Astro 507 Lecture 24 March 23, 2020

Announcements:

- Problem Set 4 due today
- Office Hours (online): Instructor: Wed 3-4pm, Fri 3-4pm TA: Thu noon-1pm
- Preflight 5 due next Friday

Last time: isotropic CMB wrapup

thermal CMB demands a hot, dense early Universe: big bang! theory and observation agree at  $z\sim$  1000,  $t\sim$  400 kyr

 $\vdash$ 

emboldens us to push back to earlier times

# Primordial Nucleosynthesis

#### **Prelude to Nucleosynthesis**

Big Bang Nucleosynthesis (BBN) similarities with recombination: unbound components  $\rightarrow$  bound states

*Q*: what sets *T* scale for element (nuclei) synthesis?

Q: what component dominates cosmic density, expansion then?

*Q*: what is the particle content of the universe then?

### **Nucleosynthesis: Nuclear Physics in a Nutshell**

- nuclei are made of protons and neutrons: "nucleons"
- $\bullet$  nucleon size  $\sim 1~\text{fm} = 10^{-13}~\text{cm}$
- nucleon mass  $m_p \approx m_n \approx 0.94$  GeV, but  $m_n m_p = 1.3$  MeV which means free neutrons are unstable, decay to protons
- nuclei are *quantum systems* bound by nuclear force, which is attractive at large distances  $\gtrsim 1$  fm repulsive at shorter distances
- many nuclei exist with same proton number Z: "isotopes"

www: chart of the nuclides--nuclear periodic table



#### **Binding Energy: Trends and Consequences**

Overall nuclear binding energy features in Chart of Nuclides:

highest binding along valley of stability

 $\Rightarrow$  stable isotopes are the most tightly bound



• Q: so what is rough energy scale for cosmic nucleosynthesis?

#### Nucleosynthesis: Setting the Stage

 $\star$  nuclear binding energies typically  $B \sim few \text{ MeV}$ 

★  $T \sim \text{MeV}$  at redshift  $z_{\text{bbn}} = T/T_0 - 1 \sim 10^{10}!$ since  $z_{\text{bbn}} \gg z_{\text{eq}} \sim 10^5$  (matter-rad equality) well into radiation dominated era:  $\rho \approx \rho_{\text{rad}}$ www:  $\Omega$  vs *a* plot will see:  $t(1 \text{ MeV}) \sim 1$  sec

~

★ particle content at BBN relativistic species: photons, neutrinos,  $e^{\pm}$  when  $T \gtrsim m_e$ non-relativistic species: baryons,  $e^{-}$  when  $T \ll m_e$ what about dark matter? energy?

DM presumably non-rel, weakly interacting: inert during BBN DE: also assume not important for dynamics, microphyiscs ...but can later relax these assumptions and test them!

#### Who Feels What? Particles and Forces



quarks: feel all fundamental forces (strong, EM, weak, gravity)
carry conserved quantum number: baryon number
leptons: do not feel strong force

but also carry conserved quantum number: lepton number

- charged leptons: feel EM, weak, gravity
- neutrinos: only feel weak, gravity

00

More bragging rights:

in BBN, all four fundamental forces play a crucial role!

### Neutrinos: Essential Ingredient yet Barely There

antineutrinos:  $\bar{\nu}_e, \bar{\nu}_\mu, \bar{\nu}_\tau$ since electric charge  $Q(\nu) = 0$ , possible that  $\nu$  is own antiparticle Q: is it?

**masses**: known that  $m_{\nu}$  are nonzero (oscillations observed) mass values not known (but for sure  $\leq few \times 10 \text{ eV} \ll m_e$ )

Q: implications for BBN?

for quarks and charged leptons, masses increase with each family

 $\rightarrow$  same for  $\nu$ s??

