Astro 507 Lecture 36 April 24, 2020

Announcements:

• Problem Set 6 extended Monday April 27 after this: final Problem Set due Finals Week recall: lowest PF and PS dropped can drop Finals Week PS

• Preflight 6b due next Friday May 1

draft your Wikipedia upgrade, post for comments have fun, ask if you need advice/help

 \vdash

Last time & PS6 Q2: comparing two spherical collapse solutions

$$\delta_{\text{nonlin}}(t) = \left(\frac{a_{\text{bg}}}{a_{\text{nonlin}}}\right)^3 - 1 \qquad (1)$$

$$\delta_{\text{lin}}(t) \approx \frac{3}{20} \left(\frac{12\pi t}{t_{\text{coll}}}\right)^{2/3} \qquad (2)$$

collapsed

not collapsed

position

at any time t this maps between full nonlinear result with linearized approximation

Strategy: given initial linear density field δ_i

- evolve perturbations with linear growth $\delta_{\text{lin}}(t)$
- identify linearly extrapolated perturbations with $\delta_{\text{lin}}(t) > 1.69$ \Rightarrow these will be collapsed objects by time t!

lesson: in *linearized* $\delta_{\text{lin}}(t_0)$ nearized density contrast δ N a "cut" at $\delta_c = 1.69$ divides virialized vs nonvirialized

Theory of Cosmological Perturbations

Treat structure formation as initial value problem

• given *initial conditions*: "seeds"

i.e., adopt spectrum of primordial density perturbations prescription for initial $\rho_i(\vec{x})$, $i \in$ baryons, radiation, DM, DE... e.g., inflation: scale invariant, gaussian, adiabatic

- follow *time evolution* of $\rho_i(\vec{x})$ -i.e., δ_i for each species *i*
- compare with observed measures of structure
- ★ agreement (or lack thereof) constrains primordial seeds
 e.g., dark matter, inflation, quantum gravity, ...

We want to describe dynamics of cosmic inhomogeneities Q: which forces relevant? which irrelevant? which scary?

Dynamics Cosmological Perturbations: Overview

Forces/interactions in perturbed, inhomogeneous universe involve same cosmic particle/field content as smooth/unperturbed universe

but: can manifest in new/different ways due to spatial variations

Definitely relevant forces on perturbations

- *gravity*: overdensities have extra attraction over that of "background" FRW universe
- pressure: baryons have thermal pressure P = nkTphotons exert radiation pressure on baryons pre-decoupling pressure gradients present, unlike in homog. background

Probably irrelevant forces on perturbations (will ignore)

• neutrino interactions with self, other species

4

• dark matter non-gravity interactions with self, or other species

Scary forces on perturbations (will ignore for now, but worry about)

- if dark energy is a field ϕ , perturbations $\delta \phi$ exert inhomogeneous *negative* pressure why scary? unknown underlying physics
- magnetic fields \rightarrow pressure, MHD forces why scary? unknown initial conditions (primordial *B*?)

At minimum: we will want to describe baryons & dark matter as inflationary perturbations grow thru radiation, matter eras → gravity and photon, baryon pressure mandatory schematically:

```
acceleration = -gravity + pressure (3)
```

Q: implications for baryons vs dark matter?

For the species and forces we choose to follow:

(П

Q: how can these be described exactly? approximately?

Q: what formalism needed?

Dynamics of Cosmological Perturbations: Toolbox

need dynamics of inhomogeneous "fluids"

- in expanding FLRW background
- \star full treatment: general relativistic perturbation theory mandatory for some results Q: which?
- ★ good-enough treatment: Newtonian dynamics is FLRW as usual, benefits: intuition & simplicity costs: limited range of validity

Newtonian Fluid Dynamics & Self-Gravity

Each cosmic species is "fluid" described by fields

- mass density $\rho(\vec{x},t)$
- velocity $\vec{v}(\vec{x},t)$
- pressure $P(\vec{x},t)$: from equation of state $P = P(\rho,T)$

In Newtonian limit: dynamics governed by **fluid equations**

- 1. mass conservation: continuity
- 2. "F = ma": Euler
- 3. inverse square gravity: Poisson

