Astro 507
Lecture 34
April 20, 2020

Announcements:

e Problem Set 6 due next Friday April 24
after this: final Problem Set due Finals Week
recall: lowest PF and PS dropped

e Preflight 6a comments posted
feel free to talk to me if you have questions
or find the scope hard to manage

Last time: Welcome to the inhomogeneous universe
presents a wealth of new cosmology probes
at the cost of more complexity observationally and theoretically



Building Intuition: Spherical Collapse

consider idealized initial conditions
“top hat” Universe

e spherical, uniform density o, background universe

e embedded in flat, matter-dom universe
with “background” density ppq
(“compensated” by surrounding
underdense shell)

spherical collapse model a cosmological

workhorse

a nonlinear problem with analytic solution!

P>p,,

Given: initial density contrast §; < 1 at some ¢t;

Want to calculate: density contrast 6(t)

lucky break—Newton’s “iron sphere” /Gauss' law/Birkhoff’s:
in spherical matter distribution, interior ignorant of exterior
= overdense region evolves exactly as closed universe!



PS6: solution is parametric (cycloid)

a(0) = an;ax(l — cos6) (1)
HO) = ™9 _sing) (2)

(3)

evolution parameter: ‘“development angle” 6

Q. a,t for0 =07 0 =n7 0 =2n7 Q. so what will this look like?



Spherical Overdensity in Matter-Dominated Universe
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Q). describe overdensity evolution qualitatively?
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SphericaI‘Overdensity in Matter—Dominateq Universe
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e initially expand with Universe

e but extra gravity in overdensity slows expansion

e reach max expansion at tmax, then begin collapse
“turnaround’” epoch

e formally, collapse (to a point!) at t.o = 2tmax

Q: what really happens when t 2 teo) 7



Spherical Collapse: Fate in Real Universe

Formal spherical collapse final state: collapse to a point!
“subuniverse” goes to big crunch!

e in reality: after turnaround, infalling matter virializes
marks birth of halo as collapsed object

e Note: Brooklyn is not expanding! Nor is SS, MW, LG
Q. what is criterion not to expand?

Beyond the formal solution:
e after virialized, halo still overdense

— neighboring shells fall in

— mass continues to grow by accretion!
e in real life: mergers too



Intermission: Questions?




Quantifying Large-Scale Structure

Observed galaxy distribution random
location, form of individually galaxies unpredictable
but clearly correlations, characteristic scales
reflects randomness of initial conditions
demands a fundamentally |statistical | treatment

Statistical description of cosmic density fields

consider, e.g., mass density p(t, ¥)

not only random, but also continuous

yet most observations are of discrete objects
galaxies, clusters, etc.

WWww: sSlices of the Universe

Q. how to address this?
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Method I: Fluctuations of Counts in Cells
fix a lengthscale A\ — volume V = \3
divide patch of U. into cells of this size

then can define avg density (p;) in each box i
or more observationally: galaxy count N; in box
then look at statistical properties of N; distribution

assume: different boxes (p;), (pg) initially indep
quickly independence lost Q: why?

but want a characterization in which different elements
(“realizations” ) are independent
Q. how to do this7
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Problem: neighboring cells affect each other
e.g., overdensities drain underdensities next door
— evolution immediately couples cells

this is useful, and is done

but worthwhile to find more approaches:
all have some limitations

Q. suggestions?



Quantifying Structure: Smooth Density Field

overdense
Q
. oy pbg \ /\f\ i
e fix a lengthscale A @ v —
— volume V ~ A3 S \)\J \J
e
e smooth or coarse-grain 2 underdense
. . o
the density over this scale 2
0
0 —
position

e study density fluctuations around cosmic mean
i.e., departures from “background” density ppq(t)
e repeat for different scales L

=
=

Q. How to quantify fluctuations?
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Quantifying Density Fluctuations

Given p(t, ), define

mean (average) density (p) = (p(t,Z)) = pprw (t): “background”
(suppress t hereafter)

density fluctuation dp(Z) = p(Z) — (p)

density contrast

p (p)
where 6 # dpirac!
Q: possible range of § values?
Q: what is (§)7
Q. how does cosmic expansion affect 67
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key measure of cosmic structure: ‘@ overdense
density contrast § /\ /\
) xr) — > f\ L
P <'0> @ underdens
where average is over large volume V

\

position

Q: what is the order-of-magnitude of the density contrast in this
room? of the Galactic ISM?7?

by definition: (§) = [d3z (%) = 0

would like to study structures on different cosmic lengthscales A\
Q: how to do this using density contrast?



GT

Spherical Collapse Revisited

in spherical collapse model we can calculate overdensity:
since p < 1/a3

_ et L (apg\?
5(t)—pbg(t) 1 (a) 1 (5)

with apg o t2/3 the matter-dom background
— exact nonlinear solution (pre-virial)

For small t, to first order a(t) ~ t%/3 = apg(t):
recover background result; 6(¢t) =0
PS6—to second order: a(t) = apg(t)[1 — (12t /tcon)?/3/20]

3 (12xt\?/3
50 % o (120 =60 (6)

“linearized” density contrast: 8, (t) o t2/3 o apg
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Spherical Overc;lensity in Matter—Dominated Univlerse

— nonlinear
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Very useful result:

3
Snonlin(t) = (aabgl.> —1 (7)
nonlin
2/3
3 [(12xt
din(t) ~ 5 (t :) (8)
co

connects full nonlinear result with linear counterpart
— maps between the two

Spherical Overdensity in Matter-Dominated Universe

e at turnaround — nonlinear
&5t = linearized
Ononlin = (677)2/43 —1=4.6 <|1°|‘
but &, = 1.06 =4 S
e including virialization (PS6): £ g
Ononlin ~ 180, but djj5 = 1.69 > i 610 =169
~  defines a critical linear overdensity §
Q: why useful?
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Strategy: given initial linear density field §;

e evolve perturbations with linear growth 6,;,(%)

e identify linearly extrapolated perturbations with §;,(¢) > 1.69
= these will be collapsed objects by time t!

collapsed

lesson: in linearized 6)n(tg)
a ‘“‘cut” at 6. = 1.69
divides virialized vs nonvirialized

not collapsed

linearized density contrast

position

also: in a nonlinear field, can use d,j ~ 180
as working definition of collapsed structure
good for comparing theory, observation Q: procedure?

=
00



Nonlinear Evolution: Lessons from Spherical Collapse

o1

Qualitatively
> overdensity evolves as closed ‘subuniverse”
> starts expanding, but slower than cosmic background
pulls away from Hubble flow: reach max expansion, then
turnaround
> virialize — form bound object
> no further expansion, except due to accretion, merging

Quantitatively

> can compute both §,;,(¢) and exact 6(t)
gives mapping from easy to (more) correct

> collapse/virialization when |§;j, = 1.69 and § = 1872 ~ 180
recipe for forecasting structures in initial field djnit < 1
recipe for defining halos: region surrounding density peak

and having overdensity dp/p ~ 180

Given these, can devise analytical tools to describe
distribution of structures




