Astro 507 Lecture 31 April 13, 2020

Announcements:

- Problem Set 5 due today
- Preflight 6: Part (a) Due Friday April 17
 Wikipedia Cosmology! propose a wikipedia upgrade can be modest and targeted, or more ambitious

Last time: slow-roll inflation scalar field dynamics in an expanding universe

Q: what is ϕ ? $V(\phi)$?

 \square Q: what is needed for ϕ to inflate the universe?

inflation: let there be scalar field ϕ minimal version–self-coupled: $\rho_{\phi} = \dot{\phi}^2/2 + V(\phi)$ cosmic equation of motion $\ddot{\phi} + 3H\dot{\phi} + dV/d\phi = 0$

initial conditions:

- (a) ϕ dominates cosmic energy density $\rho_{\rm tot} \approx \rho_{\phi}$
- (b) ϕ away from ground state
- (c) potential term dominates over kinetic: $\rho_{\phi} \approx V(\phi)$

result:

- (a) ϕ controls cosmic dynamics: $H^2 = (\dot{\phi}^2/2 + V)/3m_{\rm pl}^2$
- (b) $V(\phi) > 0$: vacuum energy fills the universe
- (c) $w_{\phi} \rightarrow -1$: exponential expansion!

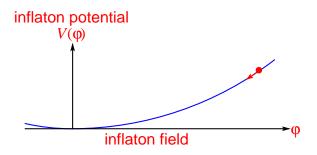
Q: what is needed to ensure (c)?

To inflate, need slow ϕ evolution:

$$\ddot{\phi} \ll 3H\dot{\phi} \leftrightarrow \text{friction large:}$$

⇒ achieve "terminal speed"

$$\dot{\phi} \approx -\frac{1}{3H}V'$$



slowness imposes conditions on the potential $V(\phi)$:

$$\epsilon(\phi) = \frac{m_{\rm pl}^2}{2} \left(\frac{V'}{V}\right)^2 \ll 1$$
 (1)

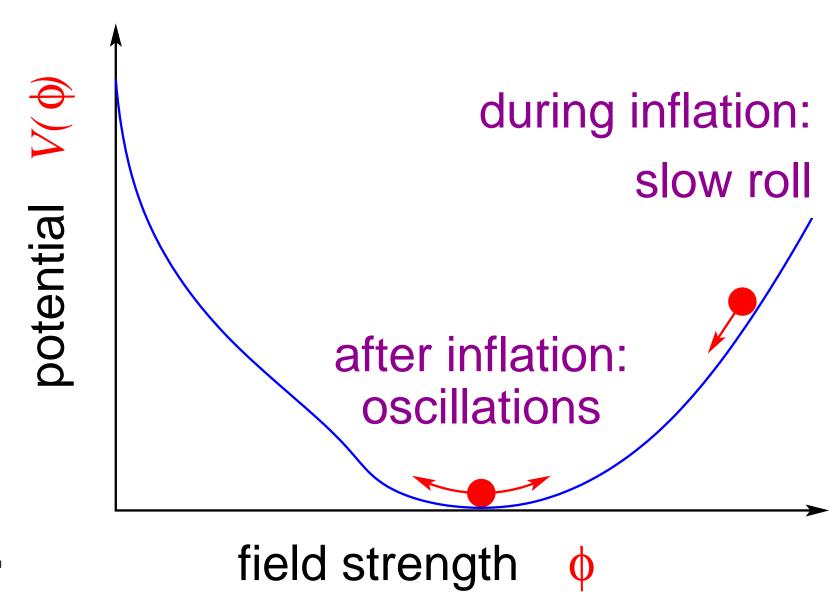
$$\eta(\phi) = m_{\text{pl}}^2 \frac{V''}{V} \ll 1 \tag{2}$$

small derivatives \rightarrow **potential must be flat** note potential "curvature" scale is $m_{\rm pl}$: Planck!

The Energy Scale of Inflation

```
generically expect \phi \gtrsim m_{\rm pl} \sim 10^{18} GeV! \Rightarrow for successful inflation, field probes the Planck scale (?) ;-) a good thing? hints at quantum gravity if \Omega_{\rm init} \gtrsim 1, inflation prevents U. collapse \rightarrow black hole =:-o a bad thing? quantum gravity a prerequisite for inflation models? moves away Guth's original idea, GUT physics?
```

 \star ϵ, η also can quantify conditions for *ending* inflation Q: what conditions needed to end inflation?



