
Astro 507

Lecture 32

April 15, 2020

Announcements:

• Preflight 6: Part (a) Due Friday April 17

Wikipedia Cosmology! propose a wikipedia upgrade

can be modest and targeted, or more ambitious

FWIW: I have a animation suggestion

Last time: inflation and the homogeneous universe

• a graceful exit from inflation Q: how

• inflation in the order of cosmic epoch Q: namely?

Today: inflation and inhomogeneities, and observational tests

• spoiler: we are all quantum fluctuations!

• overview/concepts in class–big picture

(long) technical discussion in Extras
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Classical Inflation and Smoothness

expect initial spatial inhomogeneities in φ(~x)

but evolves classically as

φ̈−∇2φ+3Hφ̇− V ′ = 0 (1)

where

∇2 =
∑ ∂2

∂x2phys
=

1

a2

∑ ∂2

∂x2com
(2)

inhomogeneities δφ(~x) measured by nonzero gradients

but since ∇2 ∝ 1/a2→0 exponentially, classically: δφ(~x)→ 0

⇒ after inflation φ and ρ = V (φ) exponentially smooth in space

good news: solved flatness, smoothness problems

bad news: we have done too much! too smooth!

can’t form structures if density perfectly uniform
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Quantum Mechanics to the Rescue

but quantum mechanics exists and is mandatory

classical φ field → quantized as inflatons

think ~E, ~B vs photons

inflaton field must contain quantum fluctuations

before, during inflation

uncertainty principle: ∆x∆p ∼ h̄

causal region at time t: Hubble length ∆x ∼ dH = c/H(t)

expect momentum and energy fluctuations

c∆p ∼ ∆E ∼ h̄H (3)

Q: implications?

Q: fate of fluctuations born a given scale λinit?

Q: analogy with Hawking radiation?
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A Quantum Perturbation Factory

quantum mechanics: perturbations in energy → δφ
→ different regions start inflation at different V (φ)

www: sketch of quantum perturbations during inflation

quantum fluctuations born at scale λinit
• exponentially stretched until λ > dH “horizon crossing”

• then no longer causally connected

→ cannot “fluctuate back to zero”

• “frozen in” as real density perturbations!

cosmic structures originate from quantum fluctuations!

Hawking radiation analogy:

uncertainty principle: ∆E∆t ∼ h̄, so in timescale

∆t <∼ h̄/mψc
2: particle pairs ψψ̄ born and annihilate

black hole: one falls in, other emitted as thermal Hawking rad.

inflation: pair separated by expansion, “frozen” as fluctuation
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Implications

If the inflationary model is true

density fluctuation “seeds” of cosmic structures are inflated

quantum mechanical fluctuations

Q: how does this limit what we can know about them?

Q: what can we hope to know?

Q: what do we need to calculate?
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Inflationary Fluctuations: What we need to know

quantum fluctuations are random

→ impossible to predict locations, amplitudes of overdensities

→ cannot predict location, mass, size of any particular

cosmic object: galaxy/cluster/supercluster ...

but quantum mechanics does allow statistical predictions

What we want: statistical properties of fluctuations

• typical magnitude of fluctuations δφ

• how δφ depends on lengthscales

• corresponding fluctuations in ρφ
• correlations at different length scales6



Fluctuation Amplitude: Rough Estimate

quantum fluctuation → turn to uncertainty principle

δE δt ∼ h̄ ∼ 1 (4)

recall: energy density is

ρφ =
1

2
φ̇2 +

1

2
(∇φ)2 + V (5)

if perturbation from classical: φ(t, ~x) = φcl(t) + δφ(t, ~x),

then for small δφ≪ φcl,

δρ ∼ (∇δφ)2 + V ′(φcl)δφ ≈ (∇δφ)2 (6)

since slow roll → V ′ small (flat potential)

Q: what is characteristic volume for fluctuation?

Q: what is characteristic timescale δt?
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H−1 is only lengthscale in problem

so ∇δφ ∼ δφ/H−1 ⇒ δρ ∼ H2(δφ)2

so in Hubble volume VH = d3H = H−3, energy fluctuation is

δE = δρ VH =
(δφ)2

H
(7)

characteristic timescale is δt ∼ 1/H, so

δE δt ∼
(δφ)2

H2
∼ h̄ (8)

and typical (root-mean-square) inflaton fluctuation is

δφ ∼ h̄ H (9)

had to be! H is the only other

dimensionally correct scale in the problem!

Note: H ∼ const during inflation

all fluctuations created with ∼ same amplitude
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Intermission: Questions?
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What Just Happened?

