Astro ⁵⁰⁷ Lecture ²³ March 23, ²⁰²⁰

Announcements:

 $\overline{}$

- Problem Set ⁴ due Friday
- Office Hours (online): Instructor: Wed 3-4pm, Fri 3-4pmTA: Thu noon-1pm

Cosmology in Quarantine: Staying Connected

 we are inventing ^a new way to do graduate study interaction more challenging but more important

- questions/answers: can unmute, or now use chat Ada will read chat responses
- it's good to see your faces! you are welcome to show your video if you want
- if you have ideas on how to improve class, tell me!

Last Time: Recombination and the Mighty Saha Equation

CMB decoupling: freezeout of Tompson scattering $e\gamma{\to}e\gamma$ freezeout condition $H=\mathsf{\Gamma}_\mathsf{T}=n_{e,\mathsf{free}}$ σ_T c \propto $n_{e,\mathsf{free}}$ free electrons: $n_{e,\text{free}}=X_e~n_{e,\text{tot}}\approx X_e n_{\text{B}}=X_e \eta n_{\gamma}$ with $\eta=n_\mathsf{B}/n_\gamma\approx 6\times 10^{-10}$

ionization fraction controlled by **Saha equation**

$$
\frac{n_e n_p}{n_{\rm H}} \approx \frac{X_e^2}{1 - X_e} n_{\rm B} = \frac{g_e g_p}{g_{\rm H}} \left(\frac{m_e m_p}{m_{\rm H}}\right)^{3/2} \left(\frac{T}{2\pi\hbar^2}\right)^{3/2} e^{-(m_e + m_p - m_{\rm H})/4}
$$
\n
$$
\approx \left(\frac{m_e T}{2\pi\hbar^2}\right)^{3/2} e^{-B/T} \tag{2}
$$

key energy scale: H binding energy $B\equiv m_{e}+m_{p}-m_{\mathsf{H}}=13.6$ eV \mathcal{D}

Q: why isn't recombination $X_e\to 0$ at $T_{\textsf{rec}}\sim B$?

 ω

Recombination "Delay"

Why is *T*_{rec} *≤ B*?
\n⇒ because for small *X*_e, Saha says *X*_e *∞* 1/
$$
\eta
$$
^{1/2} *≥* 1
\n⇒ many photons per baryon: even if typically *E*_γ *≤ B*,
\nhigh-E tail of Planck distribution not negligible (at first)
\nlots of ionizing photons with *E*_γ *≥ B*
\nH dissociated as soon as formed

When does dissociation stop? can show that fraction of photons with $E_\gamma>B$ is roughly $f_{\sf ionizing} \sim e^{-B/T}$ so ratio of ionizing photons per baryon is

 σ

$$
\frac{n_{\gamma,\text{ionizing}}}{n_B} \sim \frac{e^{-B/T}}{\eta}
$$
\n
$$
\text{estimate recombination when } n_{\gamma,\text{ionizing}}/n_B \sim 1
$$
\n
$$
\to T \sim B/\ln \eta^{-1} \ll B \quad \text{(check!)}
$$
\n
$$
\text{the expression is given, the hence, the series is given in the following.}
$$

 $→ T ∼ B/ln η⁻¹$ the contract of ⇒ recombination "delayed" to huge photon-to-baryon ratio

Recombination: Hydrogen Level Population

Boltzmann: consider ^a particle (elementary or composite) with ^a series of energy states:

for two sets of states with energies $E_{\mathbf{1}}$ and $E_{\mathbf{2}}>E_{\mathbf{1}}$ and degeneracies (# states at each $E)$ g_1 and g_2 \quad \uparrow $__E$ ratio of number of particles in these states is

$$
\frac{n(E_2)}{n(E_1)} = \frac{g_2}{g_1}e^{-(E_2 - E_1)/T}
$$

where I put $k=1$, i.e., $kT\rightarrow T$

Example: atomic hydrogen, at T $Q:$ ratio of ground (1S) to 1st excited state (2P) populations?

apply to atomic hydrogen (HI):Atomic hydrogen (HI):

- energy levels: $E_n = -B_H/n^2$ for $n \ge 1$
- angular momenta degeneracies: $g_{\ell} = 2\ell + 1$
- 1S: $n = 1 \rightarrow E(1S) = -B; \ \ell = 0 (2D)$ - $R/A \cdot \ell$ - $-B; \ell = 0 \rightarrow g(1S) = 1$ 2P: $n = 2 \rightarrow E(2P) = -B/4$; $\ell = 1 \rightarrow g(2P) = 3$

$$
\frac{n(2P)}{n(1S)} = 3e^{-3B/4T} = 3e^{-120,000 \text{ K}/T}
$$
 (4)

Q: sanity checks–is this physically reasonable?

consider recombining $p+e \to H+\gamma$ throughout recomb:

- Q: what is γ energy at emission?
- Q: what happens to γ ?
- \lnot Q: implications?

Recombination: Nonequilibrium Effects

for $p+e \to \mathsf{H}(n=1)+\gamma$:
• $E_e=E_{ee}$ "I yman limit"

- \bullet $E_\gamma=B_\mathsf{H}$ "Lyman limit"
• U atems abserntion ere
- H atoms *absorption cross section huge* at this energy photon mean free path $\ell=1/n$ H σ abs \tt{tiny} universe optically thick to Lyman photons
- \Rightarrow quickly reionizes another H atom! *no net change!*

To overcome delay

- recombine to 1st excited state: $p + e \rightarrow H(2p) + \gamma$
• single photon $H(2p) \rightarrow H(1e) + \gamma$ l ve transition
- single photon $H(2p) \to H(1s) + \gamma$ Ly α transition \cap \cap also optically think, also no net progress
- two-photon transition $H(2p) \to H(1s) + \gamma + \gamma$ can go n f∩i but probability & rate smaller than for single photon
- eventually redshifting takes Lyman photons off resonance

 ∞

net effect: delays recombination relative to Saha

Last Scattering: Photons Decouple from Matter

"recombination" a smooth transition in X_e , not instantaneous www: equilibrium X_e plot nevertheless, exponential drop in X_e around z_rec

photons interact with gas via Thomson scattering: $\gamma e \rightarrow \gamma e$ rate per photon of scattering with $e\colon$

$$
\Gamma_e(\gamma) = n_e \sigma v = n_e \sigma_T c = X_e n_b \sigma_T c \tag{5}
$$

drop in $X_e \rightarrow$ abrupt slowdown in scattering

as usual, competition between interaction and expansion interactions "stop" when

$$
\Gamma_e(\gamma) \lesssim H \tag{6}
$$

and solving for $\Gamma_e(T) = H(T)$ giv $e(T) = H(T)$ gives last scattering : \circ

$$
z_{\rm ls} \sim 1100 \tag{7}
$$

After last scattering:

- · photons "decoupled" from gas
- but $X_e \neq 0$: some free e, p remain Q: what is X_e as $T\rightarrow 0$? why?

Freezing of Recombination

when typical photon has last scattering with e still some residual ionization: i.e., some free e, p can they recombine? yes! do they recombine? yes, for ^a short while...then no!

Why? recombination rate per p : Γ_{rec, $p \sim n_e \sigma$ rec v therm} with $\sigma_{\text{rec}} \sim (m_e/T) \sigma$ and $v_{\text{therm}} \sim \sqrt{T/m}$ \sim mbination \sim ton recombination stops when $\mathsf{\Gamma}_{\mathsf{rec},p} \lesssim H$ $\sqrt{T /m_e}$

after this: cooling does not reduce ionization fixed value of $X_{e,\text{freeze}} \sim 10^{-4}$: "freeze-in of residual ionization" at

$$
z_{\rm ri} \simeq 1000\tag{8}
$$

Q: cosmological implications of $X_{e,\text{freeze}}$ \neq 0?

11

Recombination Timeline Summarized

The large drop in free electron density around $z\sim1000$ leads to three distinct but related events:

(1) recombination U. **ionized** \rightarrow **neutral**
 $V \rightarrow V$ $X_e{\rightarrow}X_e,$ rec ∼ 0.1: z_rec ∼ 1300 \mathbf{r} ...but photons still coupled to gas, and vice versa

(2) last scattering typical photons no longer interacts with e U. opaque → transparent
□ (c) = H: x = = 1100 $\mathsf{\Gamma} _e(\gamma)\sim H\colon\, z_{\mathsf{ls}}\sim 1100$...but gas still coupled to photons Q: how can this be? T gas $=T_{e,p,\mathsf{H}}=T_{\gamma}$

12

(3) residual ionization freeze-in

free e and p diluted until "can't find each other"

But even still: photons scatter off residual ionization e and thus $p,$ H still exchange energy with thermal photon bath: $T_{e,p,\mathsf{H}} = T_\gamma$ still!
when dees this stan? when does this stop?

(4) gas decoupling

typical residual ^e no longer has photon interactions gas decouples from photons when? Thomson scattering rate per $e\colon\thinspace\Gamma_e=n_\gamma\sigma_\mathsf{T} c\lesssim H$ at $z_{\sf dec,gas}\sim$ 500 $\frac{1}{\omega}$ note: scatter rate per $e=\Gamma_e \gg \Gamma_\gamma$ = scatter rate per CMB photon

Summary of CMB Highlights

CMB Observed

 can make precision observations of spectrum, sky distribution thanks to sophisticated radio techniques and instruments

- CMB fantastically isotropic: $\delta T/T \sim few \times 10^{-5}$
- CMB exquisitely thermal

CMB Theory

14

 detailed, precise calculations of recomb, last scattering, thanks well-known atomic physics

- isotropic CMB \rightarrow U. was once very homogeneous
• Planckian CMB spectrum \rightarrow U. was once therma
- Planckian CMB spectrum \rightarrow U. was once thermalized
 \rightarrow plasma hot dense enough to equilibrate \rightarrow plasma hot, dense enough to equilibrate
MR \rightarrow demands hot big bang in ELRW un

 $\mathsf{CMB}\to$ demands hot big bang in FLRW universe!

Extrapolated current U to $t \sim 400,000$ yr and $z \sim 1000 \rightarrow \textbf{great success}$
mholdens us to push earlierl Emboldens us to push earlier!

Coda: The CMB in ^a Helium-Only Universe

Preflight ⁴ Discussion: Alternate Universe

- like ours in all respects, except:
- early Universe puts all baryons in helium: no hydrogen!

Q: does this universe have ^a CMB at all?

Q: how does the alt-CMB frequency spectrum I_{ν} compare to ours?

Q: what's same/different about recombination and decoupling?