Astro ⁵⁰⁷ Lecture ²⁵ March 30, ²⁰²⁰

Announcements:

• Preflight 5: due Friday

Last time: began big-bang nucleosynthesis (BBN)

- Q: BBN vs CMB similarities? differences?
- Q: characteristic ^T?
- Q: what dominates cosmic expansion?
- Q : density when all particles have same T ?

BBN Initial Conditions: Radiation Domination

Neutrino densities: relativistic (non-degenerate) thermal fermions densities set by T and fundamental consts

$$
n_{\nu\bar{\nu},i} \propto T^3 = \frac{3}{4} n_{\gamma} \quad \rho_{\nu\bar{\nu},i} \propto T^4 = \frac{7}{8} \rho_{\gamma} \tag{1}
$$

total relativistic energy density:

 \overline{C}

$$
\rho_{\text{rel}} = \rho_{\gamma} + \rho_{e^{\pm}} + N_{\nu} \rho_{1\nu\bar{\nu}} \equiv g_* \frac{\pi^2}{30} T^4 \tag{2}
$$

where g_* counts "effective $\#$ of relativistic d at $T\gtrsim$ $_{\ast}$ counts "effective $\#$ of relativistic degrees of freedom" \gtrsim 1 MeV, g_* $_{*} = 43/4 = 10.75$, and Friedmann:

$$
\frac{t}{1 \text{ sec}} \approx \left(\frac{1 \text{ MeV}}{T}\right)^2 \tag{3}
$$

Q: simple way to see $t\sim 1/T^2$ scaling is right?

now focus on baryons Q : what sets n_B ? n/p ?

BBN Initial Conditions: The Baryons

baryon number: $B = \sum$ baryons conserved at low energies \sum antibaryons i.e., unchanged by reactions up to $E_\mathsf{LHC} \sim 10\;\mathsf{TeV} = 10^7\;\mathsf{MeV}$

So cosmic baryon density n_B not changed by reactions in BBN
set best set semehow in early universe (freesmis best resenseis" ⊲ rather, set somehow in early universe ("cosmic baryogenesis") \triangleright don't *a priori* know n_B , treat as free parameter (η)

neutron-to-proton ratio n/p can and does change at ~ 1 MeV weak interaction fast: rapid $n \leftrightarrow p$ interconversion

$$
n + \nu_e \leftrightarrow p + e^-
$$

\n
$$
p + \bar{\nu}_e \leftrightarrow n + e^+
$$
\n(4)
\n(5)

also recall $m_n - m_p = 1.29$ MeV: clo $_{p}$ $=$ 1.29 MeV: close in mass but not same!

 \bm{Q} : implications for n/p ?

 ω

 n/p ratio "thermal"
think of as 2 state

think of as 2-state system: the "nucleon," • nucleon "ground state" is the proton: $E_1 = m_p c^2$ $E_2 = m_n c^2$

• nucleon "excited state" is the *neutron*: $E_2 = m_nc^2$ when in equilibrium, Boltzmann sez: $p \frac{E_1 = m_p c^2}{2}$

$$
\left(\frac{n}{p}\right)_{\text{equilib}} = \frac{g_n}{g_p}e^{-(E_2 - E_1)/T} = e^{-(m_n - m_n)/T} \tag{6}
$$

 $\frac{E_{2}}{2}$

with $\Delta m = m_n - m_p = 1.293318 \pm 0.000009$ MeV

at $T \gg \Delta m\text{: } n/p \simeq 1$ at $T \ll \Delta m\text{: } n\,/\text{s} \simeq 0$ at $T \ll \Delta m$: $n/p \simeq 0$

 \rightarrow

Equilibrium maintained until weak interactions freeze out i.e., competition between weak physics, gravity physics Q: how will weak freezeout scale compare tonuclear binding energy scale $\sim 1\,$ MeV?

