
Astro 507

Lecture 36

April 24, 2020

Announcements:

• Problem Set 6 extended Monday April 27

after this: final Problem Set due Finals Week

recall: lowest PF and PS dropped

can drop Finals Week PS

• Preflight 6b due next Friday May 1

draft your Wikipedia upgrade, post for comments

have fun, ask if you need advice/help
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Last time & PS6 Q2: comparing two spherical collapse solutions

δnonlin(t) =
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at any time t this maps between

full nonlinear result with linearized approximation

Strategy: given initial linear density field δi
• evolve perturbations with linear growth δlin(t)

• identify linearly extrapolated perturbations with δlin(t) > 1.69

⇒ these will be collapsed objects by time t!

lesson: in linearized δlin(t0)

a “cut” at δc = 1.69

divides virialized vs nonvirialized
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Theory of Cosmological Perturbations

Treat structure formation as initial value problem

• given initial conditions: “seeds”

i.e., adopt spectrum of primordial density perturbations

prescription for initial ρi(~x), i ∈ baryons, radiation, DM, DE...

e.g., inflation: scale invariant, gaussian, adiabatic

• follow time evolution of ρi(~x)–i.e., δi for each species i

• compare with observed measures of structure

⋆ agreement (or lack thereof) constrains primordial seeds

e.g., dark matter, inflation, quantum gravity, ...

We want to describe dynamics of cosmic inhomogeneities

Q: which forces relevant? which irrelevant? which scary?3



Dynamics Cosmological Perturbations: Overview

Forces/interactions in perturbed, inhomogeneous universe

involve same cosmic particle/field content

as smooth/unperturbed universe

but: can manifest in new/different ways due to spatial variations

Definitely relevant forces on perturbations

• gravity: overdensities have extra attraction

over that of “background” FRW universe

• pressure: baryons have thermal pressure P = nkT

photons exert radiation pressure on baryons pre-decoupling

pressure gradients present, unlike in homog. background

Probably irrelevant forces on perturbations (will ignore)

• neutrino interactions with self, other species

• dark matter non-gravity interactions with self, or other species
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Scary forces on perturbations (will ignore for now, but worry about)

• if dark energy is a field φ, perturbations δφ

exert inhomogeneous negative pressure

why scary? unknown underlying physics

• magnetic fields → pressure, MHD forces

why scary? unknown initial conditions (primordial B?)

At minimum: we will want to describe baryons & dark matter

as inflationary perturbations grow thru radiation, matter eras

→ gravity and photon, baryon pressure mandatory

schematically:

acceleration = –gravity + pressure (3)

Q: implications for baryons vs dark matter?

For the species and forces we choose to follow:

Q: how can these be described exactly? approximately?

Q: what formalism needed?
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Dynamics of Cosmological Perturbations: Toolbox

need dynamics of inhomogeneous “fluids”

in expanding FLRW background

⋆ full treatment: general relativistic perturbation theory

mandatory for some results Q: which?

⋆ good-enough treatment: Newtonian dynamics is FLRW

as usual, benefits: intuition & simplicity

costs: limited range of validity
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Newtonian Fluid Dynamics & Self-Gravity

Each cosmic species is “fluid” described by fields

• mass density ρ(~x, t)

• velocity ~v(~x, t)

• pressure P(~x, t): from equation of state P = P(ρ, T)

In Newtonian limit: dynamics governed by fluid equations

1. mass conservation: continuity

2. “F = ma”: Euler

3. inverse square gravity: Poisson
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Fluid Equations: Mass Conservation

1. mass conservation (continuity)

∂tρ+∇ · (ρ~v) = 0 (4)

• formally identical to EM continuity equation Q: why?

• coordinates: fixed in space (don’t move with fluid: Eulerian)

Q: if fluid at rest, ~v = 0, what happens?

• in coordinates that move with “fluid element”:

need “convective derivative”

dρ(~x, t)/dt = (∂t + ẋi∂i)ρ (5)

= ∂tρ+ ~v · ∇ρ (6)
cont
= −ρ∇ · ~v (7)

Q: when does ρ increase? why?
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Fluid Equations: Forces

include forces:

• pressure P

• gravity: acceleration ~g = −∇Φ, potential Φ

2. Euler Equation: “F = ma” in a volume element

ρd~v/dt = −∇P + ρ~g (8)

ρ∂t~v + ρ~v · ∇~v = −∇P − ρ∇Φ (9)

Q: what if ~g = Φ = P = 0?

