Astro ⁵⁰⁷ Lecture ³Jan 26, ²⁰²⁰

Announcements:

- Preflight ¹ due Fri. Jan 31, noon www: assignment Note: answer in *two parts*
	- 1. reading response: private, only ^I see
	- 2. open-ended discussion question: public, everyone sees

Last time: cosmologist's toolbox of observables

www: Galactic coordinates

Q: we're doing cosmo–why even use Galactic coords?

Q: zone of avoidance? why are galaxies scarce here?

Today: Observational/Conceptual Foundations of Cosmology

⋆ Cosmological Principle

 $\overline{}$

- ⋆ Observed Cosmic Kinematics: Hubble's Law
- \star Implications of Cosmo Principle $+$ Hubble Law

Galaxy Maps and Cosmic Structure

observable cosmo "building blocks" – galaxies \approx all stars in galaxies

www: Galaxy Survey: 2dFGRS map galaxies in "slices" of sky 2° thick Q: qualitative trends–small scales? large scales?

Q: how could we make this more quantitative?

Q: how to test these conclusions?

Large Scale Structure–First Look

galaxy distribution: qualitative trendszoom in to small scales: lumpy step back to <mark>largest scales: smooth</mark>

tests, e.g., with Sloan Digital Sky Survey www: SDSS

- is pattern same in "slices" from other directions? yes!
- if we focus select very luminous sources does pattern extend to large distances? yes!

quantitatively: smooth/"coarse-grain" ^U at different scales find rms *mass or density fluctuation in sphere of radius* R

- clearly, $\delta M/M \gg 1$ over typical gal separation $R \sim 1$ Mpc
- but $\delta M/M \sim 1$ at $R \sim 10$ Mpc
- \bullet $\delta M/M < 10^{-4}$ at $R \sim 1000$ Mpc

 ω

Q: lesson?

The Homogeneous Universe

```
mass fluctuations on large scales:
\delta M/M\rightarrow \, 0 for R \gg 10 \, Mpc
```
we will revisit this in much more detail later but for now we already see:

on large scales (≫ ¹⁰ Mpc)

 \rightarrow

- cosmic properties the same everywhere
- . the Universe is homogeneous on large scales •

Q: how does the distribution compare in different directions ?

Isotropy

Now scan around the sky

directional dependence:

on large scales, galaxy distribution looks (statistically) same in all directions

on large angular scales:

the Universe is isotropic

The Universe to Zeroth Order: Cosmological Principle

Observations teach us that

- at any instant of cosmic time ("epoch")
- to "zeroth order":

the Universe is both

 Ω

1.. **homogeneous** average properties same at all points e.g., mass density anywhere is same as mass density everywhere! i.e., $\rho(\vec{r}) = \rho$ indep of \vec{r} !

2 **isotropic** looks same in all directions

"Cosmological Principle"

the universe is homogeneous & isotropic

first guessed(!) by A. Einstein (1917)

- no special points! no center, no edge!
- "principle of mediocrity"? "ultimate democracy?"

The Far Reach of the Cosmological Principle

Do you need both homogeneity and isotropy?

Q: e.g., can ^a Universe be isotropic but not homogeneous?

Q: e.g., can ^a Universe be homogeneous but not isotropic?

you are here

Example: Cosmological Principle and Galaxy Properties

Q: if cosmo principle true, how should it be reflectedin observations of galaxies at any given time?

Q: what does cosmo principle say about howgalaxy properties evolve with time?

Cosmo Principle and Galaxy Properties

at any instant of cosmic time:

- **average** density of galaxies same everywhere
- · distribution of galaxy properties same everywhere range of types range of colors range of $L,~M,~...$ ratios of normal/dark matter Note that these are very restrictive constraints!

time evolution of galaxies:

- must maintain large-scale homogeneity and isotropy
- but otherwise, by itself cosmo principle allows any changes!
- Cosmo Principle hugely powerful & the "cosmologist's friend"very strongly constrains possible cosmologies \rightarrow large-scale spatial behavior maximally simple 10

Cosmic Kinematics

Slipher, Hubble 1920's: galaxies' spectral lines shifted:

- galaxies move wrt us!
- all[∗] galaxies show shift to red:

 $\lambda_{\text{obs}} > \lambda_{\text{lab}} = \lambda_{\text{rest}}$

Define: <mark>redshift</mark> <mark>z</mark>

11

$$
z = \frac{\Delta\lambda}{\lambda} = \frac{\lambda_{\text{obs}} - \lambda_{\text{emit}}}{\lambda_{\text{emit}}} \tag{1}
$$

if interpret as Doppler (for non-relativistic $v \ll c$)

$v \approx cz$

 * Sloan Digital Sky Survey (SDSS: $\sim 10^6$ spectroscopic galaxy redshifts

 16 galaxy blueshifts (many spurious), all $|z|\lesssim 0.001\to$ Local Group (bound structure)

