Astro ⁵⁰⁷ Lecture ²⁴ March 23, ²⁰²⁰

Announcements:

- Problem Set ⁴ due today
- Office Hours (online): Instructor: Wed 3-4pm, Fri 3-4pmTA: Thu noon-1pm
- Preflight ⁵ due next Friday

Last time: isotropic CMB wrapup thermal CMB demands ^a hot, dense early Universe: big bang! theory and observation agree at $z\sim 1000,~t\sim 400$ kyr

 $\overline{}$

emboldens us to push back to earlier times

Primordial Nucleosynthesis

Prelude to Nucleosynthesis

Big Bang Nucleosynthesis (BBN) similarities with recombination: unbound components \rightarrow bound states

 Q : what sets T scale for element (nuclei) synthesis?

Q: what component dominates cosmic density, expansion then?

Q: what is the particle content of the universe then?

Nucleosynthesis: Nuclear Physics in ^a Nutshell

- nuclei are made of protons and neutrons: "nucleons"
- nucleon size ~ 1 fm $= 10^{-13}$ cm
- \bullet nucleon mass $m_p \approx m_n \approx$ 0.94 GeV, but $m_n m_p$ which means free neutrons are unstable, decay to protons $_p = 1.3$ MeV
- nuclei are *quantum systems* bound by nuclear force, which is attractive at large distances \gtrsim $\stackrel{>}{_{\sim}} 1 \,$ fm repulsive at shorter distances
- many nuclei exist with same proton number ^Z: "isotopes"

www: chart of the nuclides--nuclear periodic table

Binding Energy: Trends and Consequences

Overall nuclear binding energy features in Chart of Nuclides:

• highest binding along valley of stability \Rightarrow stable isotopes are the most tightly bound

Q: so what is rough energy scale for cosmic nucleosynthesis? σ

Nucleosynthesis: Setting the Stage

 \star nuclear binding energies typically $B\sim few$ MeV

 \star T ~ MeV at redshift $z_{\sf bbn} = T/T_0$ since $z_\mathsf{bbn} \gg z_\mathsf{eq} \sim 10^5$ (matter-rad equality) -1 \sim $\sim 10^{10}$! int_0 r well into radiation dominated era: $\rho \approx \rho_{\rm rad}$ www:Ω vs a ^plot will see: $t(1 \text{ MeV}) \sim 1$ sec

 $\overline{}$

★ particle content at BBN relativistic species: photons, neutrinos, e^\pm when $T\gtrsim m_e$ non-relativistic species: baryons, e^- when $T \ll m_e$ what about dark matter? energy?

DM presumably non-rel, weakly interacting: inert during BBN DE: also assume not important for dynamics, microphyiscs ...but can later relax these assumptions and test them!

Who Feels What? Particles and Forces

quarks: feel all fundamental forces (strong, EM, weak, gravity) carry conserved quantum number: **baryon number leptons**: do *not* feel strong force

but also carry conserved quantum number: lepton number

- ⊳ charged leptons: feel EM, weak, gravity
- ⊲ neutrinos: only feel weak, gravity

 ∞

More bragging rights:

in BBN, all four fundamental forces play ^a crucial role!

Neutrinos: Essential Ingredient yet Barely There

antineutrinos: $\bar{\nu}_e$ $e, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}$ since electric charge $Q(\nu)=0$, possible that ν is own antiparticle Q: is it?

 ${\sf masses}:\;$ known that m_ν $\frac{1}{2}$ mass values not known (but for sure \lesssim ν are nonzero (oscillations observed) $\lesssim few \times 10\ \text{eV} \ll m_e$

Q: implications for BBN?

for quarks and charged leptons, masses increase with each family

 \rightarrow same for ν s??

weak interaction: qualitative characteristics

(1) "signature" is transformation of quarks

e.g., β decays like $n \to p + e^- + \bar{\nu}_e$ e

really a quark change $d(ud) \rightarrow u(ud) + e^- + \bar{\nu}_e$ e

 L rvn (2) for E ≲ 100 GeV (= M_W, M_Z), rxn strengtl $\lesssim 100$ GeV (= M_W, M_Z), rxn strength is weak (duh!)
 \gtrsim μ escattering $\gtrsim 1$ MeV: σ , e.10⁻⁴⁴ cm² e.10⁻²⁰g

e.g., $\nu_e e {\rightarrow} \nu_e e$ scattering ~ 1 MeV: $\boxed{\sigma_{\nu_e e} \sim 10^{-44} }$ cm² $2 \sim 10^{-20}$ ັ σ_T

