Astro 507 Lecture 25 March 30, 2020

Announcements:

• Preflight 5: due Friday

Last time: began big-bang nucleosynthesis (BBN)

- *Q:* BBN vs CMB similarities? differences?
- Q: characteristic T?
- *Q*: what dominates cosmic expansion?
- *Q:* density when all particles have same *T*?

BBN Initial Conditions: Radiation Domination

Neutrino densities: relativistic (non-degenerate) thermal fermions densities set by T and fundamental consts

$$n_{\nu\bar{\nu},i} \propto T^3 = \frac{3}{4} n_{\gamma} \quad \rho_{\nu\bar{\nu},i} \propto T^4 = \frac{7}{8} \rho_{\gamma} \tag{1}$$

total relativistic energy density:

N

$$\rho_{\rm rel} = \rho_{\gamma} + \rho_{e^{\pm}} + N_{\nu}\rho_{1\nu\bar{\nu}} \equiv g_* \frac{\pi^2}{30} T^4 \tag{2}$$

where g_* counts "effective # of relativistic degrees of freedom" at $T \gtrsim 1$ MeV, $g_* = 43/4 = 10.75$, and Friedmann:

$$\frac{t}{1 \text{ sec}} \approx \left(\frac{1 \text{ MeV}}{T}\right)^2 \tag{3}$$

Q: simple way to see $t \sim 1/T^2$ scaling is right?

now focus on baryons Q: what sets n_B ? n/p?

BBN Initial Conditions: The Baryons

baryon number: $B = \sum$ baryons $-\sum$ antibaryons **conserved** at low energies i.e., unchanged by reactions up to $E_{LHC} \sim 10$ TeV = 10^7 MeV

So cosmic baryon density n_B not changed by reactions in BBN > rather, set somehow in early universe ("cosmic baryogenesis") > don't *a priori* know n_B , treat as free parameter (η)

neutron-to-proton ratio n/p can and does change at ~ 1 MeV weak interaction fast: rapid $n \leftrightarrow p$ interconversion

$$\begin{array}{rcl}
n + \nu_e &\leftrightarrow & p + e^- \\
p + \overline{\nu}_e &\leftrightarrow & n + e^+
\end{array} \tag{4}$$

also recall $m_n - m_p = 1.29$ MeV: close in mass but not same!

Q: implications for n/p?

ω

n/p ratio "thermal"

think of as 2-state system: the "nucleon," • nucleon "ground state" is the proton: $E_1 = m_p c^2$

• nucleon "excited state" is the *neutron*: $E_2 = m_n c^2$ when in equilibrium, Boltzmann sez: $p^{\frac{E_1 = m_p c^2}{p}}$

$$\left(\frac{n}{p}\right)_{\text{equilib}} = \frac{g_n}{g_p} e^{-(E_2 - E_1)/T} = e^{-(m_n - m_n)/T} \tag{6}$$

with $\Delta m = m_n - m_p = 1.293318 \pm 0.000009$ MeV

at $T \gg \Delta m$: $n/p \simeq 1$ at $T \ll \Delta m$: $n/p \simeq 0$

Equilibrium maintained until weak interactions freeze out
i.e., competition between weak physics, gravity physics *Q: how will weak freezeout scale compare to nuclear binding energy scale* ~ 1 *MeV*?

Weak Freezeout Temperature

Weak interactions freeze when $H = \Gamma_{\text{weak}}$, i.e.,

$$\sqrt{G_{\rm N}}T^2 \sim \sigma_0 m_e^{-2}T^5$$
 (7)
 $\Rightarrow T_{\rm Weak\ freeze} \sim \frac{(G_{\rm N})^{1/6}}{(\sigma_0/m_e^2)^{1/3}} \sim 1 \,\,{\rm MeV}$ (8)

gravity & weak interactions conspire to give $T_{\rm f} \sim m_e \sim B_{\rm nuke}!$

for experts: note that $G_{\rm N} = 1/M_{\rm Planck}^2$, so

$$\frac{T^2}{M_{\text{Pl}}} \sim \alpha_{\text{weak}} \frac{T^5}{M_W^2}$$
(9)
$$\Rightarrow T_{\text{freeze}} \sim \left(\frac{M_W}{M_{\text{Pl}}}\right)^{1/3} M_W \sim 1 \text{ MeV}$$
(10)

 $_{\mbox{\scriptsize or}}$ freeze at nuclear scale, but by accident!

Q: what happens to n, p then? what else is going on?

