Astro ⁵⁰⁷ Lecture ³⁴April 20, ²⁰²⁰

Announcements:

 $\overline{}$

- Problem Set ⁶ due next Friday April ²⁴ after this: final Problem Set due Finals Weekrecall: lowest PF and PS dropped
- Preflight 6a comments postedfeel free to talk to me if you have questions or find the scope hard to manage

Last time: Welcome to the inhomogeneous universepresents ^a wealth of new cosmology probes at the cost of more complexity observationally and theoretically

Building Intuition: Spherical Collapse

consider idealized initial conditions "top hat" Universe

- \bullet spherical, uniform density ρ
- embedded in flat, matter-dom universewith "background" density $\rho_{\textsf{bg}}$ ("compensated" by surroundingunderdense shell)

workhorse

 \overline{C}

^a nonlinear problem with analytic solution!

Given: initial density contrast $\delta_i \ll 1$ at some t_i Want to calculate: density contrast $\delta(t)$ lucky break–Newton's "iron sphere"/Gauss' law/Birkhoff 's: in spherical matter distribution, interior ignorant of exterior \Rightarrow overdense region evolves exactly as closed universe!

PS6: solution is parametric (cycloid)

$$
a(\theta) = \frac{a_{\text{max}}}{2} (1 - \cos \theta) \tag{1}
$$

$$
t(\theta) = \frac{t_{\max}}{\pi} (\theta - \sin \theta) \tag{2}
$$

evolution parameter: "development angle" θ

Q: a, t for $\theta = 0$? $\theta = \pi$? $\theta = 2\pi$? Q: so what will this look like?

4 Q: describe overdensity evolution qualitatively?

• initially expand with Universe

 σ

- but extra gravity in overdensity slows expansion
- reach max expansion at t_{max} , then begin collapse "turnaround" epoch
- formally, collapse (to a point!) at $t_{\text{coll}} = 2t_{\text{max}}$

Q: what really happens when $t \gtrsim t_{\mathsf{coll}}$?

Spherical Collapse: Fate in Real Universe

Formal spherical collapse final state: *collapse to a point!* "subuniverse" goes to big crunch!

- in reality: after turnaround, infalling matter virializes marks birth of halo as collapsed object
- Note: Brooklyn is not expanding! Nor is SS, MW, LGQ: what is criterion not to expand?

Beyond the formal solution:

- after virialized, halo still overdense
	- \rightarrow neighboring shells fall in
	- \rightarrow mass continues to grow by accretion!
in real life: mergers too
- \circ
- in real life: mergers too

Intermission: Questions?

Quantifying Large-Scale Structure

Observed galaxy distribution random

- ⊲ location, form of individually galaxies unpredictablebut clearly correlations, characteristic scales
- ⊳ reflects randomness of initial conditions
- ⊳ demands a fundamentally <mark>statistical</mark> treatment

Statistical description of cosmic density fields

consider, e.g., mass density $\rho(t,\vec{x})$ not only *random*, but also continuous yet most observations are of *discrete* objects galaxies, clusters, etc. www: slices of the Universe

 ∞

Q: how to address this?

Method I: Fluctuations of Counts in Cellsfix a lengthscale $\lambda \to$ volume $V=\lambda^3$ divide patch of U. into cells of this size

then can define avg density $\langle\rho_i\rangle$ in each box i or more observationally: galaxy count N_i in box then look at statistical properties of N_i distribution

assume: different boxes $\langle\rho_i\rangle$, $\langle\rho_k\rangle$ initially indep quickly independence lost Q : why?

but want ^a characterization in which different elements ("realizations") are independent $Q:$ how to do this?

Problem: neighboring cells affect each other e.g., overdensities drain underdensities next door \rightarrow evolution immediately couples cells

this is useful, and is done

but worthwhile to find more approaches: all have some limitations

Q: suggestions?

Quantifying Structure: Smooth Density Field

- **study density fluctuations** around cosmic mean i.e., departures from "background" density $\rho_\mathsf{bg}(t)$
- repeat for different scales L

11

Q: How to quantify fluctuations?

Quantifying Density Fluctuations

Given $\rho(t,\vec x)$, define mean (average) density $\langle \rho \rangle=\langle \rho(t,\vec{x})\rangle=\rho_\mathsf{FRW}(t)$: "background" (suppress t hereafter) density fluctuation $\delta \rho(\vec{x}) = \rho(\vec{x}) - \langle \rho \rangle$ density contrast

$$
\delta(\vec{x}) = \frac{\delta \rho}{\rho} = \frac{\rho(\vec{x}) - \langle \rho \rangle}{\langle \rho \rangle} \tag{4}
$$

where $\delta\neq\delta_\mathsf{Dirac}$ Q : possible range of δ values? !
! Q : what is $\langle \delta \rangle$? Q : how does cosmic expansion affect δ ?

13

key measure of cosmic structure: density contrast

$$
\delta(\vec{x}) = \frac{\delta \rho}{\rho} \equiv \frac{\rho(\vec{x}) - \langle \rho \rangle}{\langle \rho \rangle} \in (-1, \infty)
$$

where average is over large volume V

Q: what is the order-of-magnitude of the density contrast in this room? of the Galactic ISM?

by definition: $\langle\delta\rangle=\frac{1}{V}$ $\frac{1}{V} \int d^3x \, \delta(\vec{x}) = 0$

14

would like to study structures on different cosmic lengthscales λ Q: how to do this using density contrast?

Spherical Collapse Revisited

in spherical collapse model we can calculate overdensity: since $\rho\propto 1/a^3$

$$
\delta(t) = \frac{\rho(t)}{\rho_{\text{bg}}(t)} - 1 = \left(\frac{a_{\text{bg}}}{a}\right)^3 - 1\tag{5}
$$

with $a_\mathsf{bg} \propto t^2$ \rightarrow exact nonlinear solution (pre-virial) $\frac{2}{ }$ ³ the matter-dom background

For small t , to first order $a(t) \sim t^{2/3}$ recover background result; $\delta(t)=0$ $3=a_{\text{bg}}(t)$: PS6–to second order: $a(t) = a_{\text{bg}}(t)$ [1 $-(12\pi t/t_{\rm coll})^2$ $\frac{2}{ }$ 3 $^{3}/20]$

$$
\delta(t) \approx \frac{3}{20} \left(\frac{12\pi t}{t_{\text{coll}}} \right)^{2/3} = \delta_{\text{lin}}(t) \tag{6}
$$

15

"linearized" density contrast: $\delta_{\sf lin}(t) \propto t^{2/3}$ 3 $\propto a_\mathsf{bg}$

Very useful result:

$$
\delta_{\text{nonlin}}(t) = \left(\frac{a_{\text{bg}}}{a_{\text{nonlin}}}\right)^3 - 1 \tag{7}
$$
\n
$$
\delta_{\text{lin}}(t) \approx \frac{3}{20} \left(\frac{12\pi t}{t_{\text{coll}}}\right)^{2/3} \tag{8}
$$

 connects full nonlinear result with linear counterpart \rightarrow maps between the two

• at turnaround

17

 δ nonlin = $(6\pi)^2$ but $\delta_{\sf lin} = 1.06$ $^{2}/4^{3}$ $-1 = 4.6$

• including virialization (PS6): δ nonlin ≈ 180 , but $\delta_{\sf lin} = 1.69$ defines ^a critical linear overdensityQ: why useful?

Strategy: *given initial linear density field* δ_i

- \bullet evolve perturbations with linear growth $\delta_{\sf lin}(t)$
- \bullet identify linearly extrapolated perturbations with $\frac{\delta_{\sf lin}(t) >}{}$ \Rightarrow these will be collapsed objects by time $t!$

¹.⁶⁹

also: in a *nonlinear field*, can use $\delta_{\mathsf{vir}} \sim 180$ as working *definition* of collapsed structure good for comparing theory, observation Q: procedure?

 $\overline{5}$

Nonlinear Evolution: Lessons from Spherical Collapse

Qualitatively

⊳ overdensity evolves as closed "subuniverse"

⊲ starts expanding, but slower than cosmic background

 pulls away from Hubble flow: reach max expansion, thenturnaround

⊳ virialize → form bound object
⊳ no further expansion, except

⊲ no further expansion, except due to accretion, merging

Quantitatively

19

 \triangleright can compute both $\delta_{\sf lin}(t)$ and exact $\delta(t)$ gives mapping from easy to (more) correct
collanse (virialization when $\delta_0 = 1.69$ and

 \triangleright collapse/virialization when $\delta_{\sf lin} = 1.69$ and $\delta = 18\pi^2$ recipe for forecasting structures in initial field $\delta_{\mathsf{init}}\ll1$ $\frac{2}{10} \simeq 180$ the contract of recipe for defining halos: region surrounding density peakand having overdensity $\delta\rho/\rho \sim 180$

* Given these, can devise analytical tools to describe distribution of structures