A Graceful Exit from Inflation

inflaton continues until acceleration stops $(w_{\phi} > 0)$ \rightarrow potential energy no longer dominates cosmic ρ all matter and radiation inflated away, so "rescue" comes from kinetic energy $\dot{\phi}^2/2$ (by itself, has w=+1!)

in terms of potential, exit when slow roll stops quantified by slow-roll parameters i.e., ϕ evolves until $\epsilon(\phi)\sim 1$

inflaton requirements:

- to achieve slow roll \rightarrow need flat V far from minimum
- to end slow roll \rightarrow need non-flat $V' \gtrsim V/m_{\rm pl}$ approaching minimum

Q: and then...? What's the Universe like? What happens next?

Reheating: Back to the Hot Big Bang

After $e^{60}\sim 10^{26}$ expansion radiation, matter particles diluted to negligibility as a^{-3} temperature drop $T\sim 1/a{\to}0$: "supercooling"

But since $V(\phi) \sim const$ during inflation inflation energy density still large afterwards must convert to hot, radiation-dominated early U: reheating

Details complicated, model-dependent; basic idea:

- $\star \phi$ evolves in non-inflationary way
- ★ quantum effects drive energy conversion

Inflation and the Rest of Cosmology

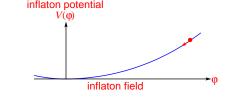
Reheating Temperature

- ★ All of 'usual" hot big bang begins after reheat
- \star Must reheat enough for U to undergo any and all known hot big phases e.g., have to *at least* heat up to have nucleosynthesis i.e., successful nuke requires $T_{\rm reheat} > 1$ MeV earlier phases (if any) demand hotter reheat

Ingredients of an Inflationary Scenario

Recipe:

- 1. inflaton field ϕ must exist in early U.
- 2. must have $ho_{\phi}pprox V$ so that $w_{\phi}
 ightarrow -1$ so that $a\sim e^{Ht}$



- 3. continue to exponentiate $a \sim e^N a_{\text{init}}$ for at least $N = \int H \, dt \gtrsim 60 \, e$ -folds
- 4. stop exponentiating eventually ("graceful exit")
- 5. convert field ρ_{ϕ} back to radiation, matter ("reheating")
- 6. then ϕ must "keep a low profile," $\rho_{\phi} \ll \rho_{\text{tot}}$
- 7 (bonus) what about acceleration and dark energy today?
- Q: what can we say about how inflation fits in the sequence of cosmic events, e.g. monopole production, baryon genesis, BBN, CMB?

Cosmic Choreography: The Inflationary Tango

Inflation must occur such that it solves various cosmological problems, then allows for the universe of today, which *must*

- contain the known particles, e.g., a net baryon number
- pass thru a radiation-dominated phase (BBN) and a matter-dominated phase (CMB, structure formation)
- ⇒ this forces an ordering of events

Cosmic Choreography: Required time-ordering

- 1. monopole production (if any)
- 2. inflation
- 3. baryogenesis (origin of $\eta \neq 0$)
- 4. radiation \rightarrow matter \rightarrow dark energy eras

Electroweak woes: hard to arrange baryogenesis afterwards!

Intermission: Questions?

Inflation, Inhomogeneities, and Quantum Mechanics

Thus far: classical treatment of inflaton field (except for inflaton decays during reheating)

- ullet ϕ described by classical equations of motion
- ullet taken to hold for arbitrarily small ϕ

In this picture:

when inflation ends, universe essentially

- > perfectly flat, and
- perfectly smooth—i.e., density spatially uniform regardless of initial conditions (as long as they allowed inflation)

Classical Inflation and Smoothness

expect initial spatial inhomogeneities in $\phi(\vec{x})$ but evolves classically as

$$\ddot{\phi} - \nabla^2 \phi + 3H\dot{\phi} - V' = 0 \tag{3}$$

where

$$\nabla^2 = \sum \frac{\partial^2}{\partial x_{\text{phys}}^2} = \frac{1}{\frac{a^2}{a^2}} \sum \frac{\partial^2}{\partial x_{\text{com}}^2}$$
 (4)

inhomogeneities $\delta\phi(\vec{x})$ measured by nonzero gradients but since $\nabla^2\propto 1/a^2\to 0$ exponentially, classically: $\delta\phi(\vec{x})\to 0$ \Rightarrow after inflation ϕ and $\rho=V(\phi)$ exponentially smooth in space

good news: solved flatness, smoothness problems bad news: we have done too much! too smooth! can't form structures if density perfectly uniform