To summarize:

• classically, inflaton field φcl quickly

inflates away any of its initial perturbations

• but quantum fluctuations δφ unavoidable

created and persist throughout inflation

• in any region, amplitude δφ(~x) random

but typical value δφ ∼ H

Q: what do the presence of inflaton fluctuations

mean for inflationary dynamics in different regions?

Q: what consequences/signatures of fluctuations

might remain after inflation?
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Fluctuation Evolution and the Cosmic Horizon

in presence of fluctuations δφ and δρφ
can view inflationary universe as ensemble of “sub-universes”

evolving independently–same slow roll, but

with different φ, ρφ at a fixed t

classical discussion → ensemble average

now want behavior typical deviation from mean

particle horizon ∼ H−1 critical

• already saw: sets scale for fluctuation

• also “shuts off” fluctuation evolution

consider perturbation of lengthscale λ

• leaves horizon when H ∼ 1/λ

• then can’t evolve further: keeps same δρ/ 〈ρ〉

• until after inflation, when re-enters horizon
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What Just Happened? ...Part Deux

the classical behavior of a slow-rolling φ

lead to homogeneity, isotropy

regardless of initial conditions

⇒ fixes horizon, flatness, monopole problem

the quantum fluctuations in φ

lead to density perturbations on all lengthscales

including scales ≫ dhor today

these perturbations form the “seeds” for cosmic structures!

quantum mechanics & uncertainty principle

essential for the existence of cosmic structure

“The Universe is the ultimate free lunch.”

– Alan Guth
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The Cosmic Harmonic Oscillator

in Director’s Cut notes:

• inflaton field begins in vacuum state

• quantum fluctuations evolve as a simple harmonic oscillator

→ dominated by vacuum=ground state

Q: wavefunction of ground state simple harmonic oscillator?

Q: probability of finding particle at x?

Q: implications for inflaton fluctuations?
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Inflation Spectrum
Statistical Properties

⋆ Recall: inflaton quantum modes ↔ harmonic oscillator

dominated by vacuum ↔ ground state ‖ψsho(x)‖
2 ∼ e−x

2/2∆x2

φk ↔ x fluctuations are statistically Gaussian

i.e., perturbations of all sizes occur, but

probability of finding perturbation of size δ(R)

on scale R is distributed as a Gaussian

⋆ inflaton perturbations → reheating

→ radiation, matter perturbations

same levels in both: “adiabatic”

⋆⋆⋆⋆⋆ All of these are bona fide predictions of inflation

and are testable! Q: how?
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Inflation Spectrum
Slightly Tilted Scale Invariance

recall: perturbation leaving horizon have very similar amplitude

during inflation → nearly same for all lengthscales ↔ k

perturbation rms amplitude

δ2inf(k) ∝ k−6ǫ+2η (10)

⋆ successful inflation ⇔ slow roll ⇔ ǫ, η ≪ 1 demands

perturbation spectrum nearly independent of scale

nearly “self-similar,” without characteristic scale

“Peebles-Harrison-Zel’dovich” spectrum

⋆ successful inflation must end → ǫ, η 6= 0

demands small departures from scale-invariance

“tilted spectrum”
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Inflation Creates Primordial Gravity Waves

Inflaton field fluctuations are inhomogeneous perturbations

to cosmic mass-energy density field

can excite gravitational radiation

when fluctuations have nonzero quadrupole, i.e., tensor modes

• cosmic gravitational wave background

• wavelengths span all scales up to Mpc

• wave amplitude directly related to density perturbations

• waves propagate unimpeded through Universe after inflation

effect on ring of test particles

..

h

h

+

x

gravity wave incident through page

time
Q: how to test?
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Searching for Primordial Gravitational Waves

• waves drive quadrupole motion

introduce CMB polarization

we’ll see: gravitational wave excite B modes–curl features

• In principle: direct detection possible via spacetime effects!

but cosmo signal below astro events (BH, NS)

not accessible to aLIGO/VIRGO, likely not LISA.

www: gravitational wave signal comparison
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Testing Inflation: Status to Date

test inflation by measuring density fluctuations

and their statistical properties

on various scales at various epochs

CMB at large angles (large scales, decoupling)

• nearly scale invariant! woo hoo! (COBE 93)

• Gaussian distribution (COBE, WMAP, Planck)

www: 3-yr WMAP T distribution

• WMAP, Planck: evidence for tilt! favors large scales (“red”)!

Planck (2013): α = −0.035± 0.004 nonzero at ∼ 9σ!

These did not have to be true!