6

weak interaction: qualitative characteristics

(1) "signature" is transformation of quarks

e.g.,  $\beta$  decays like  $n \rightarrow p + e^- + \bar{\nu}_e$ 

really a quark change  $d(ud) \rightarrow u(ud) + e^- + \bar{\nu}_e$ 

(2) for  $E \lesssim 100$  GeV (=  $M_W, M_Z$ ), rxn strength is weak (duh!)

e.g.,  $\nu_e e \rightarrow \nu_e e$  scattering ~ 1 MeV:  $\sigma_{\nu_e e} \sim 10^{-44} \text{ cm}^2 \sim 10^{-20} \sigma_T$ 

### **Nucleosynthesis: Particle Content Revisited**

#### relativistic species:

 $\gamma$ ,  $u_i \overline{
u}_i$  ( $i \in e \mu au$ ),  $e^{\pm}$  (for  $T \gtrsim m_e$ )

#### non-relativistic species: baryons in BBN: when $T \gtrsim MeV$ : p, n only when $T \leq m_e \rightarrow e$ non-relativistic too

\* neutrinos in BBN Q: what sets  $n_{\nu}, \rho_{\nu}, T_{\nu}$ ? how do they evolve? Q: assumptions needed?

#### **BBN Initial Conditions: Ingredients of Primordial Soup**

Begin above nuke binding: T > 1 MeV

 $\frac{1}{1}$ 

EM reactions fast: typical rate  $\Gamma_{\text{EM}} \sim n_{\gamma} \sigma_{\text{T}} c \gg H$  $\Rightarrow$  baryon, photon,  $e^{\pm}$  pair plasma in thermal equilibrium:  $T_B = T_e = T_{\gamma} \equiv T$ 

Weak interaction fast too (for now)!  $\Gamma_{\text{weak}} \sim n_{\nu}\sigma_{\text{weak}}c \gg H$ all  $\nu$  species coupled to each other, and plasma  $\rightarrow T_{\nu} = T_{\gamma}$ 

For experts: What sets densities  $n_{\nu}, \rho_{\nu}$ ? not only  $T_{\nu}$ , but also dreaded chem potential  $\mu_{\nu}$ physics issue: is there a net neutrino excess:  $n_{\nu} \neq n_{\overline{\nu}}$ ?

c.f. net baryon excess  $\rightarrow$  exists:  $n_B \neq n_{\bar{B}}$ , but small:  $n_B/n_{\gamma} \ll 1$ if net lepton number  $n_L \sim n_B$ , turns out  $\mu_{\nu}/T \sim \eta$  negligible we will assume  $\mu_{\nu} \ll T \Leftrightarrow$  no large lepton/baryon excess if otherwise, changes story!

#### **BBN Initial Conditions: Radiation Domination**

Neutrino densities: for sure  $m_{\nu} \ll T$ assume  $\mu_{\nu} \ll T \rightarrow$  absolute  $n_{\nu}, \rho_{\nu}, P_{\nu}$  set by  $T_{\nu} \rightarrow$  $\rightarrow$  each  $\nu$  species *i* has  $n_{\nu_i} = n_{\overline{\nu}_i}$  and

$$n_{\nu\bar{\nu},i} \propto T^3 = \frac{3}{4} n_\gamma \quad \rho_{\nu\bar{\nu},i} \propto T^4 = \frac{7}{8} \rho_\gamma \tag{2}$$

total relativistic energy density:

$$\rho_{\rm rel} = \rho_{\gamma} + \rho_{e^{\pm}} + N_{\nu}\rho_{1\nu\bar{\nu}} \equiv g_* \frac{\pi^2}{30} T^4 \tag{3}$$

where  $g_*$  counts "effective # of relativistic degrees of freedom" at  $T \gtrsim 1$  MeV,  $g_* = 43/4 = 10.75$ , and Friedmann:

$$\frac{t}{1 \text{ sec}} \approx \left(\frac{1 \text{ MeV}}{T}\right)^2 \tag{4}$$

 $_{N}$  Q: simple way to see  $t \sim 1/T^2$  scaling is right?

now focus on baryons Q: what sets  $n_B$ ? n/p?