Fluid Equations: Mass Conservation

1. *mass conservation* (continuity)

$$\partial_t \rho + \nabla \cdot (\rho \vec{v}) = 0 \tag{4}$$

- formally identical to EM continuity equation Q: why?
- coordinates: fixed in space (don't move with fluid: Eulerian) Q: if fluid at rest, $\vec{v} = 0$, what happens?
- in coordinates that move with "fluid element": need "convective derivative"

$$d\rho(\vec{x},t)/dt = (\partial_t + \dot{x}_i \partial_i)\rho$$
(5)

$$= \partial_t \rho + \vec{v} \cdot \nabla \rho \tag{6}$$

$$\stackrel{\text{cont}}{=} -\rho \nabla \cdot \vec{v} \tag{7}$$

 \odot

Q: when does ρ increase? why?

Fluid Equations: Forces

include forces:

- pressure P
- gravity: acceleration $\vec{g} = -\nabla \Phi$, potential Φ
- 2. Euler Equation: "F = ma" in a volume element

$$\rho d\vec{v}/dt = -\nabla P + \rho \vec{g} \tag{8}$$

$$\rho \partial_t \vec{v} + \rho \vec{v} \cdot \nabla \vec{v} = -\nabla P - \rho \nabla \Phi \tag{9}$$

Q: what if $\vec{g} = \Phi = P = 0$? *Q*: what if $\vec{g} = \Phi = 0$, and spatially uniform $P(\vec{x}) = P_0$? *Q*: what if P = 0 but $\vec{g} \neq 0$? Hint-this is dark matter's life! *Q*: what direction is pressure force?

9

Q: what determines Φ ?

Fluid Equations: Newtonian Gravity

3. Newtonian gravity: inverse square law encoded in **Poisson equation**

$$\nabla^2 \Phi = 4\pi G\rho \tag{10}$$

equivalent to Gauss' law $\nabla \cdot \vec{g} = -4\pi G \rho$

To summarize: fluid equations

$$\partial_t \rho + \nabla \cdot (\rho \vec{v}) = 0 \tag{11}$$

$$\rho \partial_t \vec{v} + \rho \vec{v} \nabla \cdot \vec{v} = -\nabla P - \rho \nabla \Phi \qquad (12)$$

$$\nabla^2 \Phi = 4\pi G \rho \tag{13}$$

These are general (albeit Newtonian only) $\stackrel{\scriptstyle ,}{\scriptstyle \bigtriangledown}$ \rightarrow now apply to the Universe

Linear Theory 0: Newtonian, Non-expanding

consider *static*, uniform (infinite) distribution of matter and introduce **perturbations**

$$\rho(\vec{x}) = \rho_0 \left[1 + \delta(\vec{x})\right]$$
(14)

$$v(\vec{x}) = \vec{u}(\vec{x}) \tag{15}$$

$$\Phi_{\text{grav}}(\vec{x}) = \Phi_0 + \Phi_1(\vec{x}) \tag{16}$$

focus on linear regime-small perturbations: $\delta \ll 1$, and Φ_1, \vec{u}

we want: time development of (initially) small perturbations following Sir James Jeans many key ideas of full expanding-Universe GR result already appear here!

Fluid equations: continuity (mass conservation), to first order

$$\partial_t \rho + \nabla \cdot (\rho \vec{v}) = 0 \tag{17}$$

$$\rho_0 \dot{\delta} + \rho_0 \nabla \cdot \left[(1+\delta) \vec{u} \right] \approx \rho_0 \dot{\delta} + \rho_0 \nabla \cdot \vec{u} = 0$$
(18)

11

Euler ("F = ma"); $\rho d\vec{v}/dt = \rho \partial_t \vec{v} + \rho \vec{v} \cdot \nabla \vec{v} = -\nabla p - \rho \nabla \Phi \qquad (19)$ $\rho_0 \dot{\vec{u}} \approx -\rho_0 c_s^2 \nabla \delta - \rho_0 \nabla \Phi_1 \qquad (20)$ where adiabatic sound speed $c_s^2 = \partial p / \partial \rho$