Q: what if ~g = Φ = 0, and spatially uniform P(~x) = P0?

Q: what if P = 0 but ~g 6= 0? Hint–this is dark matter’s life!

Q: what direction is pressure force?

Q: what determines Φ?
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Fluid Equations: Newtonian Gravity

3. Newtonian gravity: inverse square law

encoded in Poisson equation

∇2Φ = 4πGρ (10)

equivalent to Gauss’ law ∇ · ~g = −4πGρ

To summarize: fluid equations

∂tρ+∇ · (ρ~v) = 0 (11)

ρ∂t~v + ρ~v∇ · ~v = −∇P − ρ∇Φ (12)

∇2Φ = 4πGρ (13)

These are general (albeit Newtonian only)

→ now apply to the Universe
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Linear Theory 0: Newtonian, Non-expanding

consider static, uniform (infinite) distribution of matter

and introduce perturbations

ρ(~x) = ρ0 [1 + δ(~x)] (14)

v(~x) = ~u(~x) (15)

Φgrav(~x) = Φ0 +Φ1(~x) (16)

focus on linear regime–small perturbations: δ ≪ 1, and Φ1, ~u

we want: time development of (initially) small perturbations

following Sir James Jeans

many key ideas of full expanding-Universe GR result

already appear here!

Fluid equations: continuity (mass conservation), to first order

∂tρ+∇ · (ρ~v) = 0 (17)

ρ0δ̇ + ρ0∇ · [(1 + δ)~u] ≈ ρ0δ̇ + ρ0∇ · ~u = 0 (18)
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Euler (“F = ma”);

ρd~v/dt = ρ∂t~v + ρ~v · ∇~v = −∇p− ρ∇Φ (19)

ρ0~̇u ≈ −ρ0c
2
s∇δ − ρ0∇Φ1 (20)

where adiabatic sound speed c2s = ∂p/∂ρ

Gravity: Poisson (Gauss’ law = inverse square force)

∇2Φ = 4πGρ (21)

∇2Φ1 ≈ 4πGρ0δ (22)

note inconsistency=cheat! ∇2Φ0 6= 4πGρ0: “Jeans swindle”

can combine to single eq for linearized density contrast:

∂2t δ − c2s∇2δ = 4πGρ0δ (23)

Q: behavior for pressureless fluid? “switched-off” gravity?

physical significance? important scales?
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Density contrast evolves as

∂2t δ − c2s∇2δ = 4πGρ0δ (24)

note wave operator! seek wavelike solutions

δ(t, ~x) = Aei(ωt−
~k·~x) ≡ D(t) δ0(~x) (25)

with Fourier amplitude δ0(~x) = e−i~k·~x for wavevector |~k| = 2π/λ

and time evolution is set by exponent ω(k):

ω2 = c2sk
2 − 4πGρ0 ≡ c2s(k

2 − k2J) =

(

cs

kJ

)2 [(
λJ
λ

)2

− 1

]

(26)

key scale: Jeans length

kJ =

√
4πGρ0
cs

λJ =
cs

√

Gρ0/π
∼ csτfreefall (27)

associate Jeans mass: M(λJ/2) = 4π/3 ρ0(π/kJ)
3 ∼ c3s/G

3/2ρ
1/2
0

Q: physically, what expect for λ < λJ? λ > λJ?
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perturbation growth δk(t) = δk(t0)e
iωt, with

ω2 = c2sk
2 − 4πGρ0 ≡ c2s(k

2 − k2J) (28)

Jeans length ∼ csτfreefall: sound travel distance in freefall time

→ λ/λJ ∼ number of pressure wave crossings during freefall

if k > kJ so λ < λJ, small scales: pressure can repel contraction

ω real: oscillations about hydrostatic equilib

if k < kJ so λ > λJ, large scales: pressure ineffective

ω imaginary, exponential collapse

runaway perturbation growth δ(t) ∼ eωt ∼ e+t/tfreefall

(also an uninteresting decaying mode e−ωt)

Q: but what about expanding Universe?

should grav instability be stronger or weaker?
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Intermission: Questions?

1
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Linear Theory I: Newtonian Analysis in Expanding U.

Recall: Newtonian analysis legal for small scales, weak gravity

→ okay for linear analysis inside Hubble length

apply to matter-dominated U.