 \circ

Nucleosynthesis: Particle Content Revisited

relativistic species:

 $γ$, $\nu_i\bar{\nu}_i$ $(i \in e\mu\tau)$, e^{\pm} (for $T \gtrsim m_e$)

non-relativistic species:

baryons in BBN: when T \gtrsim when $T\leq m_e\rightarrow e$ non-relativistic too \gtrsim MeV: p , n only
ativistic too

 \star neutrinos in BBN Q : what sets $n_{\nu},\rho_{\nu},T_{\nu}$? how do they evolve? Q: assumptions needed?

BBN Initial Conditions: Ingredients of Primordial Soup

Begin above nuke binding: $\boxed{T > 1}$ MeV

 $\overline{1}$

EM reactions fast: typical rate Г $_{\mathsf{EM}}\sim n_{\gamma}\sigma_{\mathsf{T}}c\gg H$ in therr \Rightarrow baryon, photon, e^{\pm} pair plasma in thermal equilibrium:
 $T_P = T_e = T_e = T$ $T_B=T_e=T_\gamma\equiv T$

Weak interaction fast too (for now)! $\mathsf{\Gamma}_{\mathsf{weak}}\sim n_\nu\sigma_{\mathsf{weak}}c\gg H$ all ν species coupled to each other, and plasma \rightarrow $T_{\nu}=T_{\gamma}$

For experts: What sets densities n_{ν},ρ_{ν} ? not only T_{ν} , but also dreaded chem potential μ_{ν} physics issue: is there a net neutrino excess: $n_{\nu}\neq n_{\bar{\nu}}$?

c.f. net baryon excess \rightarrow exists: $n_B \neq n_{\bar{B}}$, but small: $n_B/n_\gamma \ll 1$ $+$ urno out \sqrt{T} if net lepton number $n_L\sim n_B$, turns out $\mu_\nu/T\sim \eta$ negligible we will assume $\mu_{\nu} \ll T \Leftrightarrow$ no large lepton/baryon excess
if otherwise changes storyl if otherwise, changes story!

BBN Initial Conditions: Radiation Domination

Neutrino densities: for sure $m_\nu \ll T$ \mathbf{v} assume $\mu_{\nu} \ll T \to$ absolute $n_{\nu}, \rho_{\nu}, P_{\nu}$ set by T_{ν}
 \to each ν species i has $n_{\nu} = n$ - and and the state of the state of the \rightarrow each ν species i has $n_{\nu_i} = n_{\bar{\nu}_i}$ and

$$
n_{\nu\bar{\nu},i} \propto T^3 = \frac{3}{4} n_{\gamma} \quad \rho_{\nu\bar{\nu},i} \propto T^4 = \frac{7}{8} \rho_{\gamma} \tag{2}
$$

total relativistic energy density:

$$
\rho_{\text{rel}} = \rho_{\gamma} + \rho_{e^{\pm}} + N_{\nu} \rho_{1\nu\bar{\nu}} \equiv g_* \frac{\pi^2}{30} T^4 \tag{3}
$$

where g_* counts "effective $\#$ of relativistic d at T \gtrsim $_{*}$ counts "effective $\#$ of relativistic degrees of freedom" \gtrsim 1 MeV, g_* $_{*} = 43/4 = 10.75$, and Friedmann:

$$
\frac{t}{1 \text{ sec}} \approx \left(\frac{1 \text{ MeV}}{T}\right)^2 \tag{4}
$$

 $\begin{array}{ccc} & 1 \,\,{\sf sec} &\,\, \sqrt{T} & \,\,\,\,\ \nQ: \,\, {\sf simple} \,\,{\sf way} \,\,{\sf to} \,\,{\sf see} \,\,{t} \sim 1/T^2 \,\,{\sf scaling} \,\,{\sf is} \,\,{\sf right?} \end{array}$ $\overline{2}$

now focus on baryons Q : what sets n_B ? n/p ?

