Astro 507 Lecture 35 April 22, 2020

Announcements:

• Problem Set 6 extended Monday April 27 after this: final Problem Set due Finals Week recall: lowest PF and PS dropped can drop Finals Week PS

Last time:

spherical collapse model

Q: what's that? assumptions?

Q: behavior? lessons? why useful?

quantifying density perturbations

- many ways to do this: an ongoing open question
- given (smoothed) density field $\rho(\vec{x})$ useful to define *density contrast* $\delta(\vec{x})$ *Q: what's that?*

• initially expand with Universe

N

- but extra gravity in overdensity slows expansion
- reach max expansion at t_{max} , then begin collapse "turnaround" epoch
- formally, collapse (to a point!) at $t_{coll} = 2t_{max}$
- in reality: after turnaround, infalling matter virializes marks birth of halo as collapsed object

Quantifying Density Fluctuations

Given $\rho(t, \vec{x})$, define mean (average) density $\langle \rho \rangle = \langle \rho(t, \vec{x}) \rangle = \rho_{\mathsf{FRW}}(t)$: "background" (suppress t hereafter) density fluctuation $\delta \rho(\vec{x}) = \rho(\vec{x}) - \langle \rho \rangle$ density contrast

$$\delta(\vec{x}) = \frac{\delta\rho}{\rho} = \frac{\rho(\vec{x}) - \langle \rho \rangle}{\langle \rho \rangle} \tag{1}$$

where $\delta \neq \delta_{\text{Dirac}}$! *Q: possible range of* δ *values? Q: what is* $\langle \delta \rangle$? *Q: how does cosmic expansion affect* δ ?

ω

Q: what is the order-of-magnitude of the density contrast in this room? of the Galactic ISM?

by definition: $\langle \delta \rangle = \frac{1}{V} \int d^3x \, \delta(\vec{x}) = 0$

would like to study structures on different cosmic lengthscales λ *Q: how to do this using density contrast?*

Density is Destiny: Inhomogeneous Version

СЛ

Q: given these initial conditions, what happens? Q: where will be first collapsed objects? first voids? Q: what δ needed to have a bound structure?

Spherical Collapse Revisited

in spherical collapse model we can calculate overdensity: since "subuniverse" has $\rho \propto 1/a^3$

$$\delta(t) = \frac{\rho(t)}{\rho_{\text{bg}}(t)} - 1 = \left(\frac{a_{\text{bg}}}{a}\right)^3 - 1 \tag{2}$$

with $a_{bg} \propto t^{2/3}$ the matter-dom background \rightarrow exact nonlinear solution (pre-virial)

For small t, to first order $a(t) \sim t^{2/3} = a_{bg}(t)$: recover background result; $\delta(t) = 0$ PS6-to second order: $a(t) = a_{bg}(t)[1 - (12\pi t/t_{coll})^{2/3}/20]$

$$\delta(t) \approx \frac{3}{20} \left(\frac{12\pi t}{t_{\text{coll}}}\right)^{2/3} = \delta_{\text{lin}}(t)$$
(3)

σ

"inearized" density contrast: $\delta_{\rm lin}(t) \propto t^{2/3} \propto a_{\rm bg}$

 \neg

Very useful result:

$$\delta_{\text{nonlin}}(t) = \left(\frac{a_{\text{bg}}}{a_{\text{nonlin}}}\right)^3 - 1 \qquad (4)$$

$$\delta_{\text{lin}}(t) \approx \frac{3}{20} \left(\frac{12\pi t}{t_{\text{coll}}}\right)^{2/3} \qquad (5)$$

connects full nonlinear result with linear counterpart \rightarrow maps between the two

• at turnaround

 ∞

 $\delta_{\rm nonlin} = (6\pi)^2/4^3 - 1 = 4.6$ but $\delta_{\rm lin} = 1.06$

- including virialization (PS6): $\delta_{\text{nonlin}} \approx 180$, but $\delta_{\text{lin}} = 1.69$
- defines a critical linear overdensity Q: why useful?

Strategy: given initial linear density field δ_i

- evolve perturbations with linear growth $\delta_{\text{lin}}(t)$
- identify linearly extrapolated perturbations with $\delta_{\text{lin}}(t) > 1.69$ \Rightarrow these will be collapsed objects by time t!

- also: in a *nonlinear field*, can use $\delta_{\rm vir} \sim 180$ as working *definition* of collapsed structure
- good for comparing theory, observation *Q: procedure?*

Nonlinear Evolution: Lessons from Spherical Collapse

Qualitatively

> overdensity evolves as closed "subuniverse"

starts expanding, but slower than cosmic background

pulls away from Hubble flow: reach max expansion, then turnaround

 \triangleright virialize \rightarrow form bound object

▷ no further expansion, except due to accretion, merging

Quantitatively

10

▷ can compute both $\delta_{\text{lin}}(t)$ and exact $\delta(t)$ gives mapping from easy to (more) correct

▷ collapse/virialization when $\delta_{\text{lin}} = 1.69$ and $\delta = 18\pi^2 \simeq 180$ recipe for forecasting structures in initial field $\delta_{\text{init}} \ll 1$ recipe for defining halos: region surrounding density peak and having overdensity $\delta \rho / \rho \sim 180$

★ Given these, can devise analytical tools to describe distribution of structures

Intermission: Movies!

Theory of Cosmological Perturbations

Treat structure formation as initial value problem

• given *initial conditions*: "seeds"

12

i.e., adopt spectrum of primordial density perturbations prescription for initial $\rho_i(\vec{x})$, $i \in$ baryons, radiation, DM, DE... e.g., inflation: scale invariant, gaussian, adiabatic

- follow *time evolution* of $\rho_i(\vec{x})$ -i.e., δ_i for each species *i*
- compare with observed measures of structure
- ★ agreement (or lack thereof) constrains primordial seeds
 e.g., dark matter, inflation, quantum gravity, ...

We want to describe dynamics of cosmic inhomogeneities *Q: which forces relevant? which irrelevant? which scary?*

Dynamics Cosmological Perturbations: Overview

Forces/interactions in perturbed, inhomogeneous universe involve same cosmic particle/field content as smooth/unperturbed universe

but: can manifest in new/different ways due to spatial variations

Definitely relevant forces on perturbations

- *gravity*: overdensities have extra attraction over that of "background" FRW universe
- pressure: baryons have thermal pressure P = nkTphotons exert radiation pressure on baryons pre-decoupling pressure gradients present, unlike in homog. background

Probably irrelevant forces on perturbations (will ignore)

• neutrino interactions with self, other species

13

• dark matter non-gravity interactions with self, or other species

Scary forces on perturbations (will ignore for now, but worry about)

- if dark energy is a field ϕ , perturbations $\delta \phi$ exert inhomogeneous *negative* pressure why scary? unknown underlying physics
- magnetic fields \rightarrow pressure, MHD forces why scary? unknown initial conditions (primordial *B*?)

At minimum: we will want to describe baryons & dark matter as inflationary perturbations grow thru radiation, matter eras → gravity and photon, baryon pressure mandatory schematically:

```
acceleration = -gravity + pressure (6)
```

Q: implications for baryons vs dark matter?

For the species and forces we choose to follow:

- *Q: how can these be described exactly? approximately?*
 - Q: what formalism needed?

14

Dynamics of Cosmological Perturbations: Toolbox

need dynamics of inhomogeneous "fluids"

- in expanding FLRW background
- \star full treatment: general relativistic perturbation theory mandatory for some results Q: which?
- ★ good-enough treatment: Newtonian dynamics is FLRW as usual, benefits: intuition & simplicity costs: limited range of validity

Newtonian Fluid Dynamics & Self-Gravity

Each cosmic species is "fluid" described by fields

- mass density $\rho(\vec{x},t)$
- velocity $\vec{v}(\vec{x},t)$
- pressure $P(\vec{x}, t)$: from equation of state $P = P(\rho, T)$

In Newtonian limit: dynamics governed by **fluid equations**

- 1. mass conservation: continuity
- 2. "F = ma": Euler
- 3. inverse square gravity: Poisson

Fluid Equations: Mass Conservation

1. *mass conservation* (continuity)

$$\partial_t \rho + \nabla \cdot (\rho \vec{v}) = 0 \tag{7}$$

- formally identical to EM continuity equation Q: why?
- coordinates: fixed in space (don't move with fluid: Eulerian) Q: if fluid at rest, $\vec{v} = 0$, what happens?
- in coordinates that move with fluid: need "convective derivative"

$$d\rho(\vec{x},t)/dt = (\partial_t + \dot{x}_i \partial_i)\rho \tag{8}$$

$$= \partial_t \rho + \vec{v} \cdot \nabla \rho \tag{9}$$

$$\stackrel{\text{cont}}{=} -\rho \nabla \cdot \vec{v} \tag{10}$$

17

Q: when does ρ increase? why?

Fluid Equations: Forces

include forces:

- pressure P
- gravity: acceleration $\vec{g} = -\nabla \Phi$, potential Φ
- 2. Euler Equation: "F = ma"

$$\rho d\vec{v}/dt = \rho \partial_t \vec{v} + \rho \vec{v} \cdot \nabla \vec{v} \tag{11}$$

$$= -\nabla P + \rho \vec{g} = -\nabla P - \rho \nabla \Phi \qquad (12)$$

Q: what if $\vec{g} = \Phi = P = 0$? Q: what if $\vec{g} = \Phi = 0$, and spatially uniform $P(\vec{x}) = P_0$? Q: what if P = 0 but $\vec{g} \neq 0$? Hint-this is dark matter's life! Q: what direction is pressure force?

18

Q: what determines Φ ?

Fluid Equations: Newtonian Gravity

3. Newtonian gravity: inverse square law encoded in **Poisson equation**

$$\nabla^2 \Phi = 4\pi G\rho \tag{13}$$

equivalent to Gauss' law $\nabla \cdot \vec{g} = -4\pi G \rho$

To summarize: fluid equations

$$\partial_t \rho + \nabla \cdot (\rho \vec{v}) = 0 \tag{14}$$

$$\rho \partial_t \vec{v} + \rho \vec{v} \nabla \cdot \vec{v} = -\nabla P - \rho \nabla \Phi \tag{15}$$

$$\nabla^2 \Phi = 4\pi G \rho \tag{16}$$

These are general (albeit Newtonian only) $\stackrel{to}{\sim}$ \rightarrow now apply to the Universe

Linear Theory 0: Newtonian, Non-expanding

consider *static*, uniform (infinite) distribution of matter and introduce small perturbations

$$\rho(\vec{x}) = \rho_0 \left[1 + \delta(\vec{x})\right]$$
(17)

$$v(\vec{x}) = \vec{u}(\vec{x}) \tag{18}$$

$$\Phi_{\text{grav}}(\vec{x}) = \Phi_0 + \Phi_1(\vec{x}) \tag{19}$$

where $\delta \ll 1$, and Φ_1, \vec{u} "small"

we want: time development of (initially) small perturbations following Sir James Jeans many key ideas of full expanding-Universe GR result already appear here!

Newtonian fluid equations: continuity (mass conservation)

20

$$\partial_t \rho + \nabla \cdot (\rho \vec{v}) = 0 \tag{20}$$

$$\rho_0 \dot{\delta} + \rho_0 \nabla \cdot \vec{u} \approx 0 \tag{21}$$

Euler ("F = ma"); $\rho d\vec{v}/dt = \rho \partial_t \vec{v} + \rho \vec{v} \cdot \nabla \vec{v} = -\nabla p - \rho \nabla \Phi \qquad (22)$ $\rho_0 \dot{\vec{u}} \approx -\rho_0 c_s^2 \nabla \delta - \rho_0 \nabla \Phi_1 \qquad (23)$ where adiabatic sound speed $c_s^2 = \partial p / \partial \rho$

Gravity: Poisson (Gauss' law = inverse square force)

$$\nabla^2 \Phi = 4\pi G\rho \qquad (24)$$

$$\nabla^2 \Phi_1 \approx 4\pi G\rho_0 \delta \qquad (25)$$

note inconsistency=cheat! $\nabla^2 \Phi_0 \neq 4\pi G \rho_0$: "Jeans swindle"

can combine to single eq for linearized density contrast:

$$\partial_t^2 \delta - c_s^2 \nabla^2 \delta = 4\pi G \rho_0 \delta \tag{26}$$

[№] Q: behavior for pressureless fluid? "switched-off" gravity? physical significance? important scales? Density contrast evolves as

$$\partial_t^2 \delta - c_s^2 \nabla^2 \delta = 4\pi G \rho_0 \delta \tag{27}$$

solutions are of the form

$$\delta(t, \vec{x}) = A e^{i(\omega t - \vec{k} \cdot \vec{x})} \equiv D(t) \ \delta_0(\vec{x})$$
(28)

where $\delta_0(\vec{x}) = e^{-i\vec{k}\cdot\vec{x}}$ is init Fourier amp and time evolution is set by exponent $\omega(k)$:

$$\omega^2 = c_s^2 k^2 - 4\pi G \rho_0 \equiv c_s^2 (k^2 - k_J^2) = \left(\frac{c_s}{k_J}\right)^2 \left[\left(\frac{\lambda_J}{\lambda}\right)^2 - 1\right] \quad (29)$$

key scale: Jeans length

$$k_J = \frac{\sqrt{4\pi G\rho_0}}{c_s} \quad \lambda_J = \frac{c_s}{\sqrt{G\rho_0/\pi}} \sim c_s \tau_{\text{freefall}} \tag{30}$$

^N associate Jeans mass: $M(\lambda_J/2) = 4\pi/3 \rho_0 (\pi/k_J)^3 \sim c_s^3/G^{3/2} \rho_0^{1/2} - Q$: physically, what expect for $\lambda < \lambda_J$? $\lambda > \lambda_J$?

perturbation growth $\delta_k(t) = \delta_k(t_0)e^{i\omega t}$, with

$$\omega^2 = c_s^2 k^2 - 4\pi G \rho_0 \equiv c_s^2 (k^2 - k_J^2)$$
(31)

Jeans length $\sim c_s \tau_{\text{freefall}}$: sound travel distance in freefall time $\rightarrow \lambda/\lambda_J \sim$ number of pressure wave crossings during freefall

if $k > k_J$ so $\lambda < \lambda_J$, small scales: pressure can repel contraction ω real: oscillations about hydrostatic equilib

if $k < k_J$ so $\lambda > \lambda_J$, large scales: pressure ineffective ω imaginary, exponential collapse runaway perturbation growth $D(t) = e^{\omega t} \sim e^{+t/t_{\text{freefall}}}$ (also an uninteresting decaying mode $e^{-\omega t}$)

© Q: but what about expanding Universe? should grav instability be stronger or weaker?

Linear Theory I: Newtonian Analysis in Expanding U.

Recall: Newtonian analysis legal for small scales, weak gravity \rightarrow okay for linear analysis inside Hubble length apply to matter-dominated U.

Coordinate choices

Eulerian time-indep grid \vec{x} fixed in physical space expansion moves unperturbed fluid elts past as $\vec{x}(t) = a(t)\vec{r}$ Lagrangian coords \vec{r} time-indep but expand in physical space following fluid element: *locally* comoving \Rightarrow spatial gradients: $\nabla_{\vec{x}} = (1/a)\nabla_{\vec{r}}$

Unperturbed (zeroth order) eqs, using $\rho_0 = \rho_0(t)$, $\vec{v}_0 = \frac{\dot{a}}{a}\vec{x} = \dot{a}\vec{r}$

$$\partial_t \rho_0 + \nabla \cdot (\rho_0 \vec{v}) = \dot{\rho_0} + \rho_0 \frac{\dot{a}}{a} \nabla_{\vec{x}} \cdot \vec{x} = 0$$
(32)

$$\dot{\rho}_0 + 3\frac{\dot{a}}{a}\rho_0 = 0 \qquad \Rightarrow \rho_0 \propto a^{-3}$$
 (33)