Gravity: Poisson (Gauss' law = inverse square force)

$$\nabla^2 \Phi = 4\pi G\rho \tag{21}$$

$$\nabla^2 \Phi_1 \approx 4\pi G \rho_0 \delta \tag{22}$$

note inconsistency=cheat! $\nabla^2 \Phi_0 \neq 4\pi G \rho_0$: "Jeans swindle"

can combine to single eq for linearized density contrast:

$$\partial_t^2 \delta - c_s^2 \nabla^2 \delta = 4\pi G \rho_0 \delta \tag{23}$$

¹⁵ Q: behavior for pressureless fluid? "switched-off" gravity? physical significance? important scales? Density contrast evolves as

$$\partial_t^2 \delta - c_s^2 \nabla^2 \delta = 4\pi G \rho_0 \delta \tag{24}$$

note wave operator! seek wavelike solutions

$$\delta(t, \vec{x}) = A e^{i(\omega t - \vec{k} \cdot \vec{x})} \equiv D(t) \ \delta_0(\vec{x})$$
(25)

with Fourier amplitude $\delta_0(\vec{x}) = e^{-i\vec{k}\cdot\vec{x}}$ for wavevector $|\vec{k}| = 2\pi/\lambda$ and time evolution is set by exponent $\omega(k)$:

$$\omega^2 = c_s^2 k^2 - 4\pi G \rho_0 \equiv c_s^2 (k^2 - k_J^2) = \left(\frac{c_s}{k_J}\right)^2 \left[\left(\frac{\lambda_J}{\lambda}\right)^2 - 1\right] \quad (26)$$

key scale: Jeans length

$$k_J = \frac{\sqrt{4\pi G\rho_0}}{c_s} \quad \lambda_J = \frac{c_s}{\sqrt{G\rho_0/\pi}} \sim c_s \tau_{\text{freefall}} \tag{27}$$

associate Jeans mass: $M(\lambda_J/2) = 4\pi/3 \rho_0 (\pi/k_J)^3 \sim c_s^3/G^{3/2} \rho_0^{1/2}$ Q: physically, what expect for $\lambda < \lambda_J$? $\lambda > \lambda_J$? perturbation growth $\delta_k(t) = \delta_k(t_0)e^{i\omega t}$, with

$$\omega^2 = c_s^2 k^2 - 4\pi G \rho_0 \equiv c_s^2 (k^2 - k_J^2)$$
(28)

Jeans length $\sim c_s \tau_{\text{freefall}}$: sound travel distance in freefall time $\rightarrow \lambda/\lambda_J \sim$ number of pressure wave crossings during freefall

if $k > k_J$ so $\lambda < \lambda_J$, small scales: pressure can repel contraction ω real: oscillations about hydrostatic equilib

if $k < k_J$ so $\lambda > \lambda_J$, **large scales:** pressure ineffective ω imaginary, exponential collapse runaway perturbation growth $\delta(t) \sim e^{\omega t} \sim e^{+t/t_{\text{freefall}}}$ (also an uninteresting decaying mode $e^{-\omega t}$)

Q: but what about expanding Universe? should grav instability be stronger or weaker?

Intermission: Questions?

Linear Theory I: Newtonian Analysis in Expanding U.

Recall: Newtonian analysis legal for small scales, weak gravity \rightarrow okay for linear analysis inside Hubble length apply to matter-dominated U.

Coordinate choices

Eulerian time-indep grid \vec{x} fixed in physical space expansion moves unperturbed fluid elts past as $\vec{x}(t) = a(t)\vec{r}$ Lagrangian coords \vec{r} time-indep but expand in physical space following fluid element: *locally* comoving \Rightarrow spatial gradients: $\nabla_{\vec{x}} = (1/a)\nabla_{\vec{r}}$