Element Synthesis

first step in building complex nuclei: $n + p \rightarrow d + \gamma$ but $d + \gamma \rightarrow n + p$ until $T \ll B(d)$; see Extras

when photodissocation ineffective, $n + p \rightarrow d + \gamma$ fast rapidly consumes all free n and builds dwhich can be further processed to mass-3:

 $d + p \rightarrow {}^{3}\text{He} + \gamma \ d + d \rightarrow {}^{3}\text{H} + p \ d + d \rightarrow {}^{3}\text{He} + n \tag{11}$ and to ${}^{4}\text{He}$

$${}^{3}\text{H} + d \rightarrow {}^{4}\text{He} + n {}^{3}\text{He} + d \rightarrow {}^{4}\text{He} + p$$
 (12)

some of which can then make mass-7:

³H + ⁴He \rightarrow ⁷Li + γ ³He + ⁴He \rightarrow ⁷Be + γ (13)

σ

Q: what limits how long these reactions can occur?

Q: which determines which products are most abundant?

BBN Reaction Flows

Binding Energy

nuclei are bound quantum structures, confined by nuclear forces among the "nucleons" n, pcan quantify degree of stability—i.e., resistance to destruction via binding energy: for nucleus with Z protons, N neutrons, A = N + Z nucleons

 B_A = energy of individual parts – energy of bound whole = $(Zm_p + Nm_n - m_A)c^2$ > 0 if bound

note: generally B_A increases with A but that's not the whole story on stability

binding shared among all A nucleons, so binding per nucleon is B_A/A

nuclear stability \leftrightarrow high B_A/A

Q: implications for BBN

00

Reaction flows: tightest binding favored \rightarrow essentially all pathways flow to ⁴He www: nuke network almost all $n \rightarrow ^{4}$ He: $n(^{4}$ He)_{after} = 1/2 $n(n)_{before}$ $Y_{p} = \frac{\rho(^{4}$ He)}{\rho_{B}} \simeq 2(X_{n})_{before} \simeq 0.24 (14) $\Rightarrow \sim 1/4$ of baryons into ⁴He, 3/4 $p \rightarrow$ H result weakly (log) dependent on η

Robust prediction: large universal ⁴He abundance

But $n \rightarrow {}^{4}$ He incomplete: as nuke rxns freeze, leave traces of:

- D
- ³He (and ³H \rightarrow ³He)
- ⁷Li (and ⁷Be \rightarrow ⁷Li)

```
abundances \leftrightarrow nuke freeze T
trace species D, <sup>3</sup>He, <sup>7</sup>Li: strong n_B \propto \eta dependence
```

BBN theory predictions summarized in "Schramm Plot" Lite Elt Abundances vs η

www: Schramm plot

Note: no A > 7...so no C,O,Fe... Q: why not?

Why no elements A > 7?

1. Coulomb barrier

2. nuclear physics: "mass gaps" no stable nuclei have masses A = 5,8 \rightarrow with just $p \& {}^{4}$ He, can't overcome via 2-body rxs need 3-body rxns (e.g., $3\alpha \rightarrow {}^{12}$ C) to jump gaps but ρ , T too low

Stars *do* jump this gap, but only because have higher density a long time compared to BBN

Testing BBN: Warmup

BBN Predictions: Lite Elements vs η

To test: measure abundances

13

Where and when do BBN abundances (Schramm plot) apply?

Look around the room–not 76% H, 24% He. Is this a problem? Why not?

Solar system has metals not predicted by BBN Is this a problem? Why not?

So how test BBN? What is the key issue?

When does first non-BBN processing start?

Testing BBN: Lite Elements Observed

Prediction:

BBN Theory \rightarrow lite elements at $t\sim 3$ min, $z\sim 10^9$

Problem:

observe lite elements in astrophysical settings typically $t\gtrsim 1\,$ Gyr, $z\lesssim few$ stellar processing alters abundances

Q: If measure abundances in a real astrophysical system, can you unambiguously tell that stars have polluted?

Q: How can we minimize (and measure) pollution level?

stars not only alter light elements
 but also make heavy element = "metals"
 stellar cycling: metals ↔ time

Solution: \rightarrow measure lite elts and metals low metallicity \rightarrow more primitive in limit of metals \rightarrow 0: primordial abundances!

look for regions with low metallicity \rightarrow less processing

Deuterium

Two methods:

(1) use D/H_{\odot} , model D-Z evolution:

model dependent X (old school)

(2) measure D/H at high z YES"quasar absorption line systems"

QSO: for our purposes

high-z continuum source (lightbulb)

www: QSO spectrum

consider cloud, mostly H

• at $z < z_{qso}$, but still high z

e.g., $z_{qso} = 3.4, z_{cloud} = 3$

- H absorbs γ if energy tuned to levels lowest: $n = 1 \rightarrow 2$, Ly α
- but $Ly\alpha$ in QSO frame redshifted in cloud frame

What happens?