#### **BBN Initial Conditions: The Baryons**

**baryon number:**  $B = \sum$  baryons  $-\sum$  antibaryons **conserved** at low energies i.e., unchanged by reactions up to  $E_{LHC} \sim 10$  TeV =  $10^7$  MeV

So cosmic baryon density  $n_B$  not changed by reactions in BBN > rather, set somehow in early universe ("cosmic baryogenesis") > don't *a priori* know  $n_B$ , treat as free parameter ( $\eta$ )

neutron-to-proton ratio n/p can and does change at ~ 1 MeV weak int fast:  $n \leftrightarrow p$  interconversion

$$\begin{array}{rcl}
n + \nu_e &\leftrightarrow & p + e^- \\
p + \overline{\nu}_e &\leftrightarrow & n + e^+
\end{array} \tag{5}$$

also recall  $m_n - m_p = 1.29$  MeV: close in mass but not same!

Q: implications for n/p?

n/p ratio "thermal"

think of as 2-state system: the "nucleon," • nucleon "ground state" is the proton:  $E_1 = m_p c^2$   $n^{\frac{E_2 = m_n c^2}{2}}$ 

• nucleon "excited state" is the *neutron*:  $E_2 = m_n c^2$ when in equilibrium, Boltzmann sez:  $p^{\frac{E_1 = m_p c^2}{p}}$ 

$$\left(\frac{n}{p}\right)_{\text{equilib}} = \frac{g_n}{g_p} e^{-(E_2 - E_1)/T} = e^{-(m_n - m_n)/T} \tag{7}$$

with  $\Delta m = m_n - m_p = 1.293318 \pm 0.000009$  MeV

at  $T \gg \Delta m$ :  $n/p \simeq 1$ at  $T \ll \Delta m$ :  $n/p \simeq 0$ 

Equilibrium maintained until weak interactions freeze out
i.e., competition between weak physics, gravity physics *Q: how will weak freezeout scale compare to nuclear binding energy scale* ~ 1 *MeV*?

#### Weak Freezeout Temperature

Weak interactions freeze when  $H = \Gamma_{\text{weak}}$ , i.e.,

$$\sqrt{G_{\rm N}}T^2 \sim \sigma_0 m_e^{-2}T^5$$
 (8)  
 $\Rightarrow T_{\rm weak\ freeze} \sim \frac{(G_{\rm N})^{1/6}}{(\sigma_0/m_e^2)^{1/3}} \sim 1 \,{\rm MeV}$  (9)

gravity & weak interactions conspire to give  $T_{\rm f} \sim m_e \sim B_{\rm nuke}!$ 

for experts: note that  $G_{\rm N} = 1/M_{\rm Planck}^2$ , so

$$\frac{T^2}{M_{\rm Pl}} \sim \alpha_{\rm weak} \frac{T^5}{M_W^2}$$
(10)  

$$\Rightarrow T_{\rm freeze} \sim \left(\frac{M_W}{M_{\rm Pl}}\right)^{1/3} M_W \sim 1 \,\,{\rm MeV}$$
(11)

 $_{\mbox{\scriptsize ff}}$  freeze at nuclear scale, but by accident!

Q: what happens to n, p then? what else is going on?

## **Element Synthesis**

first step in building complex nuclei:  $n + p \rightarrow d + \gamma$ but  $d + \gamma \rightarrow n + p$  until  $T \ll B(d)$ ; see Extras

when photodissocation ineffective,  $n + p \rightarrow d + \gamma$  fast rapidly consumes all free n and builds dwhich can be further processed to mass-3:

 $d + p \rightarrow {}^{3}\text{He} + \gamma \ d + d \rightarrow {}^{3}\text{H} + p \ d + d \rightarrow {}^{3}\text{He} + n \tag{12}$  and to  ${}^{4}\text{He}$ 

$${}^{3}\text{H} + d \rightarrow {}^{4}\text{He} + n \quad {}^{3}\text{He} + d \rightarrow {}^{4}\text{He} + p$$
 (13)

some of which can then make mass-7:

#### <sup>3</sup>H + <sup>4</sup>He $\rightarrow$ <sup>7</sup>Li + $\gamma$ <sup>3</sup>He + <sup>4</sup>He $\rightarrow$ <sup>7</sup>Be + $\gamma$ (14)

16

*Q*: what limits how long these reactions can occur? *Q*: which determines which products are most abundant?