Not guaranteed to be due to inflation

but very encouraging nonetheless

1
9

http://lambda.gsfc.nasa.gov/product/map/current/pub_papers/threeyear/parameters/images/Large/ds_f22_PPT_L.png


Inflation Scorecard

Summary:

Inflation designed to solve horizon, flatness, smoothness

does this, via accelerated expansion driven by inflaton

But unexpected bonus: structure

inflaton field has quantum fluctuations

imprinted before horizon crossing

later return as density fluctuations

→ inflationary seeds of cosmic structure?!

Thus far: observed cosmic density fields

have spectrum, statistics as predicted by inflation

The frontier: CMB polarization probes of cosmic gravity waves
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Director’s Cut Extras
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Fluctuation Spectrum: In More Detail

Starting point of more rigorous treatment

in equation of motion

φ̈+3Hφ̇−∇2φ+ V ′(φ) = 0 (11)

write field as sum

φ = φclassical(t) + δφ(t, ~x) (12)

• classical amplitude φcl(t)

spatially homogeneous: smooth, classical, background field

evolves according to classical equation of motion

→ this has been our focus thus far; now add

• quantum fluctuations δφ(t, ~x)

these can vary across space and with time

2
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decompose spatial part of fluctuations into plane waves

δφ(t, ~x) =
∑

~k

δφ~k(t)e
i~k·~xcom (13)

convenient to label Fourier modes by

comoving wavelength λ ≡ λcom, wavenumber k ≡ kcom = 2π/λcom

but physical wavelength λphys = aλcom, wavenumber kphys = k/a

as long as quantum perturbations δφ small (linear evolution)

each wavelength–i.e., scale–evolves independently

→ main reason to use Fourier modes

classically δφ = (δφ)2 = 0 by definition!

Q: what is physical significance of quantum excitations in φ?
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Slow Roll and Scale Dependence

Last time, and in Extras today:

dimensionless fluctuation amplitude (variance)

at comoving wavenumber k = kcom

∆2(k) ∼

(
δρ

ρ

)

k

∼


H

2

m2
pl



(
H

φ̇

)2

aH=k

∼


 V

ǫm4
pl



aH=k

(14)

evaluated at “horizon crossing” aH = k

Q: how does aH change during inflation?

Q: for slow roll, how does ∆2(k) change with scale?
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The Quantum Inflaton Field

quantum mechanically:

• true φ has fluctuations around background value

• each ~k mode ↔ independent quantum states (oscillators)

• mode fluctuations quantized → quanta are inflaton particles

analogous to photons as EM quanta

• occupation numbers: n~k > 0 → real particles present

• if n~k = 0 → 〈δφ〉 = 0 no particles (vacuum/ground state)

but zero-point fluctuations still present
〈
δφ2

〉
6= 0

2
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Fluctuation Lagrangian

expand each ~k mode around classical value

L~k =
1

2
δ̇φ

2
~k
−

1

2

k2

a2
δφ2~k

−
1

2
V ′′(φcl)δφ

2
~k
− V (φcl) (15)

≈
1

2
δ̇φ

2
~k
−

1

2

k2

a2
δφ2~k

(16)

where slow roll → potential terms small

→ a massless simple harmonic oscillator

δφ vacuum state: zero point fluctuations

formally same a quantum harmonic oscillator!

for each k mode, fluctuation amplitudes random

but probability distribution is like n = 0 oscillator

P(δφ~k) ∝ e
−δφ2~k

/2σ2~k (17)

where variance σ2~k
=
〈
δφ2~k

〉

→ vacuum fluctuation amplitudes have gaussian distribution
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Total φ energy density is ρφ = ρbackground + ρzeropoint + ρparticles
pre-inflation: could have ρparticles 6= 0

in fact: if thermalized, ρparticles ∝ T4 (radiation)

→ inflation only begins when ρbackground ≫ ρparticles
Q: what happens to inflatons after inflation begins?

2
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after inflation begins, universe rapidly expanded, cooled

inflatons diluted away

→ inflation field driven to vacuum (ground) state

Since φ in quantum vacuum state: fluctuations are zero-point

→ gaussian distribution of amplitudes in each k mode

→ strong prediction of slow-roll inflation

now want to solve for size of rms σk at each mode

classically, perturbations have equation of motion

d2

dt2
δφ+3H

d

dt
δφ+

k2

a2
δφ+ V ′′δφ = 0 (18)

d2

dt2
δφ+3H

d

dt
δφ+

k2

a2
δφ ≈ 0 (19)

(in slow roll: V ′′ term negligible)

2
8



Sketch of Quantum Treatment

Promote δφ → operator δ̂φ

plane wave expansion: δ̂φ =
∑
~k
δ̂φ~k

introduce annihilation, creation operators â~k, â
†

−~k
, then

δ̂φ~k = wk(t) â~k + w∗
k(t) â

†

−~k
(20)

where wk(t) is a solution of field equation

ẅk +3Hẇk +

(
k

a

)2
wk = 0 (21)

Compare limits:

• k/a≫ H → k ≫ aH → λ ≪ 2πdH,com
Q: physical interpretation of limit?

wk evolves as harmonic oscillator (free massless field)

• k/a≪ H → k ≪ aH → λ ≫ 2πdH,com
Q: physical interpretation of limit?