Unperturbed (zeroth order) eqs, using $\rho_0 = \rho_0(t)$, $\vec{v}_0 = \frac{\dot{a}}{a}\vec{x} = \dot{a}\vec{r}$

$$\partial_t \rho_0 + \nabla \cdot (\rho_0 \vec{v}) = \dot{\rho_0} + \rho_0 \frac{\dot{a}}{a} \nabla_{\vec{x}} \cdot \vec{x} = 0$$
(29)

$$\dot{\rho}_0 + 3\frac{\dot{a}}{a}\rho_0 = 0 \qquad \Rightarrow \rho_0 \propto a^{-3} \tag{30}$$

16

Poisson:

$$\nabla^{2} \Phi_{0} = \frac{1}{x^{2}} \partial_{x} (x \partial_{x} \Phi_{0}) = 4\pi G \rho_{0} \Rightarrow \Phi_{0} = \frac{2\pi G \rho_{0}}{3} x^{2} = \frac{2\pi G \rho_{0}}{3} a^{2} r^{2}$$
$$\nabla_{\vec{x}} \Phi_{0} = \frac{4\pi G \rho_{0}}{3} \vec{x} \qquad \nabla_{\vec{r}} \Phi_{0} = \frac{4\pi G \rho_{0}}{3} a \vec{r}$$

Euler

17

$$\frac{d(\dot{a}\vec{r})}{dt} = \ddot{a}\vec{r} = \frac{\ddot{a}}{a}\vec{x} = -\frac{4\pi G\rho_0}{3}\vec{x}$$
(31)
$$\frac{\ddot{a}}{a} = -\frac{4\pi G\rho_0}{3}$$
(32)

Fried accel; with continuity \rightarrow Friedmann

Zeroth order fluid equations \rightarrow usual expanding U in non-rel approximation

Now add perturbations $\rho_1 = \rho_0 \delta$, \vec{v}_1 , Φ_1

simplest to use comoving (Lagrangian) coords follow observers in unperturbed Hubble flow perturbation fluid elements $\vec{x}(t) = a(t)\vec{r}(t)$ peculiar fluid velocity $\vec{v}_1(t) = a(t)\vec{u}(t)$

plug in, keep only terms linear in perturbations ($\nabla = \nabla_{\vec{r}}$) \rightarrow perturbation evolution to first (leading, linear) order

$$\dot{\vec{u}} + 2\frac{\dot{a}}{a}\vec{u} = -\frac{1}{a^2}\nabla\Phi_1 - \frac{1}{a}\frac{\nabla\delta p}{\rho_0}$$
(33)
$$\dot{\delta} = -\nabla \cdot \vec{u}$$
(34)

consider the case of $\Phi_1 = 0$ and $\delta p = 0$, but initial $\vec{u} \neq 0$ $\overrightarrow{u} Q$: what does this represent physically? what happens? why? Q: implications for the situation when $\Phi_1 \neq 0$ and $\delta \rho \neq 0$?

Velocity Perturbation Evolution

peculiar velocity $\vec{v_1} = a(t) \ \vec{u}$ evolves as

$$\dot{\vec{u}} + 2\frac{\dot{a}}{a}\vec{u} = -\frac{1}{a^2}\nabla\Phi_1 - \frac{1}{a}\frac{\nabla\delta p}{\rho_0}$$
 (35)

if no pressure nor density perturbations then $\dot{u} = -2Hu$, and so $u \propto 1/a^2$ and physical speed evolves as $v_1 \propto 1/a$

but recall: long ago derived FLRW test particle speed evolves as $\vec{v}(t) = \vec{v}_0/a(t)$

 \rightarrow pressureless fluid's peculiar vel redshifts same as free particle

 \rightarrow expansion acts as ''drag'' on particles

19

if $\Phi_1, \delta p \neq 0$: Hubble "drag" still present removes kinetic energy from collapsing objects allows total energy to change (decrease) with time \rightarrow binding increases!