## **BBN Reaction Flows**

#### **Binding Energy**

nuclei are bound quantum structures, confined by nuclear forces among the "nucleons" n, pcan quantify degree of stability—i.e., resistance to destruction via binding energy: for nucleus with Z protons, N neutrons, A = N + Z nucleons

 $B_A$  = energy of individual parts – energy of bound whole =  $(Zm_p + Nm_n - m_A)c^2$ > 0 if bound

note: generally  $B_A$  increases with A

but that's not the whole story on stability

binding shared among all A nucleons, so binding per nucleon is  $B_A/A$ 

nuclear stability  $\leftrightarrow$  high  $B_A/A$ 



Q: implications for BBN

Reaction flows: tightest binding favored  $\rightarrow$  essentially all pathways flow to <sup>4</sup>He www: nuke network almost all  $n \rightarrow ^{4}$ He:  $n(^{4}$ He)\_{after} = 1/2  $n(n)_{before}$   $Y_{p} = \frac{\rho(^{4}$ He)}{\rho\_{B}} \simeq 2(X\_{n})\_{before} \simeq 0.24 (15)  $\Rightarrow \sim 1/4$  of baryons into <sup>4</sup>He, 3/4  $p \rightarrow$ H result weakly (log) dependent on  $\eta$ 

Robust prediction: large universal <sup>4</sup>He abundance

But  $n \rightarrow {}^{4}$ He incomplete: as nuke rxns freeze, leave traces of:

- D
- <sup>3</sup>He (and <sup>3</sup>H $\rightarrow$ <sup>3</sup>He)
- <sup>7</sup>Li (and <sup>7</sup>Be $\rightarrow$ <sup>7</sup>Li)

```
abundances \leftrightarrow nuke freeze T
trace species D, <sup>3</sup>He, <sup>7</sup>Li: strong n_B \propto \eta dependence
```

BBN theory predictions summarized in "Schramm Plot" Lite Elt Abundances vs  $\eta$ 

www: Schramm plot

```
Note: no A > 7...so no C,O,Fe... Q: why not?
```

## Why no elements A > 7?

1. Coulomb barrier

2. nuclear physics: "mass gaps" no stable nuclei have masses A = 5,8 $\rightarrow$  with just  $p \& {}^{4}$ He, can't overcome via 2-body rxs need 3-body rxns (e.g.,  $3\alpha \rightarrow {}^{12}$ C) to jump gaps but  $\rho$ , T too low

Stars *do* jump this gap, but only because have higher density a long time compared to BBN

### **Testing BBN: Warmup**

BBN Predictions: Lite Elements vs  $\eta$ 

To test: measure abundances

Where and when do BBN abundances (Schramm plot) apply?

Look around the room–not 76% H, 24% He. Is this a problem? Why not?

Solar system has metals not predicted by BBN *Is this a problem? Why not?* 

So how test BBN? What is the key issue?  $\overset{\text{N}}{\underset{\text{N}}{}}$ 

When does first non-BBN processing start?

#### **Testing BBN: Lite Elements Observed**

Prediction:

BBN Theory  $\rightarrow$  lite elements at  $t\sim 3$  min,  $z\sim 10^9$ 

Problem:

observe lite elements in astrophysical settings typically  $t\gtrsim 1\,$  Gyr,  $z\lesssim few$  stellar processing alters abundances

Q: If measure abundances in a real astrophysical system, can you unambiguously tell that stars have polluted?