ẇk ∝ a−3→ 0 → wk value “frozen”

2
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Inflation Perturbations: Evolution and Horizons

sub-horizon scales λ≪ 2πdH,com
inflaton fluctuations δφ are causally connected

evolve like harmonic oscillator → rms amplitude
〈
|wk|

2
〉
constant

but cosmic acceleration during inflation → dH,com shrinks

since ḋH,com = d(aH)−1/dt = d(ȧ−1)/dt = −ä/ȧ2 < 0 during inf

dH,com shrinkage: initially sub-horizon scales → super-horizon

super-horizon scales λ≫ 2πdH,com
fluctuations out of causal contact

amplitude “frozen in” until post-inflation dH,com regrows
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Inflation Perturbations: Spectrum of Amplitudes

examine fluctuations from vacuum

→ find expected amplitudes wk

since fluctuations have quantum origin

• cannot predict definite values for mode amplitudes, phases

• but can predict statistical properties

for different modes ~k and ~k′,

Q: what do we expect?
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for different modes ~k and ~k′,

expectation is

〈δ̂φ~kδ̂φ~k′〉 = wkwk′
〈
â~kâ

†
~k′

〉
+ c.c. = 0 (22)

because
〈
â~kâ

†
~k′

〉
=
〈
â~k

〉 〈
â
†
~k′

〉
= 0

⇒ modes are statistically independent

note: true even if |~k| = |~k′| = k but ~k · ~k′ = 0

i.e., different directions ~k = kx̂,~k′ = kŷ

⇒ phase ei
~k·~x is random

for a single mode k, vacuum expectation is

〈δ̂φ
2
~k〉 = |wk|

2
〈
ââ† + â†â

〉
= |wk|

2 6= 0 (23)

=
H2

2L3k3
(24)

where last expression

• from full quantum calculation, in box of size L

• to be evaluated at horizon crossing: kphys = H → k = aH

3
2



each in phase space volume

d3xd3k =
1

(2πL)3
4πk2dk =

4πk3

(2πL)3
dk

k
(25)

then fluctuation amplitude is

Pφ(k)
dk

k
≡

4πk3

(2πL)3
|δφk|

2dk

k
=

(
H

2π

)2 dk
k

(26)

and so the phase space fluctuation density in φ is

Pφ(k) =

(
H

2π

)2

k=aH
(27)

as before, but now

• explicitly seen independence of k

• know when to evaluate: at horizon crossing k = aH

3
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Fluctuation Evolution and Spectrum

consider some fixed (comoving) scale λ = 2π/k key idea: causal

physics acts until λ > dH,com: “horizon crossing”

→ quantum fluctuations laid down while inside dH,com
“frozen in” once outside of dH,com

from last time: quantum analysis gives fluctuation variance

〈
(δφk)

2
〉
=

(
H

2π

)2

k=aH
(28)

to be evaluated at horizon crossing: k = 1/dH,com = aH

3
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Fluctuation Evolution and Spectrum

consider some fixed (comoving) scale λ = 2π/k key idea: causal

physics acts until λ > dH,com: “horizon crossing”

→ quantum fluctuations laid down while inside dH,com
“frozen in” once outside of dH,com

from last time: quantum analysis gives fluctuation variance

〈
(δφk)

2
〉
=

(
H

2π

)2

k=aH
(29)

to be evaluated at horizon crossing: k = 1/dH,com = aH
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Inflationary Density Perturbations: Spectrum

Recall: density fluctuations → start inflating earlier (later)

→ more (less) expansion than average

extra scale factor boost δa/a = Hδt = Hδφ/φ̇ → larger volume

→ density perturbations have mean square

δ2inf(k) ≡

(
δρ

ρ

)2

k

(30)