Weak Freezeout Temperature

Weak interactions freeze when $H=\mathsf{\Gamma}_{\mathsf{weak}}$, i.e.,

$$
\sqrt{G_{\rm N}}T^2 \sim \sigma_0 m_e^{-2} T^5 \tag{7}
$$
\n
$$
\Rightarrow T_{\text{weak freeze}} \sim \frac{(G_{\rm N})^{1/6}}{(\sigma_0/m_e^2)^{1/3}} \sim \frac{1 \text{ MeV}}{1 \text{ MeV}} \tag{8}
$$

gravity ${\cal L}$ weak interactions conspire to give $T_{\sf f} \sim m_e \sim B_{\sf nuke}$ |
|

for experts: note that G_{N} $_{\mathsf{N}} = 1/M_{\mathsf{P}}^2$ Planck, SO

$$
\frac{T^2}{M_{\text{Pl}}} \sim \alpha_{\text{weak}} \frac{T^5}{M_W^2}
$$
(9)

$$
\Rightarrow T_{\text{freeze}} \sim \left(\frac{M_W}{M_{\text{Pl}}}\right)^{1/3} M_W \sim 1 \text{ MeV}
$$
(10)

freeze at nuclear scale, but by accident! $\overline{5}$

 Q : what happens to n,p then? what else is going on?

Element Synthesis

first step in building complex nuclei: $n + p \rightarrow d + \gamma$ but $d + \gamma \rightarrow n + p$ until $T \ll B(d)$; see Extras

when photodissocation ineffective, $n + p \rightarrow d + \gamma$ fast
rapidly consumes all free x and builds d rapidly consumes all free n and builds d which can be further processed to mass-3:

 $d + p \rightarrow^3$ He + γ $d + d \rightarrow^3$ H + p $d + d \rightarrow^3$ He + n (11) and to ⁴He

$$
{}^{3}\text{H} + d \rightarrow {}^{4}\text{He} + n \quad {}^{3}\text{He} + d \rightarrow {}^{4}\text{He} + p \tag{12}
$$

some of which can then make mass-7:

3 H + ⁴He→⁷Li + γ ³He + ⁴He→⁷Be + γ (13)

 σ

Q: what limits how long these reactions can occur?

Q: which determines which products are most abundant?

BBN Reaction Flows

Binding Energy

nuclei are bound quantum structures, confined by nuclear forces among the "nucleons" n, p can quantify degree of stability–i.e., resistance to destruction via binding energy: for nucleus with Z protons, N neutrons, Λ $A = N + Z$ nucleons

 B_A = energy of individual parts – energy of bound whole $= (Zm_p + Nm_n - m_A)c^2$ > 0 if bound

note: generally B_A increases with A but that's not the whole story on stability $\overline{}$

binding shared among all A nucleons, so binding per nucleon is B_A/A

nuclear stability \leftrightarrow high B_A/A

 $_{\infty}$ Q: implications for BBN

Reaction flows: tightest binding favored \rightarrow essentially all pathways flow to ⁴He www: nuke [network](./Images/network_small.jpg) almost all $n{\rightarrow}^4$ He: $n({}^{4}\mathsf{He})_{\mathsf{after}}=1/2\,\,n(n)_{\mathsf{before}}$ $Y_{\bm p}$ = $\rho(^4$ He) ρ_B ⇒ \sim 1/4 of baryons into ⁴He, 3/4 $\simeq 2(X)$ $\, n \,$)before≃0.24 (14) $p{\to} {\sf H}$ result weakly (log) dependent on η

Robust prediction: large universal ⁴He abundance

But $n{\rightarrow}^4$ He incomplete: as nuke rxns freeze, leave traces of:

- ^D
- •• 3 He (and 3 H $\rightarrow {}^{3}$ He)
- • \bullet ⁷Li (and ⁷Be \rightarrow ⁷Li)

```
abundances \leftrightarrow nuke freeze T<br>trace species D. <sup>3</sup>He. <sup>7</sup>Li: st
trace species D, <sup>3</sup>He, <sup>7</sup>Li: strong n_B \propto \eta dependence
```
BBN theory predictions summarized in "Schramm Plot" Lite Elt Abundances vs η

www: [Schramm](./Images/absveta.gif) ^plot

 μ Note: no $A > 7...$ so no C,O,Fe... Q: why not?

