Astro 507 Lecture 32 April 15, 2020

Announcements:

 \vdash

• Preflight 6: Part (a) Due Friday April 17

Wikipedia Cosmology! propose a wikipedia upgrade can be modest and targeted, or more ambitious FWIW: I have a animation suggestion

Last time: inflation and the homogeneous universe

- a graceful exit from inflation Q: how
- inflation in the order of cosmic epoch Q: namely?
 Today: inflation and inhomogeneities, and observational tests
- spoiler: we are all quantum fluctuations!
- overview/concepts in class—big picture (long) technical discussion in Extras

Classical Inflation and Smoothness

expect initial spatial inhomogeneities in $\phi(\vec{x})$ but evolves classically as

$$\ddot{\phi} - \nabla^2 \phi + 3H\dot{\phi} - V' = 0 \tag{1}$$

where

$$\nabla^2 = \sum \frac{\partial^2}{\partial x_{\text{phys}}^2} = \frac{1}{a^2} \sum \frac{\partial^2}{\partial x_{\text{com}}^2}$$
(2)

inhomogeneities $\delta\phi(\vec{x})$ measured by nonzero gradients but since $\nabla^2 \propto 1/a^2 \rightarrow 0$ exponentially, classically: $\delta\phi(\vec{x}) \rightarrow 0$ \Rightarrow after inflation ϕ and $\rho = V(\phi)$ exponentially smooth in space

Ν

good news: solved flatness, smoothness problems bad news: we have done too much! too smooth! can't form structures if density perfectly uniform

Quantum Mechanics to the Rescue

but quantum mechanics exists and is mandatory classical ϕ field \rightarrow quantized as inflatons think \vec{E},\vec{B} vs photons

inflaton field must contain quantum fluctuations before, during inflation

uncertainty principle: $\Delta x \Delta p \sim \hbar$ causal region at time t: Hubble length $\Delta x \sim d_H = c/H(t)$ expect momentum and energy fluctuations

$$c\Delta p \sim \Delta E \sim \hbar H$$
 (3)

Q: implications?

ω

Q: fate of fluctuations born a given scale λ_{init} ?

Q: analogy with Hawking radiation?

A Quantum Perturbation Factory

quantum mechanics: perturbations in energy $\rightarrow \delta \phi$ \rightarrow different regions start inflation at different $V(\phi)$

www: sketch of quantum perturbations during inflation

quantum fluctuations born at scale λ_{init}

- exponentially stretched until $\lambda > d_H$ "horizon crossing"
- then no longer causally connected \rightarrow cannot "fluctuate back to zero"
- "frozen in" as real density perturbations!
 cosmic structures originate from quantum fluctuations!

Hawking radiation analogy:

uncertainty principle: $\Delta E \Delta t \sim \hbar$, so in timescale

▶ $\Delta t \lesssim \hbar/m_{\psi}c^2$: particle pairs $\psi \overline{\psi}$ born and annihilate black hole: one falls in, other emitted as thermal Hawking rad. inflation: pair separated by expansion, "frozen" as fluctuation

Implications

If the inflationary model is true density fluctuation "seeds" of cosmic structures are inflated quantum mechanical fluctuations

Q: how does this limit what we can know about them?

Q: what can we hope to know?

Q: what do we need to calculate?

Inflationary Fluctuations: What we need to know

quantum fluctuations are *random*

- \rightarrow impossible to predict locations, amplitudes of overdensities
- → cannot predict location, mass, size of any particular cosmic object: galaxy/cluster/supercluster ...

but quantum mechanics does allow *statistical predictions*

What we want: *statistical* properties of fluctuations

- typical magnitude of fluctuations $\delta\phi$
- how $\delta\phi$ depends on lengthscales
- corresponding fluctuations in ρ_{ϕ}
- correlations at different length scales

Fluctuation Amplitude: Rough Estimate

quantum fluctuation \rightarrow turn to uncertainty principle

$$\delta E \,\,\delta t \sim \hbar \sim 1$$
 (4)

recall: energy density is

$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + \frac{1}{2}(\nabla\phi)^2 + V$$
 (5)

if perturbation from classical: $\phi(t, \vec{x}) = \phi_{cl}(t) + \delta \phi(t, \vec{x})$, then for small $\delta \phi \ll \phi_{cl}$,

$$\delta\rho \sim (\nabla\delta\phi)^2 + V'(\phi_{\mathsf{cl}})\delta\phi \approx (\nabla\delta\phi)^2 \tag{6}$$

since slow roll $\rightarrow V'$ small (flat potential)