Linearized Density Evolution

now look for plane-wave solutions \leftrightarrow write as Fourier modes e.g., $\delta(\vec{r}) \sim e^{-i\vec{k}\cdot\vec{r}}$, with \vec{k} comoving wavenumber

$$\ddot{\delta}_k + 2\frac{\dot{a}}{a}\dot{\delta}_k = \left(4\pi G\rho_0 - \frac{c_s^2 k^2}{a^2}\right)\delta_k \tag{36}$$

if no expansion $(a = 1, \dot{a} = 0)$, recover Jeans solution

with expansion:

- Hubble "friction" or "drag" $-2H\dot{\delta}$ opposes density growth
- still critical Jeans scale: $k_J = \sqrt{4\pi G \rho_0 a^2/c_s^2}$ expect oscillations on small scales, collapse on larger

20

Unstable Modes: Matter-Dominated U

Consider large scales $\lambda \gg \lambda_J$

$$\ddot{\delta}_k + 2\frac{\dot{a}}{a}\dot{\delta}_k \approx 4\pi G\rho_0\delta_k \tag{37}$$

in Matter-dominated U: $8\pi G\rho/3 = H^2 = (2/3t)^{-2} = 4/9t^2$, so $\ddot{\delta}_k + \frac{4}{3t}\dot{\delta}_k - \frac{2}{3t^2}\delta_k = 0$ (38)

Q: how many independent solutions? how to solve?

Matter-dominated U, large scales:

$$\ddot{\delta}_k + \frac{4}{3t}\dot{\delta}_k - \frac{2}{3t^2}\delta_k = 0 \tag{39}$$

eq homogeneous in $t \rightarrow try power law solution$

trial $\delta \sim t^s$ works if

$$s(s-1) + 4s/3 - 2/3 = 0$$
(40)

solutions s = 2/3, -1:

growing and decaying modes

$$\delta_{+}(t) = \delta_{+}(t_i) \left(\frac{t}{t_i}\right)^{2/3}; \quad \delta_{-}(t) = \delta_{-}(t_i) \left(\frac{t}{t_i}\right)^{-1}$$
(41)

growing mode dominates

• Hubble friction: exponential collapse softened to power law \star Note: solutions indep of k Q: why a big deal?

Linear Growth Factor

each unstable Fourier mode grows with time as

$$\delta_k(t) \propto D(t) \sim t^{2/3} \sim a \sim \eta_{\text{conform}}^2$$
 (42)

growth independent of wavenumber \boldsymbol{k}

- in *k*-space, all unstable modes grow by same factor and transform to real space, find
- on large scales (but still subhorizon)

$$\delta(t, \vec{x}_{\text{large}}) \simeq D(t)\delta(t_i, \vec{x}_{\text{large}})$$
 (43)

 \Rightarrow entire density contrast pattern grows

with same amplification:

23

 \Rightarrow linear grow factor D(t) applies to whole field

Q: what would this look like for $\delta(x)$?

Applications to CMB: Naïve Inferences

before decoupling: pressure dominated by photons \rightarrow expect oscillations – and see them! after decoupling: growing mode

CMB anisotropies are a snapshot of perturbations at last scattering can quantify level: $(\delta T/T)_{\rm ls} \sim 10^{-5}$ at $z_{\rm ls} \sim 1100$

But matter has $\rho \propto a^{-3} \propto T^3$, so $\delta \rho / \rho = 3\delta T / T$ $\rightarrow \delta_{obs}(z = 1100) \sim 3 \times 10^{-5}$ at last scattering So today, expect fluctuations of size

$$\delta_0 = \frac{D_0}{D_{\rm ls}} \delta_{\rm ls} = \frac{a_0}{a_{\rm ls}} \delta_{\rm ls} = (1 + z_{\rm ls}) \delta_{\rm ls} \sim 0.05 \ll 1$$
(44)

24

Should still be very small-no nonlinear structures, such as us! Q: obviously wrong-egregiously naïve! What's the flaw? What's the fix?

