Astro 507 Lecture 33 April 17, 2020

Announcements:

- Preflight 6 was due today
- Problem Set 6 due next Friday April 24
 after this: final Problem Set due Finals Week
 recall: lowest PF and PS dropped

Last time: quantum effects in inflation

Today: inflation tests

and begin struture formation

Inflation Spectrum Statistical Properties

- * Recall: inflaton quantum modes \leftrightarrow harmonic oscillator dominated by vacuum \leftrightarrow ground state $\|\psi_{\rm sho}(x)\|^2 \sim e^{-x^2/2\Delta x^2}$ $\phi_k \leftrightarrow x$ fluctuations are statistically Gaussian i.e., perturbations of all sizes occur, but probability of finding perturbation of size $\delta(R)$ on scale R is distributed as a Gaussian
- ★ inflaton perturbations → reheating
 → radiation, matter perturbations
 same levels in both: "adiabatic"
- ***** All of these are bona fide predictions of inflation and are testable! Q: how?

Inflation Spectrum Slightly Tilted Scale Invariance

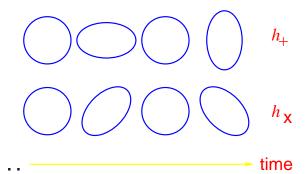
recall: perturbation leaving horizon have very similar amplitude during inflation \to nearly same for all lengthscales $\leftrightarrow k$ perturbation rms amplitude

$$\delta_{\inf}^2(k) \propto k^{\alpha}$$
 (1)

with index $\alpha = -6\epsilon + 2\eta \ll 1$

- \star successful inflation \Leftrightarrow slow roll $\Leftrightarrow \epsilon, \eta \ll 1$ demands **perturbation spectrum nearly independent of scale** nearly "self-similar," without characteristic scale "Peebles-Harrison-Zel'dovich" spectrum
- * successful inflation must end $\rightarrow \epsilon, \eta \neq 0$ demands small departures from scale-invariance "tilted spectrum"

Inflation Creates Primordial Gravity Waves


Inflaton field fluctuations are inhomogeneous perturbations to cosmic mass-energy density field

can excite gravitational radiation

when fluctuations have nonzero quadrupole, i.e., tensor modes

- cosmic gravitational wave background
- wavelengths span all scales up to Mpc
- wave amplitude directly related to density perturbations
- waves propagate unimpeded through Universe after inflation gravity wave incident through page

effect on ring of test particles

Q: how to test?

4

Searching for Primordial Gravitational Waves

- waves drive quadrupole motion introduce CMB polarization we'll see: gravitational wave excite B modes—curl features
- In principle: direct detection possible via spacetime effects! but cosmo signal below astro events (BH, NS) not accessible to aLIGO/VIRGO, likely not LISA.

 www: gravitational wave signal comparison

Testing Inflation: Status to Date

test inflation by measuring density fluctuations and their statistical properties on various scales at various epochs

CMB at large angles (large scales, decoupling)

- nearly scale invariant! woo hoo! (COBE 93)
- Gaussian distribution (COBE, WMAP, Planck) www: 3-yr WMAP T distribution
- WMAP, Planck: evidence for tilt! favors large scales ("red")! Planck (2013): $\alpha = -0.035 \pm 0.004$ nonzero at $\sim 9\sigma$!

These did not have to be true!

Not guaranteed to be due to inflation but very encouraging nonetheless

Inflation Scorecard

As designed (postdictions) inflation solve:

- ✓ horizon problem
- ✓ flatness problem
- ✓ smoothness problem
- ✓ monopole problem

But *unexpected bonus*: structure

Thus far: observed cosmic density fields

have spectrum, statistics as predicted by inflation

- ✓ nearly scale invariant
- **✓** gaussian statistics
- ✓ small tilt

Frontier: CMB polarization probes of cosmic gravity waves **Stay tuned!**

Intermission: Questions?

The Inhomogeneous Universe

Origin and Evolution of Cosmic Structure

The Large-Scale Structure of the Universe Theoretical and Observational Landscape

On large scales, cosmo principle an excellent approximation On small scales, fails miserably

Cosmology should explain both: now open our eyes to structure

Theory Goals? tools? complications? Which scales in space, time "easy" to describe? which difficult?

Observations

Goals? observables? complications? Which scales in space, time "easy" to measure? which difficult?

Arenas for theory—observation comparison

Which well-matched (i.e., clear results from both)? Which poorly-matched (i.e., one or both ambiguous/difficult)? What constitutes success? When are we done?