 \neg Q: what is characteristic volume for fluctuation? Q: what is characteristic timescale δt ? H^{-1} is only lengthscale in problem so $\nabla \delta \phi \sim \delta \phi / H^{-1} \Rightarrow \delta \rho \sim H^2 (\delta \phi)^2$ so in Hubble volume $V_H = d_H^3 = H^{-3}$, energy fluctuation is

$$\delta E = \delta \rho \ V_H = \frac{(\delta \phi)^2}{H} \tag{7}$$

characteristic timescale is $\delta t \sim 1/H$, so

$$\delta E \ \delta t \sim \frac{(\delta \phi)^2}{H^2} \sim \hbar$$
 (8)

and typical (root-mean-square) inflaton fluctuation is

$$\delta\phi \sim \hbar H \tag{9}$$

had to be! *H* is the only other dimensionally correct scale in the problem!

 $_{\infty}$ Note: $H\sim const$ during inflation all fluctuations created with \sim same amplitude

Intermission: Questions?

What Just Happened?

To summarize:

10

- *classically*, inflaton field ϕ_{cl} quickly inflates away any of its initial perturbations
- but *quantum fluctuations* $\delta \phi$ unavoidable created and persist throughout inflation
- in any region, amplitude $\delta \phi(\vec{x})$ random but *typical* value $\delta \phi \sim H$

Q: what do the presence of inflaton fluctuations mean for inflationary dynamics in different regions?

Q: what consequences/signatures of fluctuations might remain after inflation?

Fluctuation Evolution and the Cosmic Horizon

in presence of fluctuations $\delta\phi$ and $\delta\rho_{\phi}$ can view inflationary universe as ensemble of "sub-universes" evolving independently—same slow roll, but with different ϕ , ρ_{ϕ} at a fixed tclassical discussion \rightarrow ensemble average now want behavior typical deviation from mean

particle horizon $\sim H^{-1}$ critical

- already saw: sets scale for fluctuation
- also "shuts off" fluctuation evolution

consider perturbation of lengthscale λ

 \bullet leaves horizon when $H\sim 1/\lambda$

12

- then can't evolve further: keeps same $\delta \rho / \langle \rho \rangle$
- until after inflation, when re-enters horizon

What Just Happened? ... Part Deux

the *classical* behavior of a slow-rolling ϕ lead to homogeneity, isotropy regardless of initial conditions \Rightarrow fixes horizon, flatness, monopole problem

the *quantum* fluctuations in ϕ lead to density perturbations on all lengthscales including scales $\gg d_{hor}$ today these perturbations form the "seeds" for cosmic structures!

quantum mechanics & uncertainty principle essential for the existence of cosmic structure

ta "The Universe is the ultimate free lunch."

- Alan Guth

The Cosmic Harmonic Oscillator

in Director's Cut notes:

- inflaton field begins in vacuum state
- quantum fluctuations evolve as a *simple harmonic oscillator*
- \rightarrow dominated by <code>vacuum=ground state</code>

Q: wavefunction of ground state simple harmonic oscillator? Q: probability of finding particle at x?

Q: implications for inflaton fluctuations?

Inflation Spectrum Statistical Properties

★ Recall: inflaton quantum modes ↔ harmonic oscillator dominated by vacuum ↔ ground state $\|\psi_{sho}(x)\|^2 \sim e^{-x^2/2\Delta x^2}$ $\phi_k \leftrightarrow x$ fluctuations are statistically Gaussian i.e., perturbations of all sizes occur, but probability of finding perturbation of size $\delta(R)$ on scale R is distributed as a Gaussian

★ inflaton perturbations → reheating
 → radiation, matter perturbations
 same levels in both: "adiabatic"

 $\texttt{G} \star \star \star \star \star \texttt{All}$ of these are bona fide *pre*dictions of inflation and are testable! *Q: how?*