Perturbation Growth: Dark Matter vs Baryons

dark matter: pressureless

→ all k modes unstable if inside Hubble length but: perturbations grow verry sloooowly during radiation era → DM structures begin formation at matter-radiation equality then $\delta_{\rm m}(t) = \delta_{\rm m,init} D(t)$ with $D(t) \propto a(t) \propto t^{2/3}$

baryons: until recomb, tightly coupled to photons

- ightarrow feel huge photon pressure $P_\gamma \propto T^4$
- \rightarrow sound speed $c_s \sim c/\sqrt{3}$ huge!

so all sub-horizon modes stable! just oscillate

- \rightarrow relativistic pressure-mediated (i.e., acoustic) standing waves! oscillation frequency $\nu=c_s/\lambda$:
- \aleph small-scale modes oscillate many times largest-scale modes $\lambda = c_s \eta_{hor}$ oscillates only once

Pre-Recombination: Acoustic Oscillations

Baryons in DM-dominated background

$$\ddot{\delta}_b + 2\frac{\dot{a}}{a}\dot{\delta}_b \simeq 4\pi G\rho\delta_{dm} - \frac{k^2c_s^2}{a^2}\delta_b \sim \frac{\delta_{dm}}{t^2} - \frac{k^2c_s^2}{a^2}\delta_b$$
(45)

key comparison: mode scale $\lambda \sim k^{-1}$ vs **comoving sound horizon** $c_s t/a = d_{s,com}$

for large scales $kc_st/a \ll 1$: baryons follow DM for small scales $kc_st/a \gg 1$: baryons oscillate, as

$$\delta_b \sim \frac{1}{\sqrt{ac_s k}} e^{i \int k c_s d\eta} \tag{46}$$

(PS 6) where $d\eta = dt/a$ is conformal time

Q: for fixed k, what is δ time behavior? Q: at fixed t, what is δ pattern vs k? Q: what sets largest λ that oscillates? baryonic perturbations do not grow, but oscillate:

$$\delta_b \sim \frac{1}{\sqrt{ac_s k}} e^{i \int k c_s d\eta} \tag{47}$$

to simplify, imagine constant c_s , $\delta_b \sim e^{ikc_s\eta}$

at fixed k, sinusoidal oscillations phase counts number of cycles $N = kc_s\eta/2\pi = c_s\eta/\lambda$ oscillation frequency: $\omega \sim kc_s \sim c_s/\lambda \propto 1/\lambda$

at fixed $t \rightarrow$ fixed η :

small λ and large $k \rightarrow$ rapid oscillations largest oscillations at scale $\lambda \sim c_s \eta \sim c_s t/a$: sound horizon

27

Q: when do oscillations stop? observable signature?

Non-relativistic Cosmic Kinematics

gas particles have random thermal speeds, momenta how are these affected by cosmic expansion?

Classical picture:

consider non-rel free^{*} particle moving w.r.t. comoving frame $\vec{\ell}_{com}(t) \neq const$, and so $\vec{\ell}_{phys} = a(t)\ell_{com}(t)$:

$$\vec{v} = d\vec{\ell}_{phys}/dt = \dot{a}(t)\ell_{com}(t) + a(t)\dot{\ell}_{com}(t)$$

= $H\vec{\ell}_{phys} + \vec{v}_{pec}$
= Hubble flow + peculiar velocity

Note that peculiar velocity v is always w.r.t. the comoving frame—i.e., the particle speed compared to that of a stationary fundamental observer at the same point

29

*i.e., except for gravitation

consider a comoving observer at the origin, $\vec{x} = 0$ in time δt , a particle moves w.r.t. comov frame physical dist $\delta \vec{x}_{phys} = \vec{v}_{pec} \delta t$

but due to Hubble flow, a comoving (fundamental) observer at $\delta \vec{x}_{phys}$ is moving away from the origin at speed $\vec{v}_{com} = H \delta \vec{x}_{phys}$

thus the new speed of the particle relative to its new comoving neighbor is given by the relative velocity

$$\vec{v}'_{\text{pec}} = \vec{v}_{\text{pec}} - \vec{v}_{\text{com}}$$

ω

(where we used the non-rel velocity addition law) and so the peculiar velocity *changes* by

$$\delta \vec{v}_{\text{pec}} = -H\delta \vec{x}_{\text{phys}} = -\frac{\dot{a}}{a} \vec{v}_{\text{pec}} \delta t = -\frac{\delta a}{a} \vec{v}_{\text{pec}}$$
(48)

Q: physical implications?

 $\delta v_{\text{pec}}/v_{\text{pec}} = -\delta a/a \Rightarrow$ physical peculiar velocity $v_{\text{pec}} \propto 1/a$:

- $mv_{non-rel} = p_{non-rel} = p_0/a$
- comoving peculiar velocity $d\ell_{com}/dt \propto 1/a^2$ slowdown w.r.t. comoving frame: velocity "decays" *not* a "cosmic drag" but rather kinematic effect due to struggle to overtake receding of cosmic milestones

Quantum picture:

recall for photons, $p_{rel} = h/\lambda \sim 1/a$ (de Broglie) but de Broglie holds for matter too: $p_{non-rel} = h/\lambda_{deB} \sim 1/a$ \Rightarrow again, $p_{non-rel} = p_0/a$

true in general, now apply to thermal gas

31

non-relativistic gas: Maxwell-Boltzmann

$$n = \frac{g}{(2\pi\hbar)^3} e^{-(mc^2 - \mu)/kT} a^{-3} \int d^3 p_0 \ e^{-p_0^2/2mka^2T}$$

if occupation number constant (particle conservation) need $a^2 T(a) = T_0 = const$ and thus $T_{non-rel} \propto 1/a^2$:

$$T_{\text{non-rel,decoupled}} = \left(\frac{a_{\text{dec}}}{a}\right)^2 T_{\text{decoupling}} = \left(\frac{1+z}{1+z_{\text{dec}}}\right)^2 T_{\text{decoupling}}$$

evaluate for $z_{dec} = z_{ri}$: estimate

$$T_{\text{gas,today}} \sim \frac{T_{\gamma,0}}{1+z_{\text{dec,gas}}} \sim 6 \times 10^{-3} \text{ K}$$
 (49)

Q: do the experiment...?

 $\underset{N}{\omega}$ Q: what went wrong?

Inhomogeneities: The Spice of Life

So far: we have assumed perfect homogeneity! If universe strictly homogeneous indeed would cool to $T_{gas} \ll T_0$

But happily, U. definitely inhomogeneous on small scales! gravity amplifies density contrast *Q: why?* "the rich get richer, the poor get poorer"

this allows for motion, condensation of matter halo formation, mergers, shocks, star formation, quasars, ... these overdense structures release energy lead to diversity of cosmic matter and radiation today!

ω

But how did we get the inhomogeneities? And what set the primordial composition of baryons? \rightarrow events in the very early Universe...

Momentum Redshifting: Rigorously

the preceding heuristic arguments give the right result, but to obtain this rigorously requires General Relativity (if you haven't had GR yet, never mind)

in GR: a free particle's motion is a geodesic so 4-momentum $p^{\mu} = m dx^{\mu}/ds = m(\gamma, \gamma \vec{v}) = (E, \vec{p})$ changes as

$$p^{\alpha} \nabla_{\alpha} p^{\mu} = p^{\alpha} \partial_{\alpha} p^{\mu} + \Gamma^{\mu}_{\alpha\beta} p^{\alpha} p^{\beta} = 0$$
 (50)

and we see that the change in u is due to the connection term Γ , i.e., to curvature

- \rightarrow curvature tells matter how to move
- ^{ω} note: homogeneity hugely simplifies: $p^{\mu} = p^{\mu}(t)$ so $\partial_{\mu}p = 0$ except for $\partial_t p = \dot{p}$

consider the $\mu = i \in (x, y, z)$ component of the geodesic eq $p^{\alpha}\partial_{\alpha}p^{i} + \Gamma^{i}_{\alpha\beta}p^{\alpha}p^{\beta} = E\dot{p} + \Gamma^{i}_{\alpha\beta}p^{\alpha}p^{\beta}$ (51) = 0 (52)

note that in FRW, if we write $ds^2 = dt^2 - h_{ij}dx^i dx^j$ where h_{ij} is the spatial metric, then nonzero $\Gamma^i_{\alpha\beta}$ are

$$\Gamma^{i}_{0j} = \frac{\dot{a}}{a} \delta^{i}_{j} \tag{53}$$

where δ^i_j is the Kronecker delta (try it!)

We then have

$$E\dot{p^i} + \frac{\dot{a}}{a}Ep^i = 0 \tag{54}$$

and thus

$$d\vec{p}/dt = -\frac{\dot{a}}{a}\vec{p}$$
(55)
$$|\vec{p}| \propto \frac{1}{a}$$
(56)

ω

Note that this result is completely general, i.e., works for all relativistic p, so

- in non-rel limit, $v \propto 1/a$: vel redshifts, and free particles eventually come to rest wrt the comoving background
- in ultra-rel limit, $v = p/E \approx c$, doesn't redshift, but since $E \approx p$, $E \propto 1/a$: energy redshifts

note classical derivation: didn't need Planck/de Broglie relation $p\propto 1/\lambda$ to show this (though that still works too)

Linear Theory II: Sketch of Relativistic Treatment see, e.g., Dodelson text, Liddle & Lyth Ch. 14

Recall limits of Newtonian treatment:

- \bullet only appropriate for scales $\lambda \ll d_H$: sub-horizon
- relativistic effects like time dilation absent or *ad hoc*

General Relativistic approach to cosmological perturbations

• as in Newtonian analysis, perturb density, velocity \rightarrow this perturbs stress-energy

schematically " $\delta T \approx \delta \rho + \delta P = \delta \rho + c_s^2 \delta \rho$ "

- must therefore add small perturbations to metric: $g_{\mu\nu} = g_{\mu\nu}^{\rm FRW} + h_{\mu\nu}$
- these are related by Einstein's Equation

$$G_{\mu\nu} \approx "\partial \partial g^{\mathsf{FRW}} + \partial \partial h" = 8\pi G_N T_{\mu\nu} \approx "8\pi G_N (\rho + \delta \rho)"$$

37

Metric Perturbations

Perturbations to metric tensor can be classified as:

- scalar density perturbations couple to these these are most important
- vector velocity perturbations couple to these these are least important (perturbations decay with time)
- tensor source of gravity waves inflationary quantum perturbation excite these modes!

focus on *scalar* perturbations, which modify FRW metric thusly:

$$(ds^{2})_{\text{perturbed}} = a(\eta)^{2} \left[(1 + 2\Psi) d\eta^{2} - (1 - 2\Phi) \delta_{ij} dx^{i} dx^{j} \right]$$
(57)

Coordinate freedom \leftrightarrow "gauge" choice \leftrightarrow spacetime "slicing" $\underset{\otimes}{\omega} \Rightarrow$ here: "conformal Newtonian gauge":

• $\Psi(\vec{x},t), \Phi(\vec{x},t)$ Schwarzchild-like forms if $a = 1, \dot{a} = 0$

Substitute perturbed metric into Einstein, keep only linear terms in Φ and Ψ , e.g., neglect Φ^2

use conformal time

and go to k-space

• $\nabla_{\mu}T^{\mu 0} \rightarrow$ "continuity"

$$\frac{d\delta}{d\eta} + ikv + 3\frac{d\Phi}{d\eta} = 0$$
(58)

•
$$\nabla_{\mu}T^{\mu i} \rightarrow$$
 "Euler"

$$\frac{dv}{d\eta} + \frac{da/d\eta}{a}v + ik\Psi = \text{pressure sources}$$
(59)

• $G_{\mu\nu} = 8\pi G_N T_{\mu\nu} \rightarrow$ "Poisson"

$$k^2 \Phi = -4\pi G a^2 \rho \delta \tag{60}$$

$$k^{2}(\Psi - \Phi) = -8\pi Ga^{2} \, \langle P_{x} - P_{y} \rangle^{\prime\prime}$$
(61)

39

expect anisotropic stress small: $\langle P_x - P_y \rangle \ll \rho \delta \rightarrow \Psi \approx \Phi$

Recall: conformal time η gives particle horizon

On *sub-horizon* scales $\lambda \sim 1/k \ll \eta$: relativistic treatment gives back Newtonian result in fact: justifies our Newtonian treatment

On super-horizon scales $\lambda \sim 1/k \gg \eta$: relativistic treatment still valid \rightarrow will use this to follow inflationary perturbations through horizon crossing