Coordinate choices

Eulerian time-indep grid ~x fixed in physical space

expansion moves unperturbed fluid elts past as ~x(t) = a(t)~r
Lagrangian coords ~r time-indep but expand in physical space

following fluid element: locally comoving

⇒ spatial gradients: ∇~x = (1/a)∇~r

Unperturbed (zeroth order) eqs,

using ρ0 = ρ0(t), ~v0 = ȧ
a~x = ȧ~r

∂tρ0 +∇ · (ρ0~v) = ρ̇0 + ρ0
ȧ

a
∇~x · ~x = 0 (29)

ρ̇0 +3
ȧ

a
ρ0 = 0 ⇒ ρ0 ∝ a−3 (30)

1
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Poisson:

∇2Φ0 =
1

x2
∂x(x∂xΦ0) = 4πGρ0 ⇒ Φ0 =

2πGρ0
3

x2 =
2πGρ0

3
a2r2

∇~xΦ0 =
4πGρ0

3
~x ∇~rΦ0 =

4πGρ0
3

a~r

Euler

d(ȧ~r)/dt = ä~r =
ä

a
~x = −4πGρ0

3
~x (31)

ä

a
= −4πGρ0

3
(32)

Fried accel; with continuity → Friedmann

Zeroth order fluid equations → usual expanding U

in non-rel approximation

1
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Now add perturbations ρ1 = ρ0δ, ~v1, Φ1

simplest to use comoving (Lagrangian) coords

follow observers in unperturbed Hubble flow

perturbation fluid elements ~x(t) = a(t)~r(t)

peculiar fluid velocity ~v1(t) = a(t)~u(t)

plug in, keep only terms linear in perturbations (∇ = ∇~r)

→ perturbation evolution to first (leading, linear) order

~̇u+2
ȧ

a
~u = − 1

a2
∇Φ1 − 1

a

∇δp

ρ0
(33)

δ̇ = −∇ · ~u (34)

consider the case of Φ1 = 0 and δp = 0, but initial ~u 6= 0

Q: what does this represent physically? what happens? why?

Q: implications for the situation when Φ1 6= 0 and δρ 6= 0?
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Velocity Perturbation Evolution

peculiar velocity ~v1 = a(t) ~u evolves as

~̇u+2
ȧ

a
~u = − 1

a2
∇Φ1 − 1

a

∇δp

ρ0
(35)

if no pressure nor density perturbations

then u̇ = −2Hu, and so u ∝ 1/a2

and physical speed evolves as v1 ∝ 1/a

but recall: long ago derived FLRW test particle speed

evolves as ~v(t) = ~v0/a(t)

→ pressureless fluid’s peculiar vel redshifts same as free particle

→ expansion acts as “drag” on particles

if Φ1, δp 6= 0: Hubble “drag” still present

removes kinetic energy from collapsing objects

allows total energy to change (decrease) with time

→ binding increases!
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Linearized Density Evolution

now look for plane-wave solutions ↔ write as Fourier modes

e.g., δ(~r) ∼ e−i~k·~r, with ~k comoving wavenumber

δ̈k +2
ȧ

a
δ̇k =

(

4πGρ0 − c2sk
2

a2

)

δk (36)

if no expansion (a = 1, ȧ = 0), recover Jeans solution

with expansion:

• Hubble “friction” or “drag” −2Hδ̇ opposes density growth

• still critical Jeans scale: kJ =
√

4πGρ0a
2/c2s

expect oscillations on small scales, collapse on larger

2
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Unstable Modes: Matter-Dominated U

Consider large scales λ ≫ λJ

δ̈k +2
ȧ

a
δ̇k ≈ 4πGρ0δk (37)

in Matter-dominated U: 8πGρ/3 = H2 = (2/3t)−2 = 4/9t2, so

δ̈k +
4

3t
δ̇k − 2

3t2
δk = 0 (38)

Q: how many independent solutions? how to solve?
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Matter-dominated U, large scales:

δ̈k +
4

3t
δ̇k − 2

3t2
δk = 0 (39)

eq homogeneous in t → try power law solution

trial δ ∼ ts works if

s(s− 1) + 4s/3− 2/3 = 0 (40)

solutions s = 2/3,−1:

growing and decaying modes

δ+(t) = δ+(ti)

(

t

ti

)2/3

; δ−(t) = δ−(ti)
(

t

ti

)−1

(41)

• growing mode dominates

• Hubble friction: exponential collapse softened to power law

⋆ Note: solutions indep of k Q: why a big deal?