Quantum Mechanics to the Rescue

but quantum mechanics exists and is mandatory classical ϕ field \to quantized as inflatons think \vec{E}, \vec{B} vs photons

inflaton field must contain quantum fluctuations before, during inflation

uncertainty principle: $\Delta x \Delta p \sim \hbar$ causal region at time t: Hubble length $\Delta x \sim d_H = c/H(t)$ expect momentum and energy fluctuations

$$c\Delta p \sim \Delta E \sim \hbar H \tag{5}$$

Q: implications?

Q: fate of fluctuations born a given scale λ_{init} ?

Q: analogy with Hawking radiation?

A Quantum Perturbation Factory

quantum mechanics: perturbations in energy $\to \delta \phi$ \to different regions start inflation at different $V(\phi)$

www: sketch of quantum perturbations during inflation

quantum fluctuations born at scale λ_{init}

- exponentially stretched until $\lambda > d_H$ "horizon crossing"
- then no longer causally connected
 - → cannot "fluctuate back to zero"
- "frozen in" as real density perturbations!
 cosmic structures originate from quantum fluctuations!

Hawking radiation analogy:

uncertainty principle: $\Delta E \Delta t \sim \hbar$, so in timscale

 $\Delta t \lesssim \hbar/m_{\psi}c^2$: particle pairs $\psi\bar{\psi}$ born and annihilate black hole: one falls in, other emitted as thermal Hawking rad. inflation: pair separated by expansion, "frozen" as fluctuation

Implications

If the inflationary model is true density fluctuation "seeds" of cosmic structures are inflated quantum mechanical fluctuations

Q: how does this limit what we can know about them?

Q: what can we hope to know?

Q: what do we need to calculate?

Inflationary Fluctuations: What we need to know

quantum fluctuations are random

- → impossible to predict locations, amplitudes of overdensities
- → cannot predict location, mass, size of any particular cosmic object: galaxy/cluster/supercluster ...

but quantum mechanics does allow statistical predictions

What we want: statistical properties of fluctuations

- ullet typical magnitude of fluctuations $\delta\phi$
- ullet how $\delta\phi$ depends on lengthscales
- ullet corresponding fluctuations in ho_ϕ
- correlations at different length scales

Fluctuation Amplitude: Rough Estimate

quantum fluctuation → turn to uncertainty principle

$$\delta E \ \delta t \sim \hbar \sim 1$$
 (6)

recall: energy density is

$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + \frac{1}{2}(\nabla\phi)^2 + V \tag{7}$$

if perturbation from classical: $\phi(t, \vec{x}) = \phi_{\rm cl}(t) + \delta \phi(t, \vec{x})$, then for small $\delta \phi \ll \phi_{\rm cl}$,

$$\delta \rho \sim (\nabla \delta \phi)^2 + V'(\phi_{\text{cl}})\delta \phi \approx (\nabla \delta \phi)^2$$
 (8)

since slow roll $\rightarrow V'$ small (flat potential)

GQ: what is characteristic volume for fluctuation?

Q: what is characteristic timescale δt ?

 H^{-1} is only lengthscale in problem so $\nabla \delta \phi \sim \delta \phi / H^{-1} \Rightarrow \delta \rho \sim H^2 (\delta \phi)^2$ so in Hubble volume $V_H = d_H^3 = H^{-3}$, energy fluctuation is

$$\delta E = \delta \rho \ V_H = \frac{(\delta \phi)^2}{H} \tag{9}$$

characteristic timescale is $\delta t \sim 1/H$, so

$$\delta E \ \delta t \sim \frac{(\delta \phi)^2}{H^2} \sim 1$$
 (10)

and typical (root-mean-square) inflaton fluctuation is

$$\delta \phi \sim H \tag{11}$$

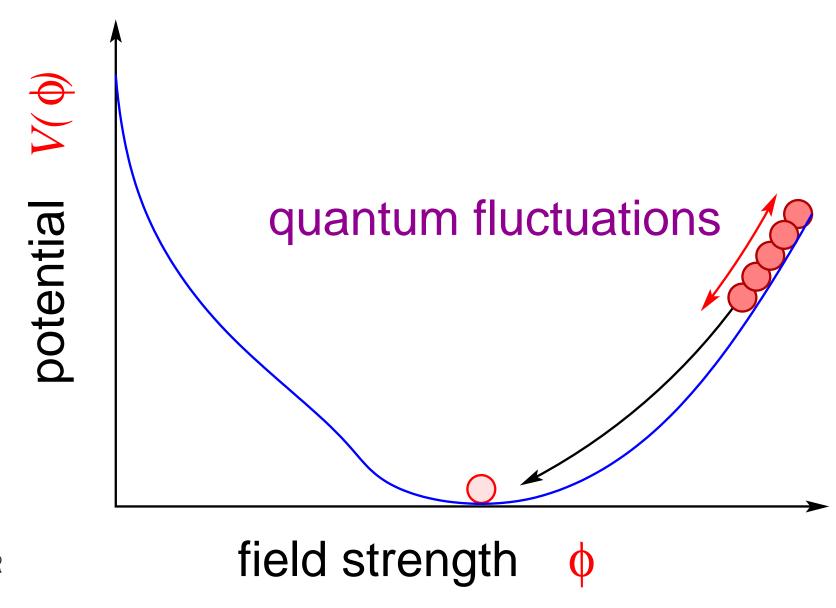
had to be! H is the only other dimensionally correct scale in the problem!

Note: $H \sim const$ during inflation all fluctuations created with \sim same amplitude

What Just Happened?

To summarize:

- classically, inflaton field $\phi_{\rm cl}$ quickly inflates away any of its initial perturbations
- ullet but *quantum fluctuations* $\delta\phi$ unavoidable created and persist throughout inflation
- in any region, amplitude $\delta\phi(\vec{x})$ random but *typical* value $\delta\phi\sim H$
- Q: what do the presence of inflaton fluctuations mean for inflationary dynamics in different regions?
- Q: what consequences/signatures of fluctuations might remain after inflation?



Fluctuation Evolution and the Cosmic Horizon

in presence of fluctuations $\delta\phi$ and $\delta\rho_\phi$ can view inflationary universe as ensemble of "sub-universes" evolving independently—same slow roll, but with different ϕ , ρ_ϕ at a fixed t classical discussion \to ensemble average now want behavior typical deviation from mean

particle horizon $\sim H^{-1}$ critical

- already saw: sets scale for fluctuation
- also "shuts off" fluctuation evolution

consider perturbation of lengthscale λ

- ullet leaves horizon when $H\sim 1/\lambda$
- ullet then can't evolve further: keeps same $\delta
 ho/\left\langle
 ho \right\rangle$
- until after inflation, when re-enters horizon

What Just Happened? ...Part Deux

the *classical* behavior of a slow-rolling ϕ lead to homogeneity, isotropy regardless of initial conditions \Rightarrow fixes horizon, flatness, monopole problem

the *quantum* fluctuations in ϕ lead to density perturbations on all lengthscales including scales $\gg d_{\rm hor}$ today these perturbations form the "seeds" for cosmic structures!

quantum mechanics & uncertainty principle essential for the existence of cosmic structure

"The Universe is the ultimate free lunch."

- Alan Guth

Director's Cut Extras

Models for Inflation

Inflation model: specifies inflaton potential $V(\phi)$ [+ initial conditions, reheat prescription]

good news:

involves physics at extremely high energy scales probed by observable signatures of inflation

bad news:

involves physics at extremely high energy scales far beyond the reach of present-day or planned accelerators no laboratory guidance or checks of inflationary physics

Q: possible physically reasonable choices for $V(\phi)$?

A Sample of Single-Field Potentials

Polynomial Potentials

e.g., Klein-Gordon $V = m^2 \phi^2/2$, quartic $V = \lambda \phi^4$

- simplest models giving inflation
- ullet require *Planck-scale* initial conditions for ϕ
- but to achieve sufficient inflation (enough e-foldings N) and perturbations at observed (CMB) scale demands $tiny\ coupling\ \lambda \sim 10^{-13}\ (!)$
 - \rightarrow potential energy scale $V \ll m_{\rm pl}^4$ but why is coupling so small?

Illustrates characteristics of (successful) inflation models:

- \triangleright large initial $\phi \gtrsim m_{
 m pl}$ value
- \triangleright small coupling in $V \rightarrow$ scale $V^{1/4} \sim 10^{15-16}$ GeV (GUT?)