∼

(
δa

a

)2
=

(
H

φ̇

)2
(δφ)2 =

(
H

φ̇

)2 (
H

2π

)2
(31)

evaluated at aH = k

slow roll: H, φ̇ slowly varying

→ expect fluctuation amplitude ∼ H4/φ̇2 ∼ const

over wide range of k
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In particular: slow roll φ̇ = −3V ′/H,

and H2 = V/3m2
pl, which gives

δ2inf(k) =
1

12π2m6
pl

(
V 3

V ′2

)
=

1

24π2m4
pl

(
V

ǫ

)
(32)

where ǫ = mpl(V
′/V )2/2

anticipating ∼ power law behavior,

define δ2inf(k) ∼ kα(k)

then scale dependence is

α(k) =
d ln δ2inf(k)

d ln k
(33)

evaluated when comoving scale k = aH crosses horizon

i.e., this relates k to homogeneous a, φ values
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Underlying physical question:

how do cosmic properties–e.g., H, ρ ≈ V –change

while the universe inflates as it slowly rolls?

• if no change → φ̇ = 0 → same V,H always → ǫ = 0

all scales see same U when leaving horizon k = aH

→ all scales have same quantum fluctuations

• but slow roll 6= no roll!

φ̇ 6= 0 → U properties do change

recall: δ2inf(k) ∝ V/ǫ

and as slowly roll → V decreasing, ǫ increasing

and horizon scale dH,com also decreases

Q: so which scales get larger perturbations? smaller?
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because V decreasing, ǫ increasing

δ2inf(k) ∝ V/ǫ decreases with time

→ smaller perturbations later in slow roll

since horizon scale dH,com decreases

later times ↔ smaller scales

⇒ slow roll → smaller perturbations on smaller scales

⇒ perturbation spectrum tilted to large scales → small k

in slow roll, k = aH change mostly due to a:

d ln k ≈ d ln a =
da

a
= H dt (34)

recast in terms of inflaton potential

=
Hdφ

φ̇
= −3

H2

V ′
dφ (35)3
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and so

d

d ln k
= −m2

pl
V ′

V

d

dφ
(36)

Using this, can show:

α(k) =
d ln δ2inf(k)

d ln k
= −6ǫ+2η (37)

i.e., perturbation spectrum δ2inf(k) ∝ k−6ǫ+2η

Major result!

Q: why? what does this mean physically? for cosmology? for

inflation?
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Gravity Waves: Tensor Perturbations

⋆ so far: only looked at density (scalar) perturbations

but also tensor perturbations → gravity waves!

what’s really going on: cosmic metric is perturbed

spatial part (in a particular coordinate system = gauge):

• unperturbed = FLRW

dℓ2|FLRW = a(t)2 (dx2 + dy2 + dz2) = a(t)2 δij dxi dxj (38)

with perturbations

dℓ2|pert = a(t)2 e2ζ γij dxi dxj (39)

with curvature perturbation the scalar function ζ(~x, t)

Q: what it its physical effect?
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perturbed metric

dℓ2|pert = a(t)2 e2ζ γij dxi dxj (40)

curvature perturbation scalar function ζ(~x, t) changes local vol-

ume

→ locally: isotropic stretching

tensor perturbation is, to lowest order

γij ≈




1 + h+ h× 0
−h× 1− h+ 0
0 0 1


 = δij +




h+ h× 0
−h× −h+ 0
0 0 0


 (41)

with two independent modes of amplitude h+, h×
Q: physical effect of these modes?

4
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tensor perturbation is, to lowest order

γij ≈ δij +




h+ h× 0
−h× −h+ 0
0 0 0


 (42)

looks like rotation: roughly speaking preserves volume

but changes angles

moreover: h satisfies massless wave equation!

h ⇔ gravitational radiation

effect on a ring of test particles:

..

h

h

+

x

gravity wave incident through page

time
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Metric Fluctuations

tensor perturbations directly are metric perturbation

what about the inflaton perturbations?

curvature perturbation in an invariant (coordinate independent):

ζ = Φ+Hδt = Φ+H
δφ

φ̇
(43)

Φ(~x, t) is local gravitational potential perturbation

inflation fluctuations φ also are metric perturbations

but amplitude differs from gravity wave amplitude

by factor H/φ̇

and thus scalar perturbation variance differs by factor

r =
∆2
h

∆2
Φ

∼

(
φ̇

H

)2
∼ ǫ (44)

4
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Inflationary Tensor Perturbations

variance as a function of scale (wavenumber)

∆2
h(k) ∼


 V

m4
pl



aH=k

(45)

• evaluated at “horizon crossing” aH = k

• directly probes inflation potential V (φ)!

• compare to density (“scalar”) perturbations:

tensor-to-scalar ratio

r =
∆2
h

∆2
Φ

= 16ǫ (46)

• for ǫ≪ 1, expect r ≪ 1: scalar dominates
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