Astro ⁵⁰⁷ Lecture ³²April 15, ²⁰²⁰

Announcements:

 $\overline{}$

• Preflight 6: Part (a) Due Friday April ¹⁷

 Wikipedia Cosmology! propose ^a wikipedia upgradecan be modest and targeted, or more ambitious FWIW: ^I have ^a animation suggestion

Last time: inflation and the homogeneous universe

- a graceful exit from inflation Q: how
- inflation in the order of cosmic epoch Q : namely? Today: inflation and inhomogeneities, and observational tests
- spoiler: we are all quantum fluctuations!
- overview/concepts in class–big picture(long) technical discussion in Extras

Classical Inflation and Smoothness

expect initial spatial inhomogeneities in $\phi(\vec{x})$ but evolves classically as

$$
\ddot{\phi} - \nabla^2 \phi + 3H\dot{\phi} - V' = 0 \tag{1}
$$

where

$$
\nabla^2 = \sum \frac{\partial^2}{\partial x_{\text{phys}}^2} = \frac{1}{a^2} \sum \frac{\partial^2}{\partial x_{\text{com}}^2}
$$
 (2)

inhomogeneities $\delta \phi(\vec{x})$ measured by nonzero gradients but since $\nabla^2\propto 1/a^2{\rightarrow}$ 0 exponentially, classically: $\delta\phi(\vec{x}){\rightarrow}$ 0 $Tr(1)$ and $Tr(1)$ and $Tr(1)$ and $Tr(1)$ \Rightarrow after inflation ϕ and $\rho=V(\phi)$ exponentially smooth in space

 \mathcal{D}

good news: solved flatness, smoothness problems bad news: we have done too much! too smooth! can't form structures if density perfectly uniform

Quantum Mechanics to the Rescue

but quantum mechanics exists and is mandatoryclassical ϕ field \rightarrow quantized as inflatons
think \vec{F} \vec{B} vs photons think \vec{E}, \vec{B} vs photons

inflaton field must contain quantum fluctuations before, during inflation

uncertainty principle: $\Delta x \Delta p \sim \hbar$ causal region at time t: Hubble length $\Delta x \sim d_H = c/H(t)$ expect momentum and energy fluctuations

$$
c\Delta p \sim \Delta E \sim \hbar H \tag{3}
$$

Q: implications?

 ω

Q: fate of fluctuations born a given scale λ_{init} ?

Q: analogy with Hawking radiation?

^A Quantum Perturbation Factory

quantum mechanics: perturbations in energy $\rightarrow \delta \phi$ \rightarrow different regions start inflation at different $V(\phi)$ \rightarrow different regions start inflation at different $V(\phi)$

www: sketch of quantum perturbations during inflation

quantum fluctuations born at scale λ_{init}

- exponentially stretched until $\lambda > d_H$ "horizon crossing"
• then no longer causally connected
- then no longer causally connected \rightarrow cannot "fluctuate back to zero"
"frozen in" as real density perturb
- "frozen in" as real density perturbations! cosmic structures originate from quantum fluctuations!

Hawking radiation analogy:

uncertainty principle: $\Delta E \Delta t \sim \hbar$, so in timescale

10 D $\Delta t\lesssim\hbar/m_\psi c^2$: particle pairs $\psi\bar\psi$ born and anni black hole: one falls in, other emitted as thermal Hawking rad. $\overline{}$: particle pairs $\psi\bar\psi$ born and annihilate inflation: pair separated by expansion, "frozen" as fluctuation Δ

Implications

If the inflationary model is true density fluctuation "seeds" of cosmic structures are inflatedquantum mechanical fluctuations

Q: how does this limit what we can know about them?

Q: what can we hope to know?

Q: what do we need to calculate?