What about a cloud at yet lower z?

intervening material seen via absorption H: "Lyman- α forest"

Deuterium in High-*z* **Absorption Systems**

D energy levels \neq H: for Hydrogen-like atoms

$$E_n = -\frac{1}{n^2} \frac{1}{2} \alpha^2 \mu c^2 \tag{15}$$

where $\mu = \text{reduced mass} = m_e m_A / (m_e + m_A) \simeq m_e (1 - m_e / A m_p)$ $\Rightarrow \Delta E = E_{n,D} - E_{n,H} \approx \pm 1/2 \ m_e / m_p \ E_{n,H}$ $\Rightarrow \Delta z_D = \Delta \lambda / \lambda = -1/2 \ m_e / m_p$ $c \Delta z_D = -82 \text{ km/s} \text{ (blueward)} \rightarrow \text{look for "thumbprint"}$ www: O'Meara D spectrum

What about stellar processing?

- ★ stars *destroy* D *before* H-burning! (pre-MS)
- * nonstellar astrophysical (Galactic) sources negligible

Epstein, Lattimer & Schramm 1977; updated in Prodanović & BDF 03)

- \Rightarrow BBN is only important D nucleosynthesis source
- $\rightarrow D(t)$ only decreases

18

chem evol models: versus Z metallicity: $D \sim e^{-Z/Z_{\odot}}D_p$ Quasar absorbers: $Z \sim 10^{-2}Z_{\odot} \rightarrow \text{expect } D_{\text{QSOALS}} \approx D_p$

Deuterium Results

Until recently: the 7 best systems (clean D, well-determined H)

$$\left(\frac{D}{H}\right)_{QSOALS} = \left(\frac{D}{H}\right)_p = (2.78 \pm 0.29) \times 10^{-5}$$
 (16)

Cooke, Pettini (2012, 2013): new very high-precision systems Damped Ly α absorbers (DLAs):

$$\left(\frac{\mathsf{D}}{\mathsf{H}}\right)_{\mathsf{QSOALS}} = \left(\frac{\mathsf{D}}{\mathsf{H}}\right)_p = (2.53 \pm 0.04) \times 10^{-5} \tag{17}$$

now a 2% measurement!

Directors' Cut Extras

The Short but Interesting Life of a Neutron

(1) at
$$T > T_f$$
, $t \sim 1$ s
 $n \leftrightarrow p$ rapid
maintain $n/p = e^{-\Delta m/T}$

(2) at
$$T = T_f$$
,
fix $n/p = e^{-\Delta m/T_f} \simeq 1/6$
so n "mass fraction" is

$$X_n = \frac{\rho_n}{\rho_B} = \frac{m_n n}{m_n n + m_p p} \approx \frac{n}{n+p} \approx \frac{1}{7}$$
(18)

(3) until nuclei form, free *n* decay: $\dot{n} = -n/\tau_n$, with $\tau_n = 885.7 \pm 0.8$ s then mass fraction drops as

$$X_n = X_{n,i} e^{-\Delta t/\tau} \tag{19}$$

Q: why take this simple from?

Nuclear Astrophysics: Overcoming the Coulomb Barrier

to go from n, p to ⁴He requires at least one nuclear reactions between charged nuclei so must contend with Coulomb repulsion

$$V_C(r) = \frac{Z_1 Z_2 e^2}{r} \sim 1 \ Z_1 Z_2 \ \text{MeV} \ \left(\frac{1 \ \text{fm}}{r}\right)$$
 (20)

but nuclear force, while strong, is short-ranged: $r_{\rm nuke} \sim 1$ fm \rightarrow particles apparently need $mv^2/2 \sim |V_C| \sim 1$ MeV to fuse but $mv^2/2 \sim T \ll 1$ MeV, and higher energies exponentially suppressed

Q: how can we overcome this barrier?

22

Quantum Mechanics to the Rescue

Quantum mechanics \rightarrow tunneling Penetration probability

$$P \propto e^{-2\pi Z_1 Z_2 e^2/\hbar v} = e^{-bE^{-1/2}}$$
(21)

so $P \neq 0$ even when $E \ll |V_C|$ \rightarrow tunnel under barrier, then react note: not as serious an issue in BBN as it is in most stars e.g., the sun