Inflation Spectrum Slightly Tilted Scale Invariance

recall: perturbation leaving horizon have very similar amplitude during inflation \rightarrow nearly same for all lengthscales $\leftrightarrow k$ perturbation rms amplitude

$$\delta_{\inf}^2(k) \propto k^{-6\epsilon + 2\eta} \tag{10}$$

- * successful inflation \Leftrightarrow slow roll $\Leftrightarrow \epsilon, \eta \ll 1$ demands **perturbation spectrum nearly independent of scale** nearly "self-similar," without characteristic scale *"Peebles-Harrison-Zel'dovich"* spectrum
- 16

* successful inflation must end $\rightarrow \epsilon, \eta \neq 0$ demands small departures from scale-invariance "tilted spectrum"

Inflation Creates Primordial Gravity Waves

Inflaton field fluctuations are inhomogeneous perturbations to cosmic mass-energy density field

can excite gravitational radiation

when fluctuations have nonzero quadrupole, i.e., tensor modes

- cosmic gravitational wave background
- wavelengths span all scales up to Mpc
- wave amplitude directly related to density perturbations
- waves propagate unimpeded through Universe after inflation gravity wave incident through page

effect on ring of test particles

Q: how to test?

17

Searching for Primordial Gravitational Waves

- waves drive quadrupole motion introduce CMB polarization we'll see: gravitational wave excite B modes—curl features
- In principle: direct detection possible via spacetime effects! but cosmo signal below astro events (BH, NS) not accessible to aLIGO/VIRGO, likely not LISA.
 www: gravitational wave signal comparison

Testing Inflation: Status to Date

test inflation by measuring density fluctuations and their statistical properties on various scales at various epochs

CMB at large angles (large scales, decoupling)

- nearly scale invariant! woo hoo! (COBE 93)
- Gaussian distribution (COBE, WMAP, Planck) www: 3-yr WMAP T distribution
- WMAP, Planck: evidence for tilt! favors large scales ("red")! Planck (2013): $\alpha = -0.035 \pm 0.004$ nonzero at $\sim 9\sigma$!

These did not have to be true!

but very encouraging nonetheless

Inflation Scorecard

Summary:

Inflation designed to solve horizon, flatness, smoothness does this, via accelerated expansion driven by inflaton

But unexpected bonus: structure inflaton field has quantum fluctuations imprinted before horizon crossing later return as density fluctuations \rightarrow inflationary seeds of cosmic structure?!

Thus far: observed cosmic density fields have spectrum, statistics as predicted by inflation

20

The frontier: CMB polarization probes of cosmic gravity waves

Director's Cut Extras

Fluctuation Spectrum: In More Detail

Starting point of more rigorous treatment in equation of motion

$$\ddot{\phi} + 3H\dot{\phi} - \nabla^2\phi + V'(\phi) = 0 \tag{11}$$

write field as sum

$$\phi = \phi_{\text{classical}}(t) + \delta\phi(t, \vec{x}) \tag{12}$$

• classical amplitude $\phi_{cl}(t)$

spatially homogeneous: *smooth, classical, background* field evolves according to classical equation of motion \rightarrow this has been our focus thus far; now add

- quantum fluctuations $\delta \phi(t, \vec{x})$
- $\overset{
 m N}{\sim}$ these can vary across space and with time

decompose spatial part of fluctuations into plane waves

$$\delta\phi(t,\vec{x}) = \sum_{\vec{k}} \delta\phi_{\vec{k}}(t) e^{i\vec{k}\cdot\vec{x}_{\text{com}}}$$
(13)

convenient to label Fourier modes by comoving wavelength $\lambda \equiv \lambda_{com}$, wavenumber $k \equiv k_{com} = 2\pi/\lambda_{com}$ but physical wavelength $\lambda_{phys} = a\lambda_{com}$, wavenumber $k_{phys} = k/a$

as long as quantum perturbations $\delta\phi$ small (linear evolution) each wavelength-i.e., scale-evolves independently \rightarrow main reason to use Fourier modes

classically $\delta \phi = (\delta \phi)^2 = 0$ by definition!

 \mathbb{Q} Q: what is physical significance of quantum excitations in ϕ ?

Slow Roll and Scale Dependence

Last time, and in Extras today: dimensionless fluctuation amplitude (variance) at comoving wavenumber $k = k_{com}$

$$\Delta^{2}(k) \sim \left(\frac{\delta\rho}{\rho}\right)_{k} \sim \left(\frac{H^{2}}{m_{\text{pl}}^{2}}\right) \left(\frac{H}{\dot{\phi}}\right)_{aH=k}^{2} \sim \left(\frac{V}{\epsilon m_{\text{pl}}^{4}}\right)_{aH=k}$$
(14)

evaluated at "horizon crossing" aH = k

Q: how does aH change during inflation? Q: for slow roll, how does $\Delta^2(k)$ change with scale?