Inflationary Fluctuations: What we need to know

quantum fluctuations are *random*

- \rightarrow impossible to predict locations, amplitudes of overdensities
A cannot predict location, mass, size of any particular
- \rightarrow cannot predict location, mass, size of any particular
cosmic object: galaxy/cluster/supercluster cosmic object: galaxy/cluster/supercluster ...

but quantum mechanics does allow *statistical predictions*

What we want: *statistical* properties of fluctuations

- \bullet typical magnitude of fluctuations $\delta \phi$
- how $\delta\phi$ depends on lengthscales
- \bullet corresponding fluctuations in ρ_{ϕ}
- • correlations at different length scales 6

Fluctuation Amplitude: Rough Estimate

quantum fluctuation \rightarrow turn to uncertainty principle

$$
\delta E \ \delta t \sim \hbar \sim 1 \tag{4}
$$

recall: energy density is

$$
\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + \frac{1}{2}(\nabla\phi)^2 + V \tag{5}
$$

if perturbation from classical: $\phi(t,\vec{x}) = \phi_{\textsf{cl}}(t) + \delta \phi(t,\vec{x}),$ then for small $\delta\phi\ll\phi_\mathsf{cl}$,

$$
\delta \rho \sim (\nabla \delta \phi)^2 + V'(\phi_{\text{cl}}) \delta \phi \approx (\nabla \delta \phi)^2 \tag{6}
$$

since slow roll \rightarrow V' small (flat potential)

 \vee Q: what is characteristic volume for fluctuation? Q : what is characteristic timescale δt ?

 H^{-1} is only lengthscale in problem so $\nabla \delta \phi \sim \delta \phi / H^{-1} \Rightarrow \delta \rho \sim H^2 (\delta \phi)^2$ so in Hubble volume $V_H = d^3_2 = R^3$ so in Hubble volume $V_H = d_H^3 = H^{-3}$, energy fluctuation is

$$
\delta E = \delta \rho \ V_H = \frac{(\delta \phi)^2}{H} \tag{7}
$$

characteristic timescale is $\delta t \sim 1/H$, so

$$
\delta E \ \delta t \sim \frac{(\delta \phi)^2}{H^2} \sim \hbar \tag{8}
$$

and typical (root-mean-square) inflaton fluctuation is

$$
\boxed{\delta\phi \sim \hbar H} \tag{9}
$$

had to be! H is the only other
dimensionally serrest scale in t dimensionally correct scale in the problem!

Note: $H \sim const$ during inflation
all fluctuations created with \sim 6 all fluctuations created with \sim same amplitude ∞

Intermission: Questions?

What Just Happened?

To summarize:

10

- \bullet *classically*, inflaton field ϕ_{cl} quickly inflates away any of its initial perturbations
- \bullet but quantum fluctuations $\delta \phi$ unavoidable created and persist throughout inflation
- \bullet in any region, amplitude $\delta\phi(\vec{x})$ random but *typical* value $\delta \phi \sim H$

Q: what do the presence of inflaton fluctuations mean for inflationary dynamics in different regions?

Q: what consequences/signatures of fluctuations might remain after inflation?

Fluctuation Evolution and the Cosmic Horizon

in presence of fluctuations $\delta\phi$ and $\delta\rho_\phi$ can view inflationary universe as ensemble of "sub-universes"evolving independently–same slow roll, but with different ϕ , ρ_{ϕ} at a fixed t classical discussion → ensemble average
now want behavier typical deviation frou now want behavior typical deviation from mean

particle horizon $\sim H^{-1}$ critical

- already saw: sets scale for fluctuation
- also "shuts off" fluctuation evolution

consider perturbation of lengthscale λ

- \bullet leaves horizon when $H\sim1/\lambda$
- \bullet then can't evolve further: keeps same $\delta\rho/\left\langle\rho\right\rangle$ 12
	- until after inflation, when re-enters horizon

What Just Happened? ...Part Deux

the *classical* behavior of a slow-rolling ϕ lead to homogeneity, isotropyregardless of initial conditions \Rightarrow fixes horizon, flatness, monopole problem

the *quantum* fluctuations in φ lead to density perturbations on all lengthscales including scales $\gg d_{\mathsf{hor}}$ today these perturbations form the "seeds" for cosmic structures!

quantum mechanics & uncertainty principleessential for the existence of cosmic structure

 $\ddot{\omega}$ "The Universe is the ultimate free lunch."

– Alan Guth

The Cosmic Harmonic Oscillator

in Director's Cut notes:

- inflaton field begins in vacuum state
- quantum fluctuations evolve as ^a simple harmonic oscillator
- \rightarrow dominated by vacuum $=$ ground state

Q: wavefunction of ground state simple harmonic oscillator ? Q : probability of finding particle at x ?

Q: implications for inflaton fluctuations?