Q: How can we minimize (and measure) pollution level?

stars not only alter light elements
 but also make heavy element = "metals"
 stellar cycling: metals ↔ time

Solution:  $\rightarrow$  measure lite elts and metals low metallicity  $\rightarrow$  more primitive in limit of metals  $\rightarrow$  0: primordial abundances!

look for regions with low metallicity  $\rightarrow$  less processing

## Directors' Cut Extras

#### Elementary Particles for the Minimalist Antimatter

fundamental result of Relativistic QM every particle has an antiparticle e.g.,  $e^{-} = e^{+}$  positron e.g.,  $\bar{p} =$  antiproton; Fermilab:  $p\bar{p}$  collisions

note: mass  $m(\bar{x}) = m(x)$ decay lifetime  $\tau(\bar{x}) = \tau(x)$ spin  $S(\bar{x}) = S(x)$ electric charge  $Q(\bar{x}) = -Q(x)$ 

sometimes particle = own antiparticle (must have charge 0) e.g.,  $\bar{\gamma} = \gamma$ , but note:  $\bar{n} \neq n$ 

 $\overset{\&}{\sim}$  Cosmic Antimatter: rule of thumb  $x, \bar{x}$  abundant when thermally produced:  $T > m_x$ 

## Baryons

*n* and *p* not fundamental particles made of 3 pointlike particles: "quarks" two types ("flavors") in *n*, *p*: *u* "up," *d* "down" p = uud,  $n = udd \rightarrow$  quark electric charge  $Q_u = +2/3$ ,  $Q_d = -1/3$ spin S(u) = 1/2 = S(d)

baryon  $\equiv$  made of 3 quarks

baryon conservation:

assign "baryon number" A(q) = +1/3,  $A(\bar{q}) = -1/3$  $\rightarrow A(n) = A(p) = +1$ 

in all known interactions: baryon number conserved:

 $\sum A_{\text{init}} = \sum A_{\text{fin}}$ 

27

 $\rightarrow$  guarantees stability of the proton Q: why? but free n unstable, decay to p Q: why not n decay in nuclei?

#### **Periodic Table of Elementary Particles**

known fundamental particles (& antipartners): 3 families

 $\begin{pmatrix} u \\ d \\ e \\ \nu_e \end{pmatrix} \begin{pmatrix} c \\ s \\ \mu \\ \nu_\mu \end{pmatrix} \text{ charm quark strange quark mu lepton (muon)} \begin{pmatrix} t \\ b \\ \tau \\ \nu_\tau \end{pmatrix} \text{ top quark bottom quark tau lepton (16)}$ 

all of these are spin-1/2: matter made of fermions!

#### **Family Resemblances**

1st family: quarks, charged lepton (e) comprise ordinary matter 2nd, 3rd family particles

- same electric charges, same spins, (mostly) same interactions as corresponding 1st family cousins
- but 2nd, 3rd family quarks, charged leptons more massive and & unstable  $\rightarrow$  decay into 1st family cousins

lifetimes very short, e.g., longest is  $\tau(\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu) = 2 \times 10^{-6}$  s *Q: implications for BBN epoch?* 

#### Weak $n \leftrightarrow p$ Rates

example: want rate  $\Gamma_n$  per n of  $\nu + n \rightarrow e^- + p$  as func. of T

Generally,

$$\bar{n} = n_{\nu} \langle \sigma v \rangle \sim T^3 \langle \sigma \rangle$$
 (17)

since  $v_{\nu} \simeq c$ 

can show: cross section  $\sigma \sim \sigma_0 (E_e/m_e)^2$ where  $\sigma_0 \sim 10^{-44}$  cm<sup>2</sup> very small! so thermal avg:  $\langle \sigma \rangle \sim \sigma_0 (T/m_e)^2$ 

$$\aleph$$
 for experts:  $\sigma\sim G_F^2T^2\sim \alpha_{\rm weak}T^2/M_W^4$  so  $\Gamma_{\rm weak}\sim \alpha_{\rm weak}T^5/M_W^4$