Why no elements $A > 7$?

1. Coulomb barrier

2. nuclear physics: "mass gaps" no stable nuclei have masses $A = 5,8$ \rightarrow with just p & ⁴He, can't overcome via 2-body rxs
need 3 hody ryns (e.g., 3e, 1²C) to jump gaps need 3-body rxns (e.g., $3\alpha \rightarrow^{12}C$) to jump gaps but ρ , T too low

Stars *do* jump this gap, but only because have higher density a long time compared to BBN

Testing BBN: Warmup

BBN Predictions: Lite Elements vs η

To test: measure abundances

 $\overline{5}$

Where and when do BBN abundances (Schramm plot) apply?

Look around the room–not 76% H, 24% He. Is this ^a problem? Why not?

Solar system has metals not predicted by BBNIs this ^a problem? Why not?

So how test BBN? What is the key issue?

When does first non-BBN processing start?

Testing BBN: Lite Elements Observed

Prediction:

BBN Theory \rightarrow lite elements at $t \sim$ 3 min, $z \sim 10^9$

Problem:

observe lite elements in astrophysical settings typically $t\gtrsim$ stellar processing alters abundances $\stackrel{\textstyle >}{\sim} 1$ Gyr, z $\stackrel{\textstyle <}{\sim}$ $\begin{array}{c} 5 \lesssim few \end{array}$

Q: If measure abundances in ^a real astrophysical system, can you unambiguously tell that stars have polluted?

 $Q:$ How can we minimize (and measure) pollution level?

stars not only alter light elements but also make heavy element $=$ "metals" stellar cycling: metals \leftrightarrow time

Solution:→ measure lite elts and metals
low metallicity > more primitiv low metallicity → more primitive
in limit of motals > 0; primordi: in limit of metals \rightarrow 0: primordial abundances!

look for regions with low metallicity \rightarrow less processing

Deuterium

Two methods:

- (1) use D/H $_{\odot}$, model $D-Z$ evolution:
	- model dependent $\boldsymbol{\mathsf{X}}$ (old school)
- (2) measure D/H at high z YES "quasar absorption line systems"

QSO: for our purposes

high- z continuum source (lightbulb)

www: QSO spectrum

consider cloud, mostly ^H

 \bullet at $z < z_{\sf qso}$, but still high z

e.g., $z_{\text{qso}} = 3.4, z_{\text{cloud}} = 3$

- \bullet H absorbs γ if energy tuned to levels lowest: $n = 1 \rightarrow 2$, Ly α
- but Ly α in QSO frame redshifted in cloud frame

What happens?

What about a cloud at yet lower z ?

intervening material seen via absorption H: "Lyman- α forest"

Deuterium in High-^z Absorption Systems

D energy levels \neq H: for Hydrogen-like atoms

$$
E_n = -\frac{1}{n^2} \frac{1}{2} \alpha^2 \mu c^2
$$
 (15)

where $\mu =$ reduced mass $= m_e m_A/(m_e + m_A) \simeq m_e (1 - m_e / A m_p)$ $\Rightarrow \Delta E = E_{n,D} - E_{n,H} \approx +1/2 \ m_e/m_p \ E_{n,H}$
 $\Rightarrow \Delta z_D = \Delta \lambda / \lambda = -1/2 \ m_e/m_p$ \Rightarrow $\Delta z_D = \Delta \lambda / \lambda = -1/2 \ m_e / m_p$
c $\Delta z_D = -82$ km/s (blueward) $c\Delta z_D = -82$ km/s (blueward) \rightarrow look for "thumbprint"
www: _0'Meara_D_spectrum www: O'Meara ^D spectrum

What about stellar processing?