Inflation SpectrumStatistical Properties

 \star Recall: inflaton quantum modes \leftrightarrow ↔ harmonic oscillator
state lkk = (a)ll2 = 0=x dominated by vacuum ↔ ground state $\|\psi_{\text{sho}}(x)\|^2 \sim e^{-x^2/2\Delta x^2}$ $\phi_k \leftrightarrow x$ fluctuations are statistically Gaussian
i.e. perturbations of all sizes essure but i.e., perturbations of all sizes occur, but probability of finding perturbation of size $\delta(R)$ on scale R is distributed as a Gaussian

 \star inflaton perturbations \rightarrow reheating
set interesting matter perturbations → radiation, matter perturbations
same lovels in both: "adiabatic" same levels in both: "adiabatic"

5 ★★★★★ All of these are bona fide predictions of inflation and are testable! Q: how?

Inflation SpectrumSlightly Tilted Scale Invariance

recall: perturbation leaving horizon have very similar amplitudeduring inflation \rightarrow nearly same for all lengthscales \leftrightarrow k
porturbation rms amplitude perturbation rms amplitude

$$
\delta_{\inf}^2(k) \propto k^{-6\epsilon + 2\eta} \tag{10}
$$

- **★** successful inflation \Leftrightarrow slow roll \Leftrightarrow $\epsilon, \eta \ll 1$ demands
necturbation spectrum nearly independent of s perturbation spectrum nearly independent of scalenearly "self-similar," without characteristic scale"Peebles-Harrison-Zel'dovich" spectrum
- 16

★ successful inflation must end $\rightarrow \epsilon, \eta \neq 0$
demands small departures from scale in: demands small departures from scale-invariance"tilted spectrum"

Inflation Creates Primordial Gravity Waves

Inflaton field fluctuations are inhomogeneous perturbations to cosmic mass-energy density field

can excite **gravitational radiation**

when fluctuations have nonzero quadrupole, *i.e.*, **tensor modes**

- <mark>cosmic gravitational wave background</mark>
- wavelengths span all scales up to Mpc
- wave amplitude directly related to density perturbations
- waves propagate unimpeded through Universe after inflationgravity wave incident through page

effect on ring of test particles

 $\overline{1}$

Q: how to test?

Searching for Primordial Gravitational Waves

- waves drive quadrupole motionintroduce CMB polarization we'll see: gravitational wave excite B modes–curl features
- In principle: direct detection possible via spacetime effects! but cosmo signal below astro events (BH, NS) not accessible to aLIGO/VIRGO, likely not LISA. www: gravitational wave signal comparison

Testing Inflation: Status to Date

test inflation by measuring density fluctuations and their statistical properties on various scales at various epochs

CMB at large angles (large scales, decoupling)

- nearly scale invariant! woo hoo! (COBE 93)
- Gaussian distribution (COBE, WMAP, Planck) www: $3-$ yr WMAP T [distribution](http://lambda.gsfc.nasa.gov/product/map/current/pub_papers/threeyear/parameters/images/Large/ds_f22_PPT_L.png)
- WMAP, Planck: evidence for tilt! favors large scales ("red")! Planck (2013): $\alpha=-0.035\pm0.004$ nonzero at $\sim9\sigma!$

These did not have to be true!

 5 Not guaranteed to be due to inflation but very encouraging nonetheless

Inflation Scorecard

Summary:

Inflation designed to solve horizon, flatness, smoothness does this, via accelerated expansion driven by inflaton

But unexpected bonus: structureinflaton field has quantum fluctuations imprinted before horizon crossinglater return as density fluctuations \rightarrow inflationary seeds of cosmic structure?!

Thus far: observed cosmic density fields have spectrum, statistics as predicted by inflation

20

The frontier: CMB polarization probes of cosmic gravity waves

Director's Cut Extras

Fluctuation Spectrum: In More Detail

Starting point of more rigorous treatment in equation of motion

$$
\ddot{\phi} + 3H\dot{\phi} - \nabla^2\phi + V'(\phi) = 0 \tag{11}
$$

write field as sum

$$
\phi = \phi_{\text{classical}}(t) + \delta\phi(t, \vec{x}) \tag{12}
$$

 \bullet classical amplitude $\phi_{\textsf{cl}}(t)$

spatially homogeneous: smooth, classical, background field evolves according to classical equation of motion \rightarrow this has been our focus thus far; now add
quantum fluctuations $\delta \phi(t, \vec{\phi})$

- quantum fluctuations $\delta\phi(t,\vec{x})$
- these can vary across space and with time $\frac{2}{2}$

decompose spatial part of fluctuations into plane waves

$$
\delta\phi(t,\vec{x}) = \sum_{\vec{k}} \delta\phi_{\vec{k}}(t) e^{i\vec{k}\cdot\vec{x}} \text{com}
$$
 (13)

convenient to label Fourier modes by $\overline{\textit{comoving}}$ wavelength $\lambda \equiv \lambda_{\text{com}},$ wavenumber $k \equiv k_{\text{com}} = 2\pi/\lambda_{\text{com}},$ but *physical* wavelength $\lambda_{\text{phys}} = a\lambda_{\text{com}}$, wavenumber $k_{\text{phys}} = k/a$

as long as quantum perturbations $\delta\phi$ small (linear evolution) each wavelength–i.e., scale–evolves independently \rightarrow main reason to use Fourier modes

classically $\delta \phi = (\delta \phi)^2 = 0$ by definition!

 ω Q: what is physical significance of quantum excitations in ϕ ?

Slow Roll and Scale Dependence

Last time, and in Extras today: dimensionless fluctuation amplitude (variance) at comoving wavenumber $k=k_\mathsf{com}$

$$
\Delta^2(k) \sim \left(\frac{\delta \rho}{\rho}\right)_k \sim \left(\frac{H^2}{m_{\rm pl}^2}\right) \left(\frac{H}{\dot{\phi}}\right)_{aH=k}^2 \sim \left(\frac{V}{\epsilon m_{\rm pl}^4}\right)_{aH=k} \tag{14}
$$

evaluated at "horizon crossing" $aH=k$

 Q : how does aH change during inflation? Q : for slow roll, how does $\Delta^2(k)$ change with scale?

The Quantum Inflaton Field

quantum mechanically:

- true ϕ has fluctuations around background value
- each \vec{k} mode \leftrightarrow independent quantum states (oscillators)
• mode fluctuations quantized \rightarrow quanta are inflaton partic
- mode fluctuations quantized \rightarrow quanta are inflaton particles analogous to photons as EM quanta
- occupation numbers: $n_{\vec{k}} > 0 \rightarrow$ real particles present
• if $n_{\vec{k}} > 0 \rightarrow$ no particles (vacuum /around
- if $n_{\vec{k}} = 0 \rightarrow \langle \delta \phi \rangle = 0$ no particles (vacuum/ground state) but zero-point fluctuations still present $\left\langle \delta\phi^{2}\right\rangle$ $\ket{^{2}} \neq 0$

Fluctuation Lagrangian

expand each \vec{k} mode around classical value

$$
\mathcal{L}_{\vec{k}} = \frac{1}{2} \dot{\delta \phi}_{\vec{k}}^2 - \frac{1}{2} \frac{k^2}{a^2} \delta \phi_{\vec{k}}^2 - \frac{1}{2} V''(\phi_{\text{cl}}) \delta \phi_{\vec{k}}^2 - V(\phi_{\text{cl}}) \qquad (15)
$$
\n
$$
\approx \frac{1}{2} \dot{\delta \phi}_{\vec{k}}^2 - \frac{1}{2} \frac{k^2}{a^2} \delta \phi_{\vec{k}}^2 \qquad (16)
$$

where slow roll \rightarrow potential terms small
 \rightarrow a massless simple harmonic oscill:

 \rightarrow a massless simple harmonic oscillator

 $\delta\phi$ vacuum state: zero point fluctuations formally same ^a quantum harmonic oscillator! for each k mode, fluctuation amplitudes random Ω hahility distribution is like $n- \Omega$ oscillat but probability distribution is like $n = 0$ oscillator

$$
P(\delta \phi_{\vec{k}}) \propto e^{-\delta \phi_{\vec{k}}^2/2\sigma_{\vec{k}}^2}
$$
 (17)

26

where variance σ2 \vec{k} = $\Big\langle\delta\phi$ 2 \vec{k} $\Bigg\rangle$ \rightarrow vacuum fluctuation amplitudes have *gaussian* distribution