BBN Initial Conditions: The Baryons

baryon number: $B = \sum$ baryons conserved at low energies \sum antibaryons i.e., unchanged by reactions up to $E_\mathsf{LHC} \sim 10\;\mathsf{TeV} = 10^7\;\mathsf{MeV}$

So cosmic baryon density n_B not changed by reactions in BBN
set best set semehow in early universe (freesmis best resenseis" ⊲ rather, set somehow in early universe ("cosmic baryogenesis") \triangleright don't *a priori* know n_B , treat as free parameter (η)

neutron-to-proton ratio n/p can and does change at ~ 1 MeV weak int fast: $n \leftrightarrow p$ interconversion

$$
n + \nu_e \leftrightarrow p + e^-
$$

\n
$$
p + \bar{\nu}_e \leftrightarrow n + e^+
$$
\n(5)

also recall $m_n - m_p = 1.29$ MeV: clo $_{p}$ $=$ 1.29 MeV: close in mass but not same!

 \bm{Q} : implications for n/p ?

 $\overline{5}$

 n/p ratio "thermal"
think of as 2 state

think of as 2-state system: the "nucleon," • nucleon "ground state" is the proton: $E_1 = m_p c^2$ $E_2 = m_n c^2$

• nucleon "excited state" is the *neutron*: $E_2 = m_nc^2$ when in equilibrium, Boltzmann sez: $p \frac{E_1 = m_p c^2}{2}$

$$
\left(\frac{n}{p}\right)_{\text{equilib}} = \frac{g_n}{g_p}e^{-(E_2 - E_1)/T} = e^{-(m_n - m_n)/T} \tag{7}
$$

 $\frac{E_{2}}{2}$

with $\Delta m = m_n - m_p = 1.293318 \pm 0.000009$ MeV

at $T \gg \Delta m\text{: } n/p \simeq 1$ at $T \ll \Delta m\text{: } n\,/\text{s} \simeq 0$ at $T \ll \Delta m$: $n/p \simeq 0$

 $\frac{1}{4}$

Equilibrium maintained until weak interactions freeze out i.e., competition between weak physics, gravity physics Q: how will weak freezeout scale compare tonuclear binding energy scale $\sim 1\,$ MeV?

Weak Freezeout Temperature

Weak interactions freeze when $H=\mathsf{\Gamma}_{\mathsf{weak}}$, i.e.,

$$
\sqrt{G_{\rm N}}T^2 \sim \sigma_0 m_e^{-2} T^5 \tag{8}
$$
\n
$$
\Rightarrow T_{\text{weak freeze}} \sim \frac{(G_{\rm N})^{1/6}}{(\sigma_0/m_e^2)^{1/3}} \sim \frac{1 \text{ MeV}}{1 \text{ MeV}} \tag{9}
$$

gravity ${\cal L}$ weak interactions conspire to give $T_{\sf f} \sim m_e \sim B_{\sf nuke}$ |
|

for experts: note that G_{N} $_{\mathsf{N}} = 1/M_{\mathsf{P}}^2$ Planck, SO

$$
\frac{T^2}{M_{\text{Pl}}} \sim \alpha_{\text{weak}} \frac{T^5}{M_W^2}
$$
\n
$$
\Rightarrow T_{\text{freeze}} \sim \left(\frac{M_W}{M_{\text{Pl}}}\right)^{1/3} M_W \sim 1 \text{ MeV}
$$
\n(11)

freeze at nuclear scale, but by accident! $\overline{5}$

 Q : what happens to n,p then? what else is going on?