The Quantum Inflaton Field

quantum mechanically:

- \bullet true ϕ has fluctuations around background value
- each \vec{k} mode \leftrightarrow independent quantum states (oscillators)
- mode fluctuations quantized \rightarrow quanta are inflaton particles analogous to photons as EM quanta
- occupation numbers: $n_{\vec{k}} > 0 \rightarrow$ real particles present
- if $n_{\vec{k}} = 0 \rightarrow \langle \delta \phi \rangle = 0$ no particles (vacuum/ground state) but zero-point fluctuations still present $\langle \delta \phi^2 \rangle \neq 0$

Fluctuation Lagrangian

expand each \vec{k} mode around classical value

$$\mathcal{L}_{\vec{k}} = \frac{1}{2} \delta \dot{\phi}_{\vec{k}}^2 - \frac{1}{2} \frac{k^2}{a^2} \delta \phi_{\vec{k}}^2 - \frac{1}{2} V''(\phi_{\mathsf{CI}}) \delta \phi_{\vec{k}}^2 - V(\phi_{\mathsf{CI}}) \qquad (15)$$

$$\approx \frac{1}{2} \delta \dot{\phi}_{\vec{k}}^2 - \frac{1}{2} \frac{k^2}{a^2} \delta \phi_{\vec{k}}^2 \qquad (16)$$

where slow roll \rightarrow potential terms small

 \rightarrow a massless simple harmonic oscillator

 $\delta \phi$ vacuum state: zero point fluctuations formally same a quantum harmonic oscillator! for *each k mode*, fluctuation *amplitudes random*

but probability distribution is like n = 0 oscillator

$$P(\delta\phi_{\vec{k}}) \propto e^{-\delta\phi_{\vec{k}}^2/2\sigma_{\vec{k}}^2}$$
(17)

26

where variance $\sigma_{\vec{k}}^2 = \left< \delta \phi_{\vec{k}}^2 \right>$ \rightarrow vacuum fluctuation amplitudes have *gaussian* distribution Total ϕ energy density is $\rho_{\phi} = \rho_{\text{background}} + \rho_{\text{zeropoint}} + \rho_{\text{particles}}$ pre-inflation: could have $\rho_{\text{particles}} \neq 0$ in fact: if thermalized, $\rho_{\text{particles}} \propto T^4$ (radiation) \rightarrow inflation only begins when $\rho_{\text{background}} \gg \rho_{\text{particles}}$ Q: what happens to inflatons after inflation begins? after inflation begins, universe rapidly expanded, cooled inflatons diluted away

 \rightarrow inflation field driven to vacuum (ground) state

Since ϕ in quantum vacuum state: fluctuations are zero-point

- \rightarrow gaussian distribution of amplitudes in each k mode
- \rightarrow strong prediction of slow-roll inflation

now want to solve for size of rms σ_k at each mode

classically, perturbations have equation of motion

$$\frac{d^2}{dt^2}\delta\phi + 3H\frac{d}{dt}\delta\phi + \frac{k^2}{a^2}\delta\phi + V''\delta\phi = 0$$
(18)

$$\frac{d^2}{dt^2}\delta\phi + 3H\frac{d}{dt}\delta\phi + \frac{k^2}{a^2}\delta\phi \approx 0$$
(19)

28

(in slow roll: V'' term negligible)

Sketch of Quantum Treatment

Promote $\delta \phi \rightarrow$ operator $\hat{\delta \phi}$ plane wave expansion: $\hat{\delta \phi} = \sum_{\vec{k}} \hat{\delta \phi}_{\vec{k}}$ introduce annihilation, creation operators $\hat{a}_{\vec{k}}$, $\hat{a}^{\dagger}_{-\vec{k}}$, then

$$\widehat{\delta\phi}_{\vec{k}} = w_k(t)\,\widehat{a}_{\vec{k}} + w_k^*(t)\,\widehat{a}_{-\vec{k}}^{\dagger} \tag{20}$$

where $w_k(t)$ is a solution of field equation

$$\ddot{w}_k + 3H\dot{w}_k + \left(\frac{k}{a}\right)^2 w_k = 0 \tag{21}$$

Compare limits:

20

• $k/a \gg H \rightarrow k \gg aH \rightarrow \lambda \ll 2\pi d_{H,com}$ Q: physical interpretation of limit? w_k evolves as harmonic oscillator (free massless field)

•
$$k/a \ll H \rightarrow k \ll aH \rightarrow \lambda \gg 2\pi d_{H,com}$$

Q: physical interpretation of limit?
 $\dot{w}_k \propto a^{-3} \rightarrow 0 \rightarrow w_k$ value "frozen"

Inflation Perturbations: Evolution and Horizons

sub-horizon scales $\lambda \ll 2\pi d_{H,com}$ inflaton fluctuations $\delta \phi$ are causally connected evolve like harmonic oscillator \rightarrow rms amplitude $\langle |w_k|^2 \rangle$ constant

but cosmic acceleration during inflation $\rightarrow d_{H,\text{com}}$ shrinks since $\dot{d}_{H,\text{com}} = d(aH)^{-1}/dt = d(\dot{a}^{-1})/dt = -\ddot{a}/\dot{a}^2 < 0$ during inf $d_{H,\text{com}}$ shrinkage: initially sub-horizon scales \rightarrow super-horizon

super-horizon scales $\lambda \gg 2\pi d_{H,com}$

ЗС

fluctuations out of causal contact amplitude "frozen in" until post-inflation $d_{H,\text{com}}$ regrows

Inflation Perturbations: Spectrum of Amplitudes

examine fluctuations from vacuum

 \rightarrow find expected amplitudes w_k

since fluctuations have quantum origin

- cannot predict definite values for mode amplitudes, phases
- but *can* predict statistical properties

for *different* modes \vec{k} and $\vec{k'}$, *Q: what do we expect?*

for *different* modes \vec{k} and \vec{k}' , expectation is

$$\langle \widehat{\delta \phi}_{\vec{k}} \widehat{\delta \phi}_{\vec{k}'} \rangle = w_k w_{k'} \left\langle \widehat{a}_{\vec{k}} \widehat{a}_{\vec{k}'}^{\dagger} \right\rangle + \text{c.c.} = 0$$
(22)

because $\left\langle \hat{a}_{\vec{k}} \hat{a}_{\vec{k}'}^{\dagger} \right\rangle = \left\langle \hat{a}_{\vec{k}} \right\rangle \left\langle \hat{a}_{\vec{k}'}^{\dagger} \right\rangle = 0$ \Rightarrow modes are statistically independent note: true even if $|\vec{k}| = |\vec{k}'| = k$ but $\vec{k} \cdot \vec{k}' = 0$ i.e., different directions $\vec{k} = k\hat{x}, \vec{k}' = k\hat{y}$ \Rightarrow phase $e^{i\vec{k}\cdot\vec{x}}$ is random

for a single mode k, vacuum expectation is

$$\langle \widehat{\delta \phi}_{\vec{k}}^2 \rangle = |w_k|^2 \langle \widehat{a} \widehat{a}^{\dagger} + \widehat{a}^{\dagger} \widehat{a} \rangle = |w_k|^2 \neq 0$$
(23)
$$= \frac{H^2}{2L^3 k^3}$$
(24)

where last expression

ω2

- from full quantum calculation, in box of size L
- to be evaluated at horizon crossing: $k_{phys} = H \rightarrow \mathbf{k} = \mathbf{a}H$

each in phase space volume

$$d^{3}xd^{3}k = \frac{1}{(2\pi L)^{3}} 4\pi k^{2}dk = \frac{4\pi k^{3}}{(2\pi L)^{3}} \frac{dk}{k}$$
(25)

then fluctuation amplitude is

$$P_{\phi}(k)\frac{dk}{k} \equiv \frac{4\pi k^3}{(2\pi L)^3} |\delta\phi_k|^2 \frac{dk}{k} = \left(\frac{H}{2\pi}\right)^2 \frac{dk}{k}$$
(26)

and so the phase space fluctuation density in ϕ is

$$P_{\phi}(k) = \left(\frac{H}{2\pi}\right)_{k=aH}^{2}$$
(27)

as before, but now

- \bullet explicitly seen independence of k
- know when to evaluate: at horizon crossing k = aH