- * stars *destroy* D *before* H-burning! (pre-MS)
- ⋆ nonstellar astrophysical (Galactic) sources negligible

Epstein, Lattimer & Schramm 1977; updated in Prodanović & BDF 03)

- \Rightarrow BBN is only important D nucleosynthesis source
 $\Rightarrow D(t)$ only decreases
- $\rightarrow D(t)$ only decreases
chem evol models: ver

 $\overline{8}$

chem evol models: versus Z metallicity: $D \sim e^{-Z/Z_{\odot}} D_p$ Quasar absorbers: $Z \sim 10^{-2} Z_\odot \rightarrow$ <mark>expect $D_{\mathbf{QSOALS}} \approx D_p$ </mark>

Deuterium Results

Until recently: the ⁷ best systems (clean D, well-determined H)

$$
\left(\frac{D}{H}\right)_{\text{QSOALS}} = \left(\frac{D}{H}\right)_p = (2.78 \pm 0.29) \times 10^{-5} \tag{16}
$$

Cooke, Pettini (2012, 2013): new very high-precision systems Damped Ly α absorbers (DLAs):

$$
\left(\frac{D}{H}\right)_{\text{QSOALS}} = \left(\frac{D}{H}\right)_p = (2.53 \pm 0.04) \times 10^{-5} \tag{17}
$$

now ^a 2% measurement!

Directors' Cut Extras

The Short but Interesting Life of ^a Neutron

(1) at
$$
T > T_f
$$
, $t \sim 1$ s
\n $n \leftrightarrow p$ rapid
\nmaintain $n/p = e^{-\Delta m/T}$

(2) at
$$
T = T_f
$$
,
fix $n/p = e^{-\Delta m/T_f} \approx 1/6$
so *n* "mass fraction" is

$$
X_n = \frac{\rho_n}{\rho_B} = \frac{m_n n}{m_n n + m_p p} \approx \frac{n}{n+p} \approx 1/7
$$
 (18)

(3) until nuclei form, free *n* decay: $\dot{n} = -n/\tau_n$, with $\tau_n = 885.7 \pm 0.8$ s then mass fraction drops as

$$
X_n = X_{n,i}e^{-\Delta t/\tau} \tag{19}
$$

Q: why take this simple from?

21

Nuclear Astrophysics: Overcoming the Coulomb Barrier

to go from n, p to ⁴He requires at least one nuclear reactions between charged nuclei so must contend with Coulomb repulsion

$$
V_C(r) = \frac{Z_1 Z_2 e^2}{r} \sim 1 \ Z_1 Z_2 \text{ MeV } \left(\frac{1 \text{ fm}}{r}\right) \tag{20}
$$

but nuclear force, while strong, is short-ranged: $r_\mathsf{nuke} \sim 1$ fm \rightarrow particles apparently need $mv^2/2 \sim |V_C| \sim 1$ MeV to the mass $^2/2 \sim T$ of the magnetic strains and the magnetic strains of 2 $\Gamma^2/2 \sim |V_C| \sim 1$ MeV to fuse but $mv^2/2\,\sim\,T\,\ll\,1\,$ MeV, and 2 $\frac{2}{2}\sim T\,\ll\,1$ MeV, and higher energies exponentially suppressed

Q: how can we overcome this barrier?

22

Quantum Mechanics to the Rescue

Quantum mechanics → tunneling
Penetration probability Penetration probability

$$
P \propto e^{-2\pi Z_1 Z_2 e^2/\hbar v} = e^{-bE^{-1/2}} \tag{21}
$$

so $P\neq 0$ even when $E\ll |V_C|$ \rightarrow tunnel under barrier, then react note: not as serious an issue in BBN as it is in most stars e.g., the sun