Astro 507 Lecture 29 April 8, 2020

Announcements:

 \vdash

- Problem Set 5 due Friday-ish
 Revised (reduced) questions posted yesterday
 can post questions in Homework Discussion
 Question 4 may require Friday material
- Office Hours: by email, by appointment, or Instructor-after class Wednesday TA: noon-1pm Thursday (email)

Last time: particle dark matter-another example of freezout?

Today: shift gears-revisit the big picture

Cosmological Inflation

The Standard Cosmology: Successes and Discontents

"Standard Cosmology" – FLRW

- General Relativity with
- cosmological principle, and
- perfect fluid, endowed with
- Iaboratory physics: atomic, nuclear, particle

How's it going?

Q: what are qualitative, quantitative successes?

Cosmology Scorecard: Triumphs

Standard Cosmology successfully accounts for observed

★ Hubble expansion

also cosmic time dilation

★ dark night sky (Olber's paradox)

Q: why is this is a problem? how does FLRW resolve it?

- ★ existence of a highly isotropic CMB with a thermal spectrum also its temperature redshifting
- ★ primordial light element abundances

 4 He to $\sim 10\%$

D to $\sim 5\%$

⁷Li to \sim factor 3–4

A good list! Enough to inspire some confidence
 ...but pressing questions, loose ends, assumptions remain
 Q: examples of outstanding questions?

Cosmic Loose Ends

Unexplained observations & unanswered puzzles

? what is the dark matter? why is $\rho_{\rm m}/\rho_{\rm B}\sim$ 7 today?

- ? what is the dark energy? why is $\rho_{\Lambda}/\rho_{\rm m} \sim 2$ today?
- ? why is $\Omega_0 \approx 1$? "flatness problem"

? why is the CMB so isotropic

especially for angular scales $> heta_{
m horizon,recomb} \sim 1^\circ$

"horizon problem"

? why is the U so homogeneous on large scales? *in*homogeneities on small scales?

"lumpiness problem"

Note:

СЛ

- important questions but not *inconsistencies* per se
- suggests Standard Cosmology incomplete but not wrong points to new physics

Standard Cosmology: Quantitative Questions

Flatness Problem

Now: $\Omega_0 \sim 1$, i.e., $|\Omega_0 - 1| = 0.0005^{+0.00033}_{-0.00033} \ll 1$ (Planck 2013 + LSS!) but Friedmann says

$$|\mathbf{\Omega} - \mathbf{1}| \equiv |\mathbf{\Omega}_{\kappa}| = \frac{c^2}{R^2} \left(\frac{1}{aH}\right)^2 = \frac{c^2}{R^2} \left(\frac{1}{\dot{a}}\right)^2$$

$$\begin{split} |\Omega - 1| \text{ smaller in rad-dom, matter-dom past} \\ \text{ at } z_{\text{rec}} &\sim 1000, \ \Omega_{\text{rec}} = 1 \pm 10^{-6} \\ \text{ at } z_{\text{BBN}} &\sim 10^{10}, \ \Omega_{\text{bbn}} = 1 \pm 10^{-19} \\ \Rightarrow \textit{ what made the Universe this flat?} \end{split}$$

Horizon Problem

angular size of particle horizon at recombination (PS4):

σ

$$\theta_{\rm hor,rec} \gtrsim 1^{\circ}$$
(1)

Q: implications for CMB regions $> 1^{\circ}$ *apart?*

CMB regions separated by angles $\theta_{\rm hor,rec}\gtrsim 1^\circ$ lie outside each other's particle horizon

 \rightarrow causally disconnected

~

so CMB sky surveys contains a number of regions

$$\frac{\Omega_{\rm sky}}{\Omega_{\rm hor,rec}} \sim \frac{4\pi}{\pi \theta_{\rm hor,rec}^2} \sim 10^5$$
(2)

which are causally disconnected regions

 \Rightarrow how did they become coordinated to $\Delta T/T \sim 10^{-5}$ level?

Unwanted Relics

Particle theories beyond the standard model bring trouble as well as benefits \rightarrow often predict relic particles we *don't* want

canonical example: grand unification (GUTs)
good news: naturally violate baryon number
source of matter/antimatter asymmetry?
bad news: naturally predict magnetic monopoles
unobserved, strongly constrained (lead to topological defects)
⇒ no more than ≲ 1 per horizon today

If GUTs correct, monopole production seems unavoidable \Rightarrow how did the U. get rid of monopoles?

Beyond Standard Cosmology: Inflation Part I: Abstract Inflation

The basic idea: Imagine the early U. experienced a phase of accelerated expansion, huge ($\sim e^{60}$) increase in scale factor a

if so:

several cosmological birds killed with one stone

Q: which problems, how fixed?

Inflation: the Magic of Acceleration

Flatness Problem

qualitatively: inflate away the curvature

- ★ curvature scale $R(t) = a(t) R_0$ hugely enlarged Friedmann curvature term $\kappa/R(t)^2 \rightarrow 0$
- ★ departure from flatness $|\Omega 1| \equiv |\Omega_{\kappa}| \sim 1/R^2 \dot{a}^2$ changes as $d/dt |\Omega_{\kappa}| \propto \ddot{a}$
 - \Rightarrow acceleration drives $\Omega \rightarrow 1!$

but note: then lumpiness problem worse! (for now)

 \mathbf{Q} : what about horizon problem?