Total ϕ energy density is $\rho_{\phi} = \rho_{\text{background}} + \rho_{\text{zero point}} + \rho_{\text{particles}}$ pre-inflation: could have $\rho_{\mathsf{particles}} \neq 0$ in fact: if thermalized, $\rho_{\mathsf{particles}} \propto T^{\mathsf{4}}$ (radiation) \rightarrow inflation only begins when $\rho_{\text{background}} \gg \rho_{\text{particles}}$
Or what bannens to inflatons after inflation begins Q: what happens to inflatons after inflation begins?

after inflation begins, universe rapidly expanded, cooledinflatons diluted away

 \rightarrow inflation field driven to **vacuum (ground) state**

Since ϕ in quantum vacuum state: fluctuations are zero-point

- \rightarrow gaussian distribution of amplitudes in each k mode
National prodiction of clow roll inflation
- \rightarrow strong prediction of slow-roll inflation

now want to solve for size of rms σ_k at each mode

classically, perturbations have equation of motion

$$
\frac{d^2}{dt^2}\delta\phi + 3H\frac{d}{dt}\delta\phi + \frac{k^2}{a^2}\delta\phi + V''\delta\phi = 0
$$
 (18)

$$
\frac{d^2}{dt^2}\delta\phi + 3H\frac{d}{dt}\delta\phi + \frac{k^2}{a^2}\delta\phi \approx 0
$$
\n(19)

28

(in slow roll: $V^{\prime\prime}$ term negligible)

Sketch of Quantum Treatment

Promote $\delta \phi \rightarrow$ plane wave expansion: $\widehat{\delta \phi}$ \rightarrow operator $\widehat{\delta \phi}$
expansion: $\widehat{\delta \phi}$ - $= \Sigma_{\vec k}$ introduce annihilation, creation operators $\widehat{a}_{\vec{k}}$, $\widehat{a}_{-}^{\dagger}$ \vec{k} \vec{k} $^{\mathsf{I}}{-}\vec{k},$ then

$$
\widehat{\delta\phi}_{\vec{k}} = w_k(t)\,\widehat{a}_{\vec{k}} + w_k^*(t)\,\widehat{a}_{-\vec{k}}^\dagger \tag{20}
$$

where $w_k(t)$ is a solution of field equation

$$
\ddot{w}_k + 3H\dot{w}_k + \left(\frac{k}{a}\right)^2 w_k = 0 \tag{21}
$$

Compare limits:

29

• $k/a \gg H \rightarrow k \gg aH \rightarrow \lambda \ll 2\pi d_{H,\text{com}}$
O: physical interpretation of limit? ,,,,,,,,, Q: physical interpretation of limit? $w_{\bm{k}}$ evolves as harmonic oscillator $\,$ k_{k} evolves as harmonic oscillator (free massless field)

\n- $$
k/a \ll H \rightarrow k \ll aH \rightarrow \lambda \gg 2\pi d_{H,\text{com}}
$$
\n- Q : physical interpretation of limit?
\n- $\dot{w}_k \propto a^{-3} \rightarrow 0 \rightarrow w_k$ value "frozen"
\n

Inflation Perturbations: Evolution and Horizons

 $\mathsf{sub-horizon}$ scales $\lambda \ll 2\pi d_{H,\mathsf{com}}$ inflaton fluctuations $\delta\phi$ are causally connected evolve like harmonic oscillator \rightarrow rms amplitude $\left<|w_k\right>$ 2 $\ket{\text{2}}$ constant

but cosmic acceleration during inflation $\rightarrow d_{H,\text{com}}$ shrinks
cince $d = d e^{H \cdot H} = d \dot{e}^{-1} d \dot{d} + d \dot{d} = d \dot{d} + d \dot{d}$ since $\dot{d}_{H,\mathsf{com}} = d(aH)^{-1}/dt = d(\dot{a}^{-1})/dt$ $= d(aH)^{-1}/dt = d(\dot{a}^{-1})$ $^{1})/dt=$ $d_{H,\mathsf{com}}$ shrinkage: initially sub-horizon scales \rightarrow super-horizon \ddot{a}/\dot{a}^2 2 $<$ 0 during inf

super-horizon scales $\lambda\gg 2\pi d_{H,\mathsf{com}}$

 fluctuations out of causal contact amplitude "frozen in" until post-inflation $d_{H,\mathsf{com}}$ regrows

Inflation Perturbations: Spectrum of Amplitudes

examine fluctuations from vacuum

 \rightarrow find expected amplitudes w_k

since fluctuations have quantum origin
servest aredist definite values for me

- cannot predict definite values for mode amplitudes, phases
- but *can* predict statistical properties

for *different* modes \vec{k} and \vec{k}^{\prime} , Q: what do we expect?

for *different* modes \vec{k} and $\vec{k}^{\prime},$ expectation is

$$
\langle \widehat{\delta \phi}_{\vec{k}} \widehat{\delta \phi}_{\vec{k}'} \rangle = w_k w_{k'} \langle \widehat{a}_{\vec{k}} \widehat{a}_{\vec{k}'}^{\dagger} \rangle + \text{c.c.} = 0 \tag{22}
$$

because $\left\langle \hat{a}_{\vec{k}}\hat{a}_{\vec{k}'}^{\dagger}\right\rangle =\left\langle \hat{a}_{\vec{k}}\right\rangle \left\langle \hat{a}_{\vec{k}'}^{\dagger}\right\rangle =0$
 \rightarrow modes are statistically indepe ⇒ modes are statistically independent \Rightarrow modes are statistically independent
note: true even if $|\vec{k}| = |\vec{k}'| = k$ but \vec{k} . note: true even if $|\vec{k}|$ $|\vec{k}| = |\vec{k}|$ $k'| =$ $k = k$ but $\vec{k} \cdot \vec{k'} = 0$
 $k = k \hat{i} \hat{k'} - k \hat{j} \hat{k}$ i.e., different directions $\vec{k} = k\widehat{x}, \vec{k}' = k\widehat{y}$ \Rightarrow phase $e^{i\vec{k}}$ $\sqrt{k \cdot \vec{x}}$ is random

for a single mode k , vacuum expectation is

$$
\langle \widehat{\delta \phi}_{\vec{k}}^2 \rangle = |w_k|^2 \langle \widehat{a} \widehat{a}^{\dagger} + \widehat{a}^{\dagger} \widehat{a} \rangle = |w_k|^2 \neq 0 \qquad (23)
$$

$$
= \frac{H^2}{2L^3 k^3} \qquad (24)
$$

where last expression

32

- from full quantum calculation, in box of size L
- \bullet to be evaluated at horizon crossing: $k_{\sf phys} = H \rightarrow k = aH$

each in phase space volume

$$
d^3x d^3k = \frac{1}{(2\pi L)^3} 4\pi k^2 dk = \frac{4\pi k^3}{(2\pi L)^3} \frac{dk}{k}
$$
 (25)

then fluctuation amplitude is

$$
P_{\phi}(k)\frac{dk}{k} \equiv \frac{4\pi k^3}{(2\pi L)^3} |\delta\phi_k|^2 \frac{dk}{k} = \left(\frac{H}{2\pi}\right)^2 \frac{dk}{k}
$$
(26)

and so the phase space fluctuation density in ϕ is

$$
P_{\phi}(k) = \left(\frac{H}{2\pi}\right)_{k=aH}^{2}
$$
 (27)

as before, but now

- \bullet explicitly seen independence of k
- know when to evaluate: at horizon crossing $k = aH$

Fluctuation Evolution and Spectrum

consider some fixed (comoving) scale $\lambda=2\pi/k$ key idea: causal physics acts until $\lambda>d_{\mathsf{H},\mathsf{com}}\mathpunct{:}}$ "horizon crossing" \rightarrow quantum fluctuations laid down while inside $d_{H,com}$
"freezen in" once outside of d "frozen in" once outside of $d_{\mathsf{H},\mathsf{com}}$

from last time: quantum analysis gives fluctuation variance

$$
\left\langle (\delta \phi_k)^2 \right\rangle = \left(\frac{H}{2\pi}\right)_{k=aH}^2
$$
 (28)

to be evaluated at horizon crossing: $k = 1/d_{\mathsf{H},\mathsf{com}} = aH$

Fluctuation Evolution and Spectrum

consider some fixed (comoving) scale $\lambda=2\pi/k$ key idea: causal physics acts until $\lambda>d_{\mathsf{H},\mathsf{com}}\mathpunct{:}}$ "horizon crossing" \rightarrow quantum fluctuations laid down while inside $d_{H,com}$
"freezen in" once outside of d "frozen in" once outside of $d_{\mathsf{H},\mathsf{com}}$