Element Synthesis

first step in building complex nuclei: $n + p \rightarrow d + \gamma$ but $d + \gamma \rightarrow n + p$ until $T \ll B(d)$; see Extras

when photodissocation ineffective, $n + p \rightarrow d + \gamma$ fast
rapidly consumes all free x and builds d rapidly consumes all free n and builds d which can be further processed to mass-3:

 $d + p \rightarrow^3$ He + γ $d + d \rightarrow^3$ H + p $d + d \rightarrow^3$ He + n (12) and to ⁴He

$$
{}^{3}\text{H} + d \rightarrow {}^{4}\text{He} + n \quad {}^{3}\text{He} + d \rightarrow {}^{4}\text{He} + p \tag{13}
$$

some of which can then make mass-7:

3 H + ⁴He→⁷Li + γ ³He + ⁴He→⁷Be + γ (14)

16

Q: what limits how long these reactions can occur? Q: which determines which products are most abundant?

BBN Reaction Flows

Binding Energy

nuclei are bound quantum structures, confined by nuclear forces among the "nucleons" n, p can quantify degree of stability–i.e., resistance to destruction via binding energy: for nucleus with Z protons, N neutrons, Λ $A = N + Z$ nucleons

 B_A = energy of individual parts – energy of bound whole $= (Zm_p + Nm_n - m_A)c^2$ > 0 if bound

note: generally B_A increases with A

but that's not the whole story on stability

17

binding shared among all A nucleons, so binding per nucleon is B_A/A

nuclear stability \leftrightarrow high B_A/A

 $\frac{1}{\infty}$ Q: implications for BBN

Reaction flows: tightest binding favored \rightarrow essentially all pathways flow to ⁴He www: nuke [network](./Images/network_small.jpg) almost all $n{\rightarrow}^4$ He: $n({}^{4}\mathsf{He})_{\mathsf{after}}=1/2\,\,n(n)_{\mathsf{before}}$ $Y_{\bm p}$ = $\rho(^4$ He) ρ_B ⇒ \sim 1/4 of baryons into ⁴He, 3/4 $\simeq 2(X)$ $\, n \,$)before≃0.24 (15) $p{\to} {\sf H}$ result weakly (log) dependent on η

Robust prediction: large universal ⁴He abundance

But $n{\rightarrow}^4$ He incomplete: as nuke rxns freeze, leave traces of:

- ^D
- •• 3 He (and 3 H $\rightarrow {}^{3}$ He)
- • \bullet ⁷Li (and ⁷Be \rightarrow ⁷Li)

```
abundances \leftrightarrow nuke freeze T<br>trace species D. <sup>3</sup>He. <sup>7</sup>Li: st
trace species D, <sup>3</sup>He, <sup>7</sup>Li: strong n_B \propto \eta dependence
```
BBN theory predictions summarized in "Schramm Plot" Lite Elt Abundances vs η

www: [Schramm](./Images/absveta.gif) ^plot

 $\frac{1}{20}$ Note: no $A > 7...$ so no C,O,Fe... Q: why not?

Why no elements $A > 7$?

1. Coulomb barrier

2. nuclear physics: "mass gaps" no stable nuclei have masses $A = 5,8$ \rightarrow with just p & ⁴He, can't overcome via 2-body rxs
need 3 hody ryns (e.g., 3e, 1²C) to jump gaps need 3-body rxns (e.g., $3\alpha \rightarrow^{12}C$) to jump gaps but ρ , T too low

Stars *do* jump this gap, but only because have higher density a long time compared to BBN

Testing BBN: Warmup

BBN Predictions: Lite Elements vs η

To test: measure abundances

Where and when do BBN abundances (Schramm plot) apply?

Look around the room–not 76% H, 24% He. Is this ^a problem? Why not?

Solar system has metals not predicted by BBNIs this ^a problem? Why not?

So how test BBN? What is the key issue?22

When does first non-BBN processing start?

Testing BBN: Lite Elements Observed

Prediction:

BBN Theory \rightarrow lite elements at $t \sim$ 3 min, $z \sim 10^9$

Problem:

observe lite elements in astrophysical settings typically $t\gtrsim$ stellar processing alters abundances $\stackrel{\textstyle >}{\sim} 1$ Gyr, z $\stackrel{\textstyle <}{\sim}$ $\begin{array}{c} 5 \lesssim few \end{array}$

Q: If measure abundances in ^a real astrophysical system, can you unambiguously tell that stars have polluted?