Exponential Potentials: Power-Law Inflation

for potentials of the form

$$V = V_0 \exp\left(-\sqrt{\frac{2}{p}} \frac{\phi}{m_{\rm pl}}\right) \tag{12}$$

then can solve equations of motion exactly:

$$a \sim t^p \tag{13}$$

if p > 1, U. accelerates, but not exponentially

Designer Potentials

can customize V to give desired a(t), e.g., to get $a \sim \exp(At^f)$, with 0 < f < 1 then choose

$$V(\phi) \sim \left(\frac{\phi}{m_{\rm pl}}\right)^{-\beta} \left[1 - \frac{\beta^2}{6} \left(\frac{m_{\rm pl}^2}{\phi^2}\right)\right] \tag{14}$$

How about the Higgs?

from electroweak unification, we know of one scalar ightarrow Higgs field H^0 , $M_H \approx 125$ GeV

same symbol as Hubble, right kind of field \rightarrow is it ϕ ? i.e., what about inflation at the electroweak scale?

not a bad idea—possibly correct!—but nontrivial at best problem not with inflation, but its place in the cosmic dance

Amount of Inflation

during inflation scale factor grows exponentially (in most models); in any case quantify "amount" of inflation as $N = \ln(a_{\text{fin}}/a_{\text{init}})$: number of "e-foldings"

What is needed?

to solve horizon, flatness, monopoles back to GUT scale: $N \gtrsim N_{\rm min} \sim 60$ (PS6)

What is predicted?

Since $H = \dot{a}/a = d \ln a/dt = \dot{N}$, and $dt = d\phi/\dot{\phi}$, we have

$$N = \int_{t_{\text{init}}}^{t_{\text{fin}}} H \, dt = \int_{\phi_{\text{init}}}^{\phi_{\text{fin}}} \frac{H \, d\phi}{\dot{\phi}} \tag{15}$$

slow roll: $\dot{\phi} \simeq -V'/3H$, so

$$N = \int_{\phi_{\text{fin}}}^{\phi_{\text{init}}} \frac{3H^2 d\phi}{V'} = m_{\text{pl}}^2 \int_{\phi_{\text{fin}}}^{\phi_{\text{init}}} \frac{V}{V'} d\phi$$
 (16)

typically expect $V'/V \sim 1/\phi$, which gives

$$N \sim \frac{\Delta \phi^2}{m_{\rm pl}^2} \tag{17}$$

amount of inflation set by:

- ullet nature of potential V
- ullet change in ϕ

note also that need $N\gg 1$ and thus typically expect $\phi_{\rm init}\gtrsim m_{\rm pl}$...but already required by slow roll

Q: what determines inflation end physically? mathematically?

Quantum Fluctuations: From ϕ to Density

at any given scale λ relevant perturbation is the one born during inflation when $\lambda \sim 1/H$

dimensionless perturbation amplitude: fraction of mean density in horizon $\delta_H \equiv \delta \rho / \langle \rho \rangle$

on scale λ , amplitude fixed at horizon exit $\delta\phi\sim H$ (in fact, $H/2\pi$)

ightarrow perturbed universe starts inflating at higher ϕ or undergoes inflation for different duration $\delta t \simeq \delta \phi/\dot{\phi}$ this gives an additional expansion

$$\delta \ln a = \frac{\delta a}{a} = H\delta t = \frac{H^2}{2\pi\dot{\phi}} \tag{18}$$

but inflation exit is set at fixed $\phi_{\rm end}$ and fixed potential value $V_{\rm end} \sim \rho_{\rm end}$

perturbed energy density at end of inflation set by different expansion at inflation exit:

$$\delta_{\mathsf{H}} \equiv \frac{\delta \rho}{\langle \rho \rangle} \tag{19}$$

$$\sim \frac{\delta(a^3 V_{\text{end}})}{\langle a^3 V_{\text{end}} \rangle} \sim \frac{\delta a}{a} = \frac{H^2}{2\pi \dot{\phi}}$$
 (20)

evaluated at any scale λ at horizon crossing

i.e., when $\lambda_{\rm com} \sim 1/aH$

⇒ density perturbations created at all lengthscales!

caution: quick-n-dirty result but gives right answer in particular, fluctuation indep of lengthscale