from last time: quantum analysis gives fluctuation variance

$$
\left\langle (\delta \phi_k)^2 \right\rangle = \left(\frac{H}{2\pi}\right)_{k=aH}^2
$$
 (29)

to be evaluated at horizon crossing: $k = 1/d_{\mathsf{H},\mathsf{com}} = aH$

Inflationary Density Perturbations: Spectrum

Recall: density fluctuations \rightarrow start inflating earlier (later)
A more (loss) expansion than average \rightarrow more (less) expansion than average
 \rightarrow more (less) expansion than average extra scale factor boost $\delta a/a = H \delta t = H \delta \phi / \dot{\phi} \rightarrow$ larger volume \rightarrow density perturbations have mean square

$$
\delta_{\text{inf}}^2(k) \equiv \left(\frac{\delta \rho}{\rho}\right)_k^2
$$
\n
$$
\sim \left(\frac{\delta a}{a}\right)^2 = \left(\frac{H}{\dot{\phi}}\right)^2 (\delta \phi)^2 = \left(\frac{H}{\dot{\phi}}\right)^2 \left(\frac{H}{2\pi}\right)^2 \quad (31)
$$

evaluated at $aH=k$

slow roll: H , $\dot{\phi}$ slowly varying → expect fluctuation amplitude $\sim H^4$ $\alpha \rightarrow e$ expect fluctuation amplitude $\sim H^4/\dot{\phi}^2 \sim const$ over wide range of k

In particular: slow roll $\dot{\phi} = -3V'/H$, and $H^2=V/3m_{\rm pl}^2$, which gives

$$
\delta_{\inf}^2(k) = \frac{1}{12\pi^2 m_{\text{pl}}^6} \left(\frac{V^3}{V'^2}\right) = \frac{1}{24\pi^2 m_{\text{pl}}^4} \left(\frac{V}{\epsilon}\right) \tag{32}
$$

where $\epsilon = m_{\text{pl}} (V'/V)^2 / 2$

anticipating \sim power law behavior, define $\delta^2_{\mathsf{inf}}(k) \sim k^{\alpha(k)}$ then scale dependence is

$$
\alpha(k) = \frac{d \ln \delta_{\inf}^2(k)}{d \ln k} \tag{33}
$$

evaluated when comoving scale $k = aH$ crosses horizon
i.e. this relates l to homogeneous subsetsives

 $\frac{\omega}{\gamma}$ i.e., this relates k to homogeneous a, ϕ values

Underlying physical question:

how do cosmic properties–e.g., $H, \rho \approx V$ –change while the universe inflates as it slowly rolls?

- if no change $\rightarrow \dot{\phi} = 0 \rightarrow$ same V, H always $\rightarrow \epsilon = 0$
all scales see same U when leaving berizen $k = \epsilon H$ all scales see same U when leaving horizon $k = aH$ \rightarrow all scales have same quantum fluctuations
but slow roll \rightarrow no roll
- \bullet but slow roll \neq no roll! $\dot{\phi} \neq 0 \rightarrow U$ properties do change

recall: δ_{1z}^2 $\frac{2}{\mathsf{inf}}(k) \propto V/\epsilon$ and as slowly roll \rightarrow V decreasing, ϵ increasing and horizon scale $d_{H,\mathsf{com}}$ also decreases Q: so which scales get larger perturbations? smaller?

 $\frac{\omega}{3}$

because V decreasing, ϵ increasing

 $\delta^2_{\mathsf{inf}}(k) \propto V/\epsilon$ decreases with time

 \rightarrow smaller perturbations later in slow roll
ase horizon scale due adocreases

since horizon scale $d_{H,\mathsf{com}}$ decreases

 $\begin{aligned} \text{later times} &\leftrightarrow \text{smaller scales} \ \text{slow} &\leq 1 \quad \text{is} &\leq 2$