 $Q:$ How can we minimize (and measure) pollution level?

stars not only alter light elements but also make heavy element $=$ "metals" stellar cycling: metals \leftrightarrow time

Solution:→ measure lite elts and metals
low metallicity > more primitiv low metallicity → more primitive
in limit of motals > 0; primordi: in limit of metals \rightarrow 0: primordial abundances!

look for regions with low metallicity \rightarrow less processing

Directors' Cut Extras

Elementary Particles for the Minimalist Antimatter

fundamental result of Relativistic QMevery particle has an antiparticle e.g., $e^{-}=e^{+}$ positron e.g., $\bar{p}=$ antiproton; Fermilab: $p\bar{p}$ collisions

note: mass $m(\bar{x}) = m(x)$. . . decay lifetime $\tau(\bar{x}) = \tau(x)$ spin $S(\bar x)=S(x)$ electric charge $Q(\bar{x}) =$ $Q(x)$

sometimes particle $=$ own antiparticle (must have charge 0) e.g., $\bar{\gamma} = \gamma$, but note: $\bar{n} \neq n$

Cosmic Antimatter: rule of thumb x,\bar{x} abundant when thermally produced: $T > m$ $\mathcal X$ 26

Baryons

 n and p not fundamental particles made of ³ pointlike particles: "quarks" two types ("flavors") in n, p : u "up," d "down" $p = uud$, $n = udd \rightarrow$ quark electric charge $Q_u = +2/3$, $Q_d = -1/3$
spin $S(u) = 1/2 = S(d)$ spin $S(u) = 1/2 = S(d)$

baryon \equiv made of 3 quarks

baryon conservation:

assign "baryon number" $A(q) = +1/3$, $A(\bar{q}) = -1/3$ $\rightarrow A(n) = A(p) = +1$

in all known interactions: baryon number conserved:

 $\sum A_{\text{init}} = \sum A_{\text{fin}}$

27

 \rightarrow guarantees stability of the proton Q: why? but free n unstable, decay to $p \nvert Q$: why not n decay in nuclei?

Periodic Table of Elementary Particles

known fundamental particles (& antipartners): 3 families

 $\sqrt{ }$ $\left\langle \right\rangle$ \boldsymbol{u} \boldsymbol{d} e ν_e $\bigg)$ $\begin{array}{c} \hline \end{array}$ $\left\lfloor$ \boldsymbol{c} s $\overline{\mu}$ ν_{μ} charm quark $\begin{array}{c} \hline \end{array}$ strange quark mu lepton (muon) $\sqrt{ }$ $\left\lfloor$ t \bar{b} τ ν_τ \log top quark $\begin{array}{c} \end{array}$ bottom quark $\frac{16}{16}$ tau lepton $\frac{16}{16}$

all of these are spin-1/2: matter made of fermions!

Family Resemblances

 1st family : quarks, charged lepton (^e) comprise ordinary matter 2nd, 3rd family particles

- same electric charges, same spins, (mostly) same interactions as corresponding 1st family cousins
- $\%$ but 2nd, 3rd family quarks, charged leptons more massive and $\&$ *unstable* \rightarrow decay into 1st family cousins

lifetimes very short, e.g., longest is $\tau(\mu^-{\to}e^-\bar{\nu}_e$ ν_μ) = 2 \times 10 $^{-6}$ sQ: implications for BBN epoch?

Weak $n \leftrightarrow p$ Rates

example: want rate $\mathsf{\Gamma}_n$ per n of $\nu + n{\rightarrow}e^-+p$ as func. of ^T

Generally,

$$
\Gamma_n = n_\nu \langle \sigma v \rangle \sim T^3 \langle \sigma \rangle \tag{17}
$$

since $v_\nu \simeq c$

can show: cross section $\boxed{\sigma \sim \sigma_0 (E_e/m_e)^2}$ where $\sigma_0 \sim 10^{-44}$ cm² very small! so thermal avg: $\langle \sigma \rangle \sim \sigma_0 (T / m_e)^2$

$$
\mathcal{E} \text{ for experts: } \sigma \sim G_F^2 T^2 \sim \alpha_{\text{weak}} T^2 / M_W^4
$$

so $\Gamma_{\text{weak}} \sim \alpha_{\text{weak}} T^5 / M_W^4$