24

Poisson:

$$\nabla^{2} \Phi_{0} = \frac{1}{x^{2}} \partial_{x} (x \partial_{x} \Phi_{0}) = 4\pi G \rho_{0} \Rightarrow \Phi_{0} = \frac{2\pi G \rho_{0}}{3} x^{2} = \frac{2\pi G \rho_{0}}{3} a^{2} r^{2}$$
$$\nabla_{\vec{x}} \Phi_{0} = \frac{4\pi G \rho_{0}}{3} \vec{x} \qquad \nabla_{\vec{r}} \Phi_{0} = \frac{4\pi G \rho_{0}}{3} a \vec{r}$$

Euler

25

$$\frac{d(\dot{a}\vec{r})}{dt} = \ddot{a}\vec{r} = \frac{\ddot{a}}{a}\vec{x} = -\frac{4\pi G\rho_0}{3}\vec{x}$$
(34)
$$\frac{\ddot{a}}{a} = -\frac{4\pi G\rho_0}{3}$$
(35)

Fried accel; with continuity \rightarrow Friedmann

Zeroth order fluid equations \rightarrow usual expanding U in non-rel approximation

Now add perturbations $\rho_1 = \rho_0 \delta$, \vec{v}_1 , Φ_1

simplest to use comoving (Lagrangian) coords follow observers in unperturbed Hubble flow perturbation fluid elements $\vec{x}(t) = a(t)\vec{r}(t)$ peculiar fluid velocity $\vec{v}_1(t) = a(t)\vec{u}(t)$

plug in, keep only terms linear in perturbations ($\nabla = \nabla_{\vec{r}}$) \rightarrow perturbation evolution to first (leading, linear) order

$$\dot{\vec{u}} + 2\frac{\dot{a}}{a}\vec{u} = -\frac{1}{a^2}\nabla\Phi_1 - \frac{1}{a}\frac{\nabla\delta p}{\rho_0}$$
(36)
$$\dot{\delta} = -\nabla \cdot \vec{u}$$
(37)

consider the case of $\Phi_1 = 0$ and $\delta p = 0$, but initial $\vec{u} \neq 0$

Q: what does this represent physically? what happens? why? Q: implications for the situation when $\Phi_1 \neq 0$ and $\delta \rho \neq 0$?

Velocity Perturbation Evolution

peculiar velocity $\vec{v_1} = a(t) \ \vec{u}$ evolves as

$$\dot{\vec{u}} + 2\frac{\dot{a}}{a}\vec{u} = -\frac{1}{a^2}\nabla\Phi_1 - \frac{1}{a}\frac{\nabla\delta p}{\rho_0}$$
 (38)

if no pressure nor density perturbations then $\dot{u} = -2Hu$, and so $u \propto 1/a^2$ and physical speed evolves as $v_1 \propto 1/a$

but recall: long ago derived FLRW test particle speed evolves as $\vec{v}(t) = \vec{v}_0/a(t)$

 \rightarrow pressureless fluid's peculiar vel redshifts same as free particle

 \rightarrow expansion acts as ''drag'' on particles

27

if $\Phi_1, \delta p \neq 0$: Hubble "drag" still present removes kinetic energy from collapsing objects allows total energy to change (decrease) with time \rightarrow binding increases!

Linearized Density Evolution

now look for plane-wave solutions \leftrightarrow write as Fourier modes e.g., $\delta(\vec{r}) \sim e^{-i\vec{k}\cdot\vec{r}}$, with \vec{k} comoving wavenumber

$$\ddot{\delta}_k + 2\frac{\dot{a}}{a}\dot{\delta}_k = \left(4\pi G\rho_0 - \frac{c_s^2 k^2}{a^2}\right)\delta_k \tag{39}$$

if no expansion $(a = 1, \dot{a} = 0)$, recover Jeans solution

with expansion:

- Hubble "friction" or "drag" $-2H\dot{\delta}$ opposes density growth
- still critical Jeans scale: $k_J = \sqrt{4\pi G \rho_0 a^2/c_s^2}$ expect oscillations on small scales, collapse on larger