Solving the Horizon Problem: Physical Picture

horizon problem: seemingly causally disconnected regions on CMB sky observec to have same T

inflation solution:

all these regions are really causally connected!

basic idea: entire observable Universe post-inflation was microscopically small pre-inflation when it was causally connected

then inflation expands this microscopic region to cosmologically large scales

Solving the Horizon Problem: Spacetime Picture

spacetime plot is *conformal time* $\eta = \int_0^t dt/a(t)$ versus comoving distance r_{com}

inflation: over tiny timeframe Δt , scale factor a(t) grows by $a_f/a_i \sim e^N$ with $N \approx 60$ "e-foldings" growth during infation: ~exponential

$$\delta\eta\approx\frac{1}{a_i}\int_0^{\Delta t}\frac{dt}{e^{Ht}}\sim e^N t_f$$

⇒ huge growth in conformal time during inflation due to acceleration (exponentiation)

12

Q: but how to make early *U* accelerate?

Intermission: Hall of Famers

Interlude: The Physics of Fundamental Fields

recall: there are four known fundamental forces each have associated fields and particles Note: existence of graviton particles not yet directly tested

electromagnetic interaction – a familiar case study

Classically: electric and magnetic fields fill space

- at every time t and every time point \vec{r} in space (=all spacetime) has **field vectors** $\vec{E}(\vec{r},t)$ and $\vec{B}(\vec{r},t)$
- field dynamics: Maxwell, e.g., $\partial_t \vec{E} = -c \nabla \times \vec{B}$
- field energy density: $\varepsilon_{\text{EM}} = (E^2 + B^2)/8\pi$ (true) vacuum = ground state = minimum energy *Q: namely*?
- field pressure: $P_{\rm EM} = \varepsilon_{\rm EM}/3$

14

Q: classical EM-like (vector) fields problematic for cosmo–why?

Quantum mechanically: excitations above vacuum *quantized*

- i.e., excitations are in discrete *field quanta*
- these are particles: photons-EM force carrier!

Generalize:

- each fundamental interaction has a classical field
- ground state of classical field is vacuum
- excitations are quantized into force carrier particles note: in EM and Strong interactions, quanta are massless but Weak quanta are massive: W^{\pm} and Z^{0} bosons

Scalar Fields

Now introduce a new fundamental interaction ("fifth force")

classical field: a scalar $\phi(\vec{r}, t)$

a single-valued function at each point of spacetime

simplest case: ϕ only interacts with itself

scalar energy density

$$\varepsilon = \frac{1}{2}\dot{\phi}^2 + V(\phi) \tag{3}$$

kinetic term depends on time change potential describing self-interaction: examples: $V(\phi) = m^2 \phi^2/2$, or $V = \lambda \phi^4$

• scalar pressure – note crucial sign flip

17

$$P = \frac{1}{2}\dot{\phi}^2 - V(\phi)$$
 (4)

Inflationary Cosmology

recall from Dark Energy discussion: acceleration demands P < 0 can't do this with matter or radiation

But:

 \star scalar field ϕ can have $P_{\phi} < 0$

★ scalar fields required for electroweak unification and appear in all other unification schemes

Alan Guth (1981)

if early Universe

- contains a scalar field,
- \triangleright whose *potential energy dominates*: $\rho_{\phi} \approx V_{\phi} \approx \rho_{\rm tot}$
- 5 then (in 21st century language) $w_{\phi} \rightarrow -1$
 - \rightarrow cosmic acceleration and exponential expansion!

From Outer Space to Inner Space: Other Triumphs and Questions

Elementary particle physics also has Standard Model

- * Incorporates (via quantum electrodynamics) non-rel QM inherits successes of atomic physics (\sim eV scales)
- \star Incorporates (via quantum chromodynamics) nuke physics inherits successes at \sim MeV scales
- \star all lab experiments understandable in terms of

3 families of quarks & leptons

4 fundamental interactions (strong, weak, E&M, gravity)

- ★ E&M and weak forces can be *unified*: "electroweak" understood as low-energy asymmetric manifestation of one high-energy symmetric interaction i.e., at $E \gtrsim 100$ GeV, EM & weak have same coupling, strength cost: invent new scalar field/spin-0 particle: Higgs
- without Higgs: massive photon, massless electron!
 - with Higgs: unification, precision: agree w/ expts to < 1%!

Beyond the Standard Model of Particle Physics

July 5, 2012: Higgs discovery announced! Nobels distributed 2013! last particle of Standard Model accounted for \rightarrow *if other particle every found: new physics*

Spectacular successes raise questions:

- is Higgs a fundamental particle or composite?
- why 3 families?
- why particles masses, interactions?
- why is matter fermionic, force carriers bosonic?
- are other unifications possible?
- ⇒ Standard Model not wrong but incomplete!
- 22

Note similarity to Standard Cosmology: more than coincidence? solutions might indeed be related

e.g., new interactions, particles \rightarrow dark matter candidates

Particle Standard Model points beyond itself motivates theories to explain observed patterns

- Supersymmetry (SUSY): boson-fermion symmetry
- unite strong + electroweak: "grand unification theory" (GUT)

 \star interaction strengths change with energy

 \star same at $E_{
m GUT} \sim 10^{15}~{
m GeV}$

23

• unite gravity too: quantum gravity/string theory scale: Compton wavelength (QM) ~ Schwarzchild radius (GR) when $E \sim M_{\text{Planck}} = \sqrt{\hbar c/G} \sim 10^{19} \text{ GeV}$ $r \sim 10^{-33} \text{ cm}, t \sim 10^{-43} \text{ s: Planck scale}$

All have major cosmological consequences

- e.g., SUSY: essentially *demands* WIMPs! a problem if not discovered soon!
- but also, present cosmo puzzles more severe in Early Universe: worth quantifying more precisely since maybe Early U also offers solution