2
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Linear Growth Factor

each unstable Fourier mode grows with time as

δk(t) ∝ D(t) ∼ t2/3 ∼ a ∼ η2conform (42)

growth independent of wavenumber k

• in k-space, all unstable modes grow by same factor

and transform to real space, find

• on large scales (but still subhorizon)

δ(t, ~xlarge) ≃ D(t)δ(ti, ~xlarge) (43)

⇒ entire density contrast pattern grows

with same amplification:

⇒ linear grow factor D(t) applies to whole field

Q: what would this look like for δ(x)?

2
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Applications to CMB: Näıve Inferences

before decoupling: pressure dominated by photons

→ expect oscillations – and see them!

after decoupling: growing mode

CMB anisotropies are a snapshot

of perturbations at last scattering

can quantify level: (δT/T)ls ∼ 10−5 at zls ∼ 1100

But matter has ρ ∝ a−3 ∝ T3, so δρ/ρ = 3δT/T

→ δobs(z = 1100) ∼ 3× 10−5 at last scattering

So today, expect fluctuations of size

δ0 =
D0

Dls
δls =

a0
als

δls = (1+ zls)δls ∼ 0.05 ≪ 1 (44)

Should still be very small–no nonlinear structures, such as us!

Q: obviously wrong–egregiously näıve! What’s the flaw?

What’s the fix?
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Perturbation Growth: Dark Matter vs Baryons

dark matter: pressureless

→ all k modes unstable if inside Hubble length

but: perturbations grow verry sloooowly during radiation era

→ DM structures begin formation at matter-radiation equality

then δm(t) = δm,init D(t) with D(t) ∝ a(t) ∝ t2/3

baryons: until recomb, tightly coupled to photons

→ feel huge photon pressure Pγ ∝ T4

→ sound speed cs ∼ c/
√
3 huge!

so all sub-horizon modes stable! just oscillate

→ relativistic pressure-mediated (i.e., acoustic) standing waves!

oscillation frequency ν = cs/λ:

small-scale modes oscillate many times

largest-scale modes λ = csηhor oscillates only once

2
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Pre-Recombination: Acoustic Oscillations

Baryons in DM-dominated background

δ̈b +2
ȧ

a
δ̇b ≃ 4πGρδdm − k2c2s

a2
δb ∼

δdm
t2

− k2c2s
a2

δb (45)

key comparison: mode scale λ ∼ k−1

vs comoving sound horizon cst/a = ds,com

for large scales kcst/a ≪ 1: baryons follow DM

for small scales kcst/a ≫ 1: baryons oscillate, as

δb ∼
1√
acsk

ei
∫

kcsdη (46)

(PS 6) where dη = dt/a is conformal time

Q: for fixed k, what is δ time behavior?

Q: at fixed t, what is δ pattern vs k?

Q: what sets largest λ that oscillates?
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baryonic perturbations do not grow, but oscillate:

δb ∼
1√
acsk

ei
∫

kcsdη (47)

to simplify, imagine constant cs, δb ∼ eikcsη

at fixed k, sinusoidal oscillations

phase counts number of cycles N = kcsη/2π = csη/λ

oscillation frequency: ω ∼ kcs ∼ cs/λ ∝ 1/λ

at fixed t → fixed η:

small λ and large k → rapid oscillations

largest oscillations at scale λ ∼ csη ∼ cst/a: sound horizon

Q: when do oscillations stop? observable signature?
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Director’s Cut Extras

2
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Non-relativistic Cosmic Kinematics

gas particles have random thermal speeds, momenta

how are these affected by cosmic expansion?

Classical picture:

consider non-rel free∗ particle moving w.r.t. comoving frame
~ℓcom(t) 6= const, and so ~ℓphys = a(t)ℓcom(t):

~v = d~ℓphys/dt = ȧ(t)ℓcom(t) + a(t)ℓ̇com(t)

= H~ℓphys + ~vpec
= Hubble flow + peculiar velocity

Note that peculiar velocity v is always w.r.t. the comoving

frame–i.e., the particle speed compared to that of a stationary

fundamental observer at the same point

∗i.e., except for gravitation

2
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consider a comoving observer at the origin, ~x = 0

in time δt, a particle moves w.r.t. comov frame

physical dist δ~xphys = ~vpecδt

but due to Hubble flow, a comoving (fundamental) observer at

δ~xphys is moving away from the origin at speed ~vcom = Hδ~xphys

thus the new speed of the particle relative to its new comