
Astro 507

Lecture 35

April 22, 2020

Announcements:

• Problem Set 6 extended Monday April 27

after this: final Problem Set due Finals Week

recall: lowest PF and PS dropped

can drop Finals Week PS

Last time:

spherical collapse model

Q: what’s that? assumptions?

Q: behavior? lessons? why useful?

quantifying density perturbations

• many ways to do this: an ongoing open question

• given (smoothed) density field ρ(~x)
useful to define density contrast δ(~x)
Q: what’s that?
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Spherical Overdensity in Matter-Dominated Universe

overdensity

background universe

• initially expand with Universe

• but extra gravity in overdensity slows expansion

• reach max expansion at tmax, then begin collapse

“turnaround” epoch

• formally, collapse (to a point!) at tcoll = 2tmax

• in reality: after turnaround, infalling matter virializes

marks birth of halo as collapsed object
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Quantifying Density Fluctuations

Given ρ(t, ~x), define

mean (average) density 〈ρ〉 = 〈ρ(t, ~x)〉 = ρFRW(t): “background”

(suppress t hereafter)

density fluctuation δρ(~x) = ρ(~x)− 〈ρ〉
density contrast

δ(~x) =
δρ

ρ
=

ρ(~x)− 〈ρ〉
〈ρ〉

(1)

where δ 6= δDirac!

Q: possible range of δ values?

Q: what is 〈δ〉?
Q: how does cosmic expansion affect δ?
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key measure of cosmic structure:

density contrast

δ(~x) =
δρ

ρ
≡ ρ(~x)− 〈ρ〉

〈ρ〉
∈ (−1,∞)

where average is over large volume V
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Q: what is the order-of-magnitude of the density contrast in this

room? of the Galactic ISM?

by definition: 〈δ〉 = 1
V

∫

d3x δ(~x) = 0

would like to study structures on different cosmic lengthscales λ

Q: how to do this using density contrast?
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Density is Destiny: Inhomogeneous Version
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Q: given these initial conditions, what happens?

Q: where will be first collapsed objects? first voids?

Q: what δ needed to have a bound structure?

5



Spherical Collapse Revisited

in spherical collapse model we can calculate overdensity:

since “subuniverse” has ρ ∝ 1/a3

δ(t) =
ρ(t)

ρbg(t)
− 1 =

(

abg
a

)3
− 1 (2)

with abg ∝ t2/3 the matter-dom background

→ exact nonlinear solution (pre-virial)

For small t, to first order a(t) ∼ t2/3 = abg(t):

recover background result; δ(t) = 0

PS6–to second order: a(t) = abg(t)[1− (12πt/tcoll)
2/3/20]

δ(t) ≈ 3

20

(

12πt

tcoll

)2/3

= δlin(t) (3)

“linearized” density contrast: δlin(t) ∝ t2/3 ∝ abg
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Spherical Overdensity in Matter-Dominated Universe

nonlinear

linearized
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Very useful result:

δnonlin(t) =

(

abg
anonlin

)3

− 1 (4)

δlin(t) ≈ 3

20

(

12πt

tcoll

)2/3

(5)

connects full nonlinear result with linear counterpart

→ maps between the two

• at turnaround

δnonlin = (6π)2/43 − 1 = 4.6

but δlin = 1.06

• including virialization (PS6):

δnonlin ≈ 180, but δlin = 1.69

defines a critical linear overdensity

Q: why useful?
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Strategy: given initial linear density field δi
• evolve perturbations with linear growth δlin(t)

• identify linearly extrapolated perturbations with δlin(t) > 1.69

⇒ these will be collapsed objects by time t!

lesson: in linearized δlin(t0)

a “cut” at δc = 1.69

divides virialized vs nonvirialized

δ
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also: in a nonlinear field, can use δvir ∼ 180

as working definition of collapsed structure

good for comparing theory, observation Q: procedure?
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Nonlinear Evolution: Lessons from Spherical Collapse

Qualitatively

⊲ overdensity evolves as closed “subuniverse”

⊲ starts expanding, but slower than cosmic background

pulls away from Hubble flow: reach max expansion, then

turnaround

⊲ virialize → form bound object

⊲ no further expansion, except due to accretion, merging

Quantitatively

⊲ can compute both δlin(t) and exact δ(t)
gives mapping from easy to (more) correct

⊲ collapse/virialization when δlin = 1.69 and δ = 18π2 ≃ 180

recipe for forecasting structures in initial field δinit ≪ 1

recipe for defining halos: region surrounding density peak

and having overdensity δρ/ρ ∼ 180

⋆ Given these, can devise analytical tools to describe

distribution of structures

1
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Intermission: Movies!

1
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Theory of Cosmological Perturbations

Treat structure formation as initial value problem

• given initial conditions: “seeds”

i.e., adopt spectrum of primordial density perturbations

prescription for initial ρi(~x), i ∈ baryons, radiation, DM, DE...

e.g., inflation: scale invariant, gaussian, adiabatic

• follow time evolution of ρi(~x)–i.e., δi for each species i

• compare with observed measures of structure

⋆ agreement (or lack thereof) constrains primordial seeds

e.g., dark matter, inflation, quantum gravity, ...

We want to describe dynamics of cosmic inhomogeneities

Q: which forces relevant? which irrelevant? which scary?1
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Dynamics Cosmological Perturbations: Overview

Forces/interactions in perturbed, inhomogeneous universe

involve same cosmic particle/field content

as smooth/unperturbed universe

but: can manifest in new/different ways due to spatial variations

Definitely relevant forces on perturbations

• gravity: overdensities have extra attraction

over that of “background” FRW universe

• pressure: baryons have thermal pressure P = nkT

photons exert radiation pressure on baryons pre-decoupling

pressure gradients present, unlike in homog. background

Probably irrelevant forces on perturbations (will ignore)

• neutrino interactions with self, other species

• dark matter non-gravity interactions with self, or other species

1
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Scary forces on perturbations (will ignore for now, but worry about)

• if dark energy is a field φ, perturbations δφ

exert inhomogeneous negative pressure

why scary? unknown underlying physics

• magnetic fields → pressure, MHD forces

why scary? unknown initial conditions (primordial B?)

At minimum: we will want to describe baryons & dark matter

as inflationary perturbations grow thru radiation, matter eras

→ gravity and photon, baryon pressure mandatory

schematically:

acceleration = –gravity + pressure (6)

Q: implications for baryons vs dark matter?

For the species and forces we choose to follow:

Q: how can these be described exactly? approximately?

Q: what formalism needed?

1
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Dynamics of Cosmological Perturbations: Toolbox

need dynamics of inhomogeneous “fluids”

in expanding FLRW background

⋆ full treatment: general relativistic perturbation theory

mandatory for some results Q: which?

⋆ good-enough treatment: Newtonian dynamics is FLRW

as usual, benefits: intuition & simplicity

costs: limited range of validity

1
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Newtonian Fluid Dynamics & Self-Gravity

Each cosmic species is “fluid” described by fields

• mass density ρ(~x, t)

• velocity ~v(~x, t)

• pressure P(~x, t): from equation of state P = P(ρ, T)

In Newtonian limit: dynamics governed by fluid equations

1. mass conservation: continuity

2. “F = ma”: Euler

3. inverse square gravity: Poisson

1
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Fluid Equations: Mass Conservation

1. mass conservation (continuity)

∂tρ+∇ · (ρ~v) = 0 (7)

• formally identical to EM continuity equation Q: why?

• coordinates: fixed in space (don’t move with fluid: Eulerian)

Q: if fluid at rest, ~v = 0, what happens?

• in coordinates that move with fluid:

need “convective derivative”

dρ(~x, t)/dt = (∂t + ẋi∂i)ρ (8)

= ∂tρ+ ~v · ∇ρ (9)
cont
= −ρ∇ · ~v (10)

Q: when does ρ increase? why?

1
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Fluid Equations: Forces

include forces:

• pressure P

• gravity: acceleration ~g = −∇Φ, potential Φ

2. Euler Equation: “F = ma”

ρd~v/dt = ρ∂t~v + ρ~v · ∇~v (11)

= −∇P + ρ~g = −∇P − ρ∇Φ (12)

Q: what if ~g = Φ = P = 0?

Q: what if ~g = Φ = 0, and spatially uniform P(~x) = P0?

Q: what if P = 0 but ~g 6= 0? Hint–this is dark matter’s life!

Q: what direction is pressure force?

Q: what determines Φ?

1
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Fluid Equations: Newtonian Gravity

3. Newtonian gravity: inverse square law

encoded in Poisson equation

∇2Φ = 4πGρ (13)

equivalent to Gauss’ law ∇ · ~g = −4πGρ

To summarize: fluid equations

∂tρ+∇ · (ρ~v) = 0 (14)

ρ∂t~v + ρ~v∇ · ~v = −∇P − ρ∇Φ (15)

∇2Φ = 4πGρ (16)

These are general (albeit Newtonian only)

→ now apply to the Universe

1
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Linear Theory 0: Newtonian, Non-expanding

consider static, uniform (infinite) distribution of matter

and introduce small perturbations

ρ(~x) = ρ0 [1 + δ(~x)] (17)

v(~x) = ~u(~x) (18)

Φgrav(~x) = Φ0 +Φ1(~x) (19)

where δ ≪ 1, and Φ1, ~u “small”

we want: time development of (initially) small perturbations

following Sir James Jeans

many key ideas of full expanding-Universe GR result

already appear here!

Newtonian fluid equations: continuity (mass conservation)

∂tρ+∇ · (ρ~v) = 0 (20)

ρ0δ̇ + ρ0∇ · ~u ≈ 0 (21)

2
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Euler (“F = ma”);

ρd~v/dt = ρ∂t~v + ρ~v · ∇~v = −∇p− ρ∇Φ (22)

ρ0~̇u ≈ −ρ0c
2
s∇δ − ρ0∇Φ1 (23)

where adiabatic sound speed c2s = ∂p/∂ρ

Gravity: Poisson (Gauss’ law = inverse square force)

∇2Φ = 4πGρ (24)

∇2Φ1 ≈ 4πGρ0δ (25)

note inconsistency=cheat! ∇2Φ0 6= 4πGρ0: “Jeans swindle”

can combine to single eq for linearized density contrast:

∂2t δ − c2s∇2δ = 4πGρ0δ (26)

Q: behavior for pressureless fluid? “switched-off” gravity?

physical significance? important scales?
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Density contrast evolves as

∂2t δ − c2s∇2δ = 4πGρ0δ (27)

solutions are of the form

δ(t, ~x) = Aei(ωt−
~k·~x) ≡ D(t) δ0(~x) (28)

where δ0(~x) = e−i~k·~x is init Fourier amp

and time evolution is set by exponent ω(k):

ω2 = c2sk
2 − 4πGρ0 ≡ c2s(k

2 − k2J) =

(

cs

kJ

)2 [(
λJ
λ

)2

− 1

]

(29)

key scale: Jeans length

kJ =

√
4πGρ0
cs

λJ =
cs

√

Gρ0/π
∼ csτfreefall (30)

associate Jeans mass: M(λJ/2) = 4π/3 ρ0(π/kJ)
3 ∼ c3s/G

3/2ρ
1/2
0 —

Q: physically, what expect for λ < λJ? λ > λJ?

2
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perturbation growth δk(t) = δk(t0)e
iωt, with

ω2 = c2sk
2 − 4πGρ0 ≡ c2s(k

2 − k2J) (31)

Jeans length ∼ csτfreefall: sound travel distance in freefall time

→ λ/λJ ∼ number of pressure wave crossings during freefall

if k > kJ so λ < λJ, small scales: pressure can repel contraction

ω real: oscillations about hydrostatic equilib

if k < kJ so λ > λJ, large scales: pressure ineffective

ω imaginary, exponential collapse

runaway perturbation growth D(t) = eωt ∼ e+t/tfreefall

(also an uninteresting decaying mode e−ωt)

Q: but what about expanding Universe?

should grav instability be stronger or weaker?

2
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Linear Theory I: Newtonian Analysis in Expanding U.

Recall: Newtonian analysis legal for small scales, weak gravity

→ okay for linear analysis inside Hubble length

apply to matter-dominated U.

Coordinate choices

Eulerian time-indep grid ~x fixed in physical space

expansion moves unperturbed fluid elts past as ~x(t) = a(t)~r
Lagrangian coords ~r time-indep but expand in physical space

following fluid element: locally comoving

⇒ spatial gradients: ∇~x = (1/a)∇~r

Unperturbed (zeroth order) eqs,

using ρ0 = ρ0(t), ~v0 = ȧ
a~x = ȧ~r

∂tρ0 +∇ · (ρ0~v) = ρ̇0 + ρ0
ȧ

a
∇~x · ~x = 0 (32)

ρ̇0 +3
ȧ

a
ρ0 = 0 ⇒ ρ0 ∝ a−3 (33)

2
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Poisson:

∇2Φ0 =
1

x2
∂x(x∂xΦ0) = 4πGρ0 ⇒ Φ0 =

2πGρ0
3

x2 =
2πGρ0

3
a2r2

∇~xΦ0 =
4πGρ0

3
~x ∇~rΦ0 =

4πGρ0
3

a~r

Euler

d(ȧ~r)/dt = ä~r =
ä

a
~x = −4πGρ0

3
~x (34)

ä

a
= −4πGρ0

3
(35)

Fried accel; with continuity → Friedmann

Zeroth order fluid equations → usual expanding U

in non-rel approximation

2
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Now add perturbations ρ1 = ρ0δ, ~v1, Φ1

simplest to use comoving (Lagrangian) coords

follow observers in unperturbed Hubble flow

perturbation fluid elements ~x(t) = a(t)~r(t)

peculiar fluid velocity ~v1(t) = a(t)~u(t)

plug in, keep only terms linear in perturbations (∇ = ∇~r)

→ perturbation evolution to first (leading, linear) order

~̇u+2
ȧ

a
~u = − 1

a2
∇Φ1 − 1

a

∇δp

ρ0
(36)

δ̇ = −∇ · ~u (37)

consider the case of Φ1 = 0 and δp = 0, but initial ~u 6= 0

Q: what does this represent physically? what happens? why?

Q: implications for the situation when Φ1 6= 0 and δρ 6= 0?

2
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Velocity Perturbation Evolution

peculiar velocity ~v1 = a(t) ~u evolves as

~̇u+2
ȧ

a
~u = − 1

a2
∇Φ1 − 1

a

∇δp

ρ0
(38)

if no pressure nor density perturbations

then u̇ = −2Hu, and so u ∝ 1/a2

and physical speed evolves as v1 ∝ 1/a

but recall: long ago derived FLRW test particle speed

evolves as ~v(t) = ~v0/a(t)

→ pressureless fluid’s peculiar vel redshifts same as free particle

→ expansion acts as “drag” on particles

if Φ1, δp 6= 0: Hubble “drag” still present

removes kinetic energy from collapsing objects

allows total energy to change (decrease) with time

→ binding increases!
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Linearized Density Evolution

now look for plane-wave solutions ↔ write as Fourier modes

e.g., δ(~r) ∼ e−i~k·~r, with ~k comoving wavenumber

δ̈k +2
ȧ

a
δ̇k =

(

4πGρ0 − c2sk
2

a2

)

δk (39)

if no expansion (a = 1, ȧ = 0), recover Jeans solution

with expansion:

• Hubble “friction” or “drag” −2Hδ̇ opposes density growth

• still critical Jeans scale: kJ =
√

4πGρ0a
2/c2s

expect oscillations on small scales, collapse on larger
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