Large-Scale Structure: The Good, the Bad, and the Ugly

Structure Formation Theory

Goal: describe how small density fluctuation "seeds" grow to form structure today

Tools: baryon-DM-radiation-DE particle & fluid dynamics in expanding FLRW background analytic—linearized perturb theory, idealized nonlinear models numerical—full nonlinear evolution, feedback effects

Complications: nonlinear processes (virialization, shocks, star feedback)

Degree of Difficulty:

large scales easiest—smoothest, linear perturb theory accurate smallest scales hardest—very nonlinear

Structure Formation Observations

```
Goal: measure growth of structures over cosmic history
Tools: CMB anisotropy
surveys (optical, X-ray, IR, radio, \gamma-ray...): galaxies, quasars,
 QSO absorption systems, lensing
Complications: need for statistical completeness
 vs sensitivity, resolution
large scales easy in some ways: CMB very clean
 galaxy, quasar statistics best over largest volumes
...but difficult in others: sensitivity, resolution lowest
 few independent samples of structure at largest scales
  "cosmic variance" (e.g., see many 10 Mpc regions,
   only one at 4 Gpc)
 reshifting, absorption present challenges
 only a few epochs accessible
small scales easy in some ways: can probe locally
 sample many independent regions
 accessible at different epochs
...but difficult in others: hard to measure at large z
```

Comparing Theory and Observation

Strong Tests

well-matched at large scales: linear theory accurate, observations (esp CMB) clean

Mismatches

Theory naturally describes density evolution dominated by dark matter—invisible!

Observations naturally look at light easiest to look at most nonlinear, baryonic systems

Problem: mass vs light disconnect

"bias" – rarest=largest structures easiest to see and baryons collisional, dissipative

→ more spatially concentrated that DM (think halos!)

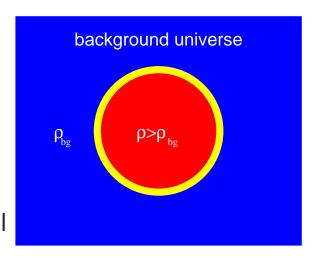
Also: most light from stars—but theory of star form incomplete and uncertain

⇒ this is the frontier!

Building Intuition: Spherical Collapse

consider idealized initial conditions "top hat" Universe

- \bullet spherical, uniform density ρ
- embedded in flat, matter-dom universe with "background" density ρ_{bq} ("compensated" by surrounding underdense shell)


spherical collapse model a cosmological workhorse

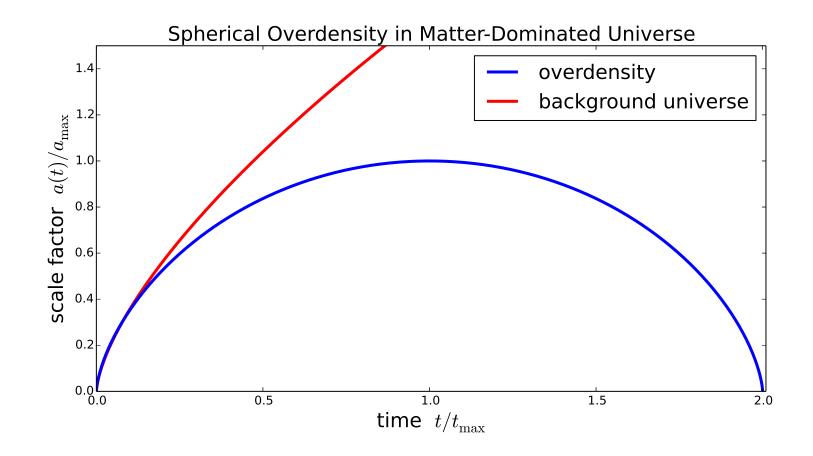
a nonlinear problem with analytic solution!

Given: initial density contrast $\delta_i \ll 1$ at some t_i Want to calculate: density contrast $\delta(t)$

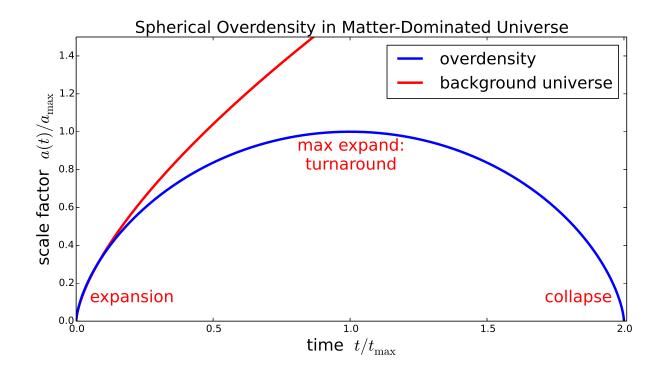
lucky break-Newton's "iron sphere" / Gauss' law/Birkhoff's: in spherical matter distribution, interior ignorant of exterior

⇒ overdense region evolves exactly as closed universe!

PS6: solution is parametric (cycloid)


$$a(\theta) = \frac{a_{\text{max}}}{2} (1 - \cos \theta) \tag{2}$$

$$t(\theta) = \frac{t_{\text{max}}}{\pi} (\theta - \sin \theta) \tag{3}$$


(4)

evolution parameter: "development angle" θ

Q: a, t for $\theta = 0$? $\theta = \pi$? $\theta = 2\pi$? *Q*: so what will this look like?

Q: describe overdensity evolution qualitatively?

- initially expand with Universe
- but extra gravity in overdensity slows expansion
- \bullet reach max expansion at t_{max} , then begin collapse "turnaround" epoch
- formally, collapse (to a point!) at $t_{\text{coll}} = 2t_{\text{max}}$

Q: what really happens when $t \gtrsim t_{\text{coll}}$?

Spherical Collapse: Fate in Real Universe

Formal spherical collpase final state: collapse to a point! "subuniverse" goes to big crunch!

- in reality: after turnaround, infalling matter virializes marks birth of halo as collapsed object
- Note: Brooklyn is not expanding! Nor is SS, MW, LG
 Q: what is criterion not to expand?

Beyond the formal solution:

- after virialized, halo still overdense
 - → neighboring shells fall in
 - → mass continues to grow by accretion!
- in real life: mergers too

Director's Cut Extras

Gravity Waves: Tensor Perturbations

 \star so far: only looked at density (scalar) perturbations but also tensor perturbations \to gravity waves!

what's really going on: *cosmic metric* is perturbed spatial part (in a particular coordinate system = gauge):

• unperturbed = FLRW

$$d\ell^{2}|_{\mathsf{FLRW}} = a(t)^{2} (dx^{2} + dy^{2} + dz^{2}) = a(t)^{2} \delta_{ij} dx_{i} dx_{j}$$
 (5)

with perturbations

$$d\ell^2|_{\text{pert}} = a(t)^2 e^{2\zeta} \gamma_{ij} dx_i dx_j \tag{6}$$

with curvature perturbation the scalar function $\zeta(\vec{x},t)$

Q: what it its physical effect?

perturbed metric

$$d\ell^2|_{\text{pert}} = a(t)^2 e^{2\zeta} \gamma_{ij} dx_i dx_j \tag{7}$$

curvature perturbation scalar function $\zeta(\vec{x},t)$ changes local volume

→ locally: isotropic stretching

tensor perturbation is, to lowest order

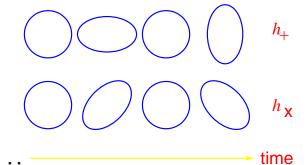
$$\gamma_{ij} \approx \begin{pmatrix} 1 + h_{+} & h_{\times} & 0 \\ -h_{\times} & 1 - h_{+} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \delta_{ij} + \begin{pmatrix} h_{+} & h_{\times} & 0 \\ -h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(8)

with two independent modes of amplitude h_+, h_\times

Q: physical effect of these modes?

tensor perturbation is, to lowest order

$$\gamma_{ij} \approx \delta_{ij} + \begin{pmatrix} h_{+} & h_{\times} & 0 \\ -h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(9)


looks like rotation: roughly speaking preserves volume but changes angles

moreover: h satisfies massless wave equation!

 $h \Leftrightarrow gravitational radiation$

effect on a ring of test particles:

gravity wave incident through page

Metric Fluctuations

tensor perturbations directly are metric perturbation what about the inflaton perturbations?

curvature perturbation in an invariant (coordinate independent):

$$\zeta = \Phi + H\delta t = \Phi + H\frac{\delta\phi}{\dot{\phi}} \tag{10}$$

 $\Phi(\vec{x},t)$ is local gravitational potential perturbation

inflation fluctuations ϕ also are metric perturbations but amplitude differs from gravity wave amplitude by factor $H/\dot{\phi}$

and thus scalar perturbation variance differs by factor

$$r = \frac{\Delta_h^2}{\Delta_\Phi^2} \sim \left(\frac{\dot{\phi}}{H}\right)^2 \sim \epsilon \tag{11}$$

Inflationary Tensor Perturbations

variance as a function of scale (wavenumber)

$$\Delta_h^2(k) \sim \left(\frac{V}{m_{\rm pl}^4}\right)_{aH=k}$$
 (12)

- evaluated at "horizon crossing" aH = k
- directly probes inflation potential $V(\phi)$!
- compare to density ("scalar") perturbations: tensor-to-scalar ratio

$$r = \frac{\Delta_h^2}{\Delta_\Phi^2} = 16\epsilon \tag{13}$$

• for $\epsilon \ll 1$, expect $r \ll 1$: scalar dominates