T^3$

where

$$
\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3} = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots = 1.20206 \dots
$$
 (36)

32

relativistic fermions:

$$
n_{\text{rel,f}} = \frac{3}{4} n_{\text{rel,b}} \tag{37}
$$

so $n \propto T^3$ for both e.g., CMB today: $n_{\gamma,0}=$ 411 cm $^{-3}$

energy density: relativistic bosons

$$
\rho_{\text{rel},b}c^2 = \frac{g}{(2\pi\hbar)^3} \int d^3p \ c p \ \frac{1}{e^{cp/kT} - 1}
$$

$$
= \frac{g}{2\pi^2} \frac{(kT)^4}{(\hbar c)^3} \int_0^\infty du \ u^3 \ \frac{1}{e^u - 1}
$$

$$
= g\frac{\pi^2}{30} \frac{(kT)^4}{(\hbar c)^3}
$$

and for fermions

33

$$
\rho_{\text{rel,f}} = \frac{7}{8} \rho_{\text{rel,b}} \tag{38}
$$

so
$$
\rho \propto T^4
$$
 for both

pressure

$$
P_{\text{rel}} = \left\langle \frac{pv}{3} n \right\rangle = \frac{1}{3} \rho_{\text{rel}} c^2 \tag{39}
$$

since $v = c$ $P \propto T^4$

Temperature Evolution

If in therm eq, maintain photon occ. $#$

$$
f(p) = \frac{1}{e^{p/T} - 1}
$$
 (40)

but $c p = h \nu = hc/\lambda \propto 1/a(t)$: \Rightarrow $p = p_0/a$

w/o interactions, const $\# \ \gamma$ per mode $p \to f(n) = const$ $\Rightarrow f(p) = const$
 $\Rightarrow n(t)/T(t) = 0$ $\Rightarrow p(t)/T(t) = p_0/T_0$ $\Rightarrow T/T_0 = p/n_0 - 1$ \Rightarrow $\frac{T/T_0=p/p_0=1/a=1+z}{\frac{2}{3} \cdot \frac{2}{3} \cdot$ e.g., at $z=$ 3, CMB $T=$ 4 $T_0\simeq$ 11 K (measured in QSO absorption line system!)

recall: used $w=1/3$ to show $\rho_\gamma \propto a^{-4}$ but blackbody $\rho_\gamma \propto T^4$ together $T\propto 1/a$ (OK!) 34