Fluctuation Evolution and Spectrum

consider some fixed (comoving) scale $\lambda = 2\pi/k$ key idea: causal physics acts until $\lambda > d_{H,com}$: "horizon crossing" \rightarrow quantum fluctuations laid down while inside $d_{H,com}$ "frozen in" once outside of $d_{H,com}$

from last time: quantum analysis gives fluctuation variance

$$\left\langle (\delta \phi_k)^2 \right\rangle = \left(\frac{H}{2\pi}\right)_{k=aH}^2$$
 (28)

to be evaluated at horizon crossing: $k = 1/d_{H,com} = aH$

Fluctuation Evolution and Spectrum

consider some fixed (comoving) scale $\lambda = 2\pi/k$ key idea: causal physics acts until $\lambda > d_{\rm H,com}$: "horizon crossing" \rightarrow quantum fluctuations laid down while inside $d_{\rm H,com}$ "frozen in" once outside of $d_{\rm H,com}$

from last time: quantum analysis gives fluctuation variance

$$\left\langle (\delta \phi_k)^2 \right\rangle = \left(\frac{H}{2\pi}\right)_{k=aH}^2$$
 (29)

to be evaluated at horizon crossing: $k = 1/d_{H,com} = aH$

Inflationary Density Perturbations: Spectrum

Recall: density fluctuations \rightarrow start inflating earlier (later) \rightarrow more (less) expansion than average extra scale factor boost $\delta a/a = H\delta t = H\delta \phi/\dot{\phi} \rightarrow$ larger volume \rightarrow density perturbations have mean square

$$\delta_{\inf}^{2}(k) \equiv \left(\frac{\delta\rho}{\rho}\right)_{k}^{2}$$
(30)
$$\sim \left(\frac{\delta a}{a}\right)^{2} = \left(\frac{H}{\dot{\phi}}\right)^{2} (\delta\phi)^{2} = \left(\frac{H}{\dot{\phi}}\right)^{2} \left(\frac{H}{2\pi}\right)^{2}$$
(31)

evaluated at aH = k

slow roll: H, $\dot{\phi}$ slowly varying $\approx \rightarrow \text{expect fluctuation amplitude} \sim H^4/\dot{\phi}^2 \sim const$ over wide range of k In particular: slow roll $\dot{\phi} = -3V'/H$, and $H^2 = V/3m_{\rm pl}^2$, which gives

$$\delta_{\inf}^{2}(k) = \frac{1}{12\pi^{2}m_{\text{pl}}^{6}} \left(\frac{V^{3}}{V^{2}}\right) = \frac{1}{24\pi^{2}m_{\text{pl}}^{4}} \left(\frac{V}{\epsilon}\right)$$
(32)

where $\epsilon = m_{\rm pl} (V'/V)^2/2$

anticipating \sim power law behavior, define $\delta_{\inf}^2(k)\sim k^{\alpha(k)}$ then scale dependence is

$$\alpha(k) = \frac{d \ln \delta_{\inf}^2(k)}{d \ln k}$$
(33)

evaluated when comoving scale k = aH crosses horizon

 $\underline{\omega}$ i.e., this relates k to homogeneous a, ϕ values

Underlying physical question:

how do cosmic properties—e.g., $H, \rho \approx V$ —change while the universe inflates as it slowly rolls?

- if no change $\rightarrow \dot{\phi} = 0 \rightarrow \text{same } V, H$ always $\rightarrow \epsilon = 0$ all scales see same U when leaving horizon k = aH \rightarrow all scales have same quantum fluctuations
- but *slow* roll \neq *no* roll! $\dot{\phi} \neq 0 \rightarrow U$ properties *do* change

recall: $\delta_{\inf}^2(k) \propto V/\epsilon$ and as slowly roll $\rightarrow V$ decreasing, ϵ increasing and horizon scale $d_{H,com}$ also decreases Q: so which scales get larger perturbations? smaller?

ω 8 because V decreasing, ϵ increasing

 $\delta_{inf}^2(k) \propto V/\epsilon$ decreases with time

 \rightarrow smaller perturbations later in slow roll

since horizon scale $d_{H,com}$ decreases

later times \leftrightarrow smaller scales

- \Rightarrow slow roll \rightarrow *smaller* perturbations on *smaller* scales
- \Rightarrow perturbation spectrum *tilted* to large scales \rightarrow small k

in slow roll, k = aH change mostly due to a:

$$d\ln k \approx d\ln a = \frac{da}{a} = H dt$$
(34)

recast in terms of inflaton potential

$$=\frac{Hd\phi}{\dot{\phi}}=-3\frac{H^2}{V'}d\phi \tag{35}$$

39

and so

$$\frac{d}{d\ln k} = -m_{\rm pl}^2 \frac{V'}{V} \frac{d}{d\phi} \tag{36}$$

Using this, can show:

$$\alpha(k) = \frac{d \ln \delta_{\inf}^2(k)}{d \ln k} = -6\epsilon + 2\eta$$
(37)

i.e., perturbation spectrum $\delta_{\inf}^2(k) \propto k^{-6\epsilon+2\eta}$

Major result!

Q: why? what does this mean physically? for cosmology? for inflation?

40

Gravity Waves: Tensor Perturbations

★ so far: only looked at density (scalar) perturbations but also tensor perturbations \rightarrow gravity waves!

what's really going on: *cosmic metric* is perturbed spatial part (in a particular coordinate system = gauge):

• unperturbed = FLRW

$$d\ell^2|_{\mathsf{FLRW}} = a(t)^2 \ (dx^2 + dy^2 + dz^2) = a(t)^2 \ \delta_{ij} \ dx_i \ dx_j \quad (38)$$

with perturbations

$$d\ell^2|_{\text{pert}} = a(t)^2 \ e^{2\zeta} \ \gamma_{ij} \ dx_i \ dx_j \tag{39}$$

with curvature perturbation the scalar function $\zeta(\vec{x},t)$ $\stackrel{\text{\tiny \square}}{=} Q$: what it its physical effect? perturbed metric

$$d\ell^2|_{\text{pert}} = a(t)^2 \ e^{2\zeta} \ \gamma_{ij} \ dx_i \ dx_j \tag{40}$$

curvature perturbation scalar function $\zeta(\vec{x},t)$ changes local volume

 \rightarrow locally: isotropic stretching

tensor perturbation is, to lowest order

$$\gamma_{ij} \approx \begin{pmatrix} 1+h_{+} & h_{\times} & 0\\ -h_{\times} & 1-h_{+} & 0\\ 0 & 0 & 1 \end{pmatrix} = \delta_{ij} + \begin{pmatrix} h_{+} & h_{\times} & 0\\ -h_{\times} & -h_{+} & 0\\ 0 & 0 & 0 \end{pmatrix}$$
(41)

with *two independent modes* of amplitude h_+, h_\times *Q: physical effect of these modes?*

42

tensor perturbation is, to lowest order

$$\gamma_{ij} \approx \delta_{ij} + \begin{pmatrix} h_+ & h_{\times} & 0\\ -h_{\times} & -h_+ & 0\\ 0 & 0 & 0 \end{pmatrix}$$
(42)

looks like rotation: roughly speaking preserves volume but changes angles

moreover: h satisfies massless wave equation! $h \Leftrightarrow$ gravitational radiation effect on a ring of test particles:

gravity wave incident through page

Metric Fluctuations

tensor perturbations directly are metric perturbation what about the inflaton perturbations?

curvature perturbation in an invariant (coordinate independent):

$$\zeta = \Phi + H\delta t = \Phi + H \frac{\delta\phi}{\dot{\phi}}$$
(43)

 $\Phi(\vec{x},t)$ is local gravitational potential perturbation

inflation fluctuations ϕ also are metric perturbations but amplitude differs from gravity wave amplitude by factor $H/\dot{\phi}$

and thus scalar perturbation variance differs by factor

 $r = \frac{\Delta_h^2}{\Delta_{\Phi}^2} \sim \left(\frac{\dot{\phi}}{H}\right)^2 \sim \epsilon \tag{44}$

44

Inflationary Tensor Perturbations

variance as a function of scale (wavenumber)

$$\Delta_h^2(k) \sim \left(\frac{V}{m_{\text{pl}}^4}\right)_{aH=k} \tag{45}$$

- evaluated at "horizon crossing" aH = k
- directly probes inflation potential $V(\phi)$!
- compare to density ("scalar") perturbations: *tensor-to-scalar ratio*

$$r = \frac{\Delta_h^2}{\Delta_\Phi^2} = 16\epsilon \tag{46}$$

• for $\epsilon \ll 1$, expect $r \ll 1$: scalar dominates