- \Rightarrow slow roll \rightarrow smaller perturbations on smaller scales
 \rightarrow perturbation spectrum tilted to large scales
- \Rightarrow perturbation spectrum *tilted* to large scales \rightarrow small k

in slow roll, $k = aH$ change mostly due to a:

$$
d \ln k \approx d \ln a = \frac{da}{a} = H \ dt \tag{34}
$$

recast in terms of inflaton potential

$$
\mathcal{L} = \frac{H d\phi}{\dot{\phi}} = -3\frac{H^2}{V'} d\phi \tag{35}
$$

and so

$$
\frac{d}{d\ln k} = -m_{\rm pl}^2 \frac{V'}{V} \frac{d}{d\phi} \tag{36}
$$

Using this, can show:

$$
\alpha(k) = \frac{d \ln \delta_{\inf}^2(k)}{d \ln k} = -6\epsilon + 2\eta \tag{37}
$$

i.e., perturbation spectrum $\delta_{\sf inf}^2(k) \propto k^{-6\epsilon + 2\eta}$

Major result!

Q: why? what does this mean physically? for cosmology? for inflation?

40

Gravity Waves: Tensor Perturbations

 \star so far: only looked at density (scalar) perturbations but also tensor perturbations \rightarrow gravity waves!

what's really going on: *cosmic metric* is perturbed $spatial$ part (in a particular coordinate system $=$ gauge):

• unperturbed $=$ FLRW

$$
d\ell^2|_{\text{FLRW}} = a(t)^2 \ (dx^2 + dy^2 + dz^2) = a(t)^2 \ \delta_{ij} \ dx_i \ dx_j \tag{38}
$$

with perturbations

$$
d\ell^2|_{\text{pert}} = a(t)^2 e^{2\zeta} \gamma_{ij} dx_i dx_j \tag{39}
$$

with *curvature perturbation* the *scalar* function $\zeta(\vec{x},t)$ Q: what it its physical effect? \pm

perturbed metric

$$
d\ell^2|_{\text{pert}} = a(t)^2 e^{2\zeta} \gamma_{ij} dx_i dx_j \qquad (40)
$$

curvature perturbation scalar function $\zeta(\vec{x},t)$ changes local volume

 \rightarrow locally: isotropic stretching

tensor perturbation is, to lowest order

$$
\gamma_{ij} \approx \begin{pmatrix} 1+h_+ & h_{\times} & 0 \\ -h_{\times} & 1-h_+ & 0 \\ 0 & 0 & 1 \end{pmatrix} = \delta_{ij} + \begin{pmatrix} h_+ & h_{\times} & 0 \\ -h_{\times} & -h_+ & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$
(41)

with *two independent modes* of amplitude h_+, h_\times Q: physical effect of these modes?

 42

tensor perturbation is, to lowest order

$$
\gamma_{ij} \approx \delta_{ij} + \begin{pmatrix} h_+ & h_\times & 0 \\ -h_\times & -h_+ & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$
 (42)

looks like rotation: roughly speaking preserves volumebut changes angles

moreover: h satisfies massless wave equation! h \Leftrightarrow gravitational radiation
offect on a ring of test partic effect on ^a ring of test particles:

Metric Fluctuations

tensor perturbations directly are metric perturbationwhat about the inflaton perturbations?

curvature perturbation in an invariant (coordinate independent):

$$
\zeta = \Phi + H\delta t = \Phi + H\frac{\delta\phi}{\dot{\phi}}\tag{43}
$$

 $\Phi(\vec{x}, t)$ is local gravitational potential perturbation

inflation fluctuations ϕ also are metric perturbations but amplitude differs from gravity wave amplitudeby factor $H/\dot{\phi}$

and thus scalar perturbation variance differs by factor

 $r =$ Δ^2_h Δ_Φ^2 $rac{\frac{2}{h}}{\frac{2}{\phi}} \sim \left(\frac{\dot{\phi}}{H}\right)^2 \sim \epsilon$ (44)

44

Inflationary Tensor Perturbations

variance as ^a function of scale (wavenumber)

$$
\Delta_h^2(k) \sim \left(\frac{V}{m_{\rm pl}^4}\right)_{aH=k} \tag{45}
$$

- evaluated at "horizon crossing" $aH=k$
- • directly probes inflation potential $V(\phi)$!
- • compare to density ("scalar") perturbations: tensor-to-scalar ratio

$$
r = \frac{\Delta_h^2}{\Delta_\Phi^2} = 16\epsilon \tag{46}
$$

• for $\epsilon \ll 1$, expect $r \ll 1$: scalar dominates