^a big ASTR596PC thanx to data miner Adam Myers

Bizarre/Elegant Relativity/Particle Units ^I

chic relativity/particle physics parlance: all v implicitly *in units of* c

amounts to $v_\mathsf{chic} = \frac{v_\mathsf{ordinary}}{c}$ (2)equivalent to putting $\boxed{c = 1}$ with rule: insert c factor anytime need v units example: chic first-order Doppler relation

 $"v\approx z"$

12

Distance–Speed Correlation

Edwin Hubble (1929)

www: Hubble PNAS paper

www: original, old-school Hubble diagram

groundbreaking despite challenges:

- data available only for nearby galaxies
- lots of scatter
- distance measures later found to be systematically wrongby huge factor

speed-distance correlation: linear

$$
v_r \propto r \tag{3}
$$

Hubble: $v_r=Kr$

 $\overline{5}$

but isotropy implies Q: what?

Hubble's Law

Hubble: $v_r = Kr$ isotropy \Rightarrow same K in all directions
modern: Hubble's Law modern: Hubble's Law

$$
\vec{v} = H\vec{r} \tag{4}
$$

at present: time t_0 ("sub-0 $=$ today") measure: *Hubble* Key project (2001, based on Cephieds)

$$
H_0 = 73 \pm 3_{\text{stat}} \pm 7_{\text{sys}} \text{ km s}^{-1} \text{ Mpc}^{-1}
$$
 (5)

Hubble parameter or Hubble "constant" Q: why scare quotes? Q: what are dimensions of ^H?

 \overleftrightarrow{P} Q: why these crazy units?

The Plague of "Little h "

Back in the old days (\gtrsim $\gtrsim 10$ yr ago): H_0 poorly measured
100 kms⁼¹ Mns⁼¹ $H_0(\rm old\, data) \sim 50-100\,~{\rm km\,s^{-1}\,Mpc}$ Worse still: many cosmo results sensitive to H_0 − -100 km s $^{-1}$ Mpc $^{-1}$ \rightarrow how to show effect of uncertainties?

Parameterized Uncertainty:

introduce "little h " via

$$
H_0 \equiv 100 \ h \ \text{km s}^{-1} \ \text{Mpc}^{-1} \tag{6}
$$

i.e., $h=H_0/100\,$ km s $^{-1}$ Mpc $^{-1}$; $\,$ (sometimes also called $h_{100})$

- back in the day, could only say: $h = 0.5$ −1
- now- HST Cephieds: $h = 0.73 \pm 0.03 \pm 0.07$ *Planck* CMB lensing $h = 0.673 \pm 0.012$

 $\frac{\overline{1}}{n}$

 Q : little h is ugly—why invent it? why is it useful?

Why Little h ?

can always write today's Hubble parameter as

$$
H_0 \equiv 100 \ h \ \text{km s}^{-1} \ \text{Mpc}^{-1} \tag{7}
$$

Why useful?

Historically: H_0 uncertain, major revisions since Hubble (1929)
1978: 1988: Hakaka II. (58 : 198) keessal Mees 1970s–1980s, debate: $H_0 = (50 \text{ or } 100)$ km s $^{-1}$ Mpc $^{-1}$ corresponds to $h =$ 0.5 $-$ 1.0

We will see: H_0 enters in most cosmological measurements

- uncertainty in H_0 propagates to many other quantities
- convenient to see how H_0 affects each quantity

 \overline{d}

example: distance to galaxy at $z = 0.1$? use Hubble law

$$
(z = 0.1) \approx \frac{cz}{H_0} = 300 \ h^{-1} \text{ Mpc}
$$
 (8)

16

 \rightarrow in old days, all cosmo distances uncertain to factor 2!

Hubble Trouble Revived?

Today H_0 nightmare mostly over, thanks to HST and other
measurements measurements

...or is it?

In past ∼ ⁴ years: discrepancy has emerged

• local astrophysical distance estimators give, e.g.,

 $H_0 = 73.24 \pm 1.74$ km s $^{-1}$ Mpc $^{-1}$ Riess+ ²⁰¹⁶(9)

• we will see: high-redshift/large distance data imply

$$
H_0 = 67.4 \pm 0.5 \text{ km s}^{-1} \text{ Mpc}^{-1} \quad \text{Planck } 2018 \tag{10}
$$

differences ≫ quoted uncertainties!
• a problem with either or both?

- a problem with either or both?
- or ^a hint of new physics?

so fossil h haunts us still! but note: 17

- H_0 and h precision is now $\sim 10\%$ or better
e for bemovierk, reveably: $h \approx 0.7$ er $1/\sqrt{2}$
- \bullet for homework, roughly: $h\approx 0.7\approx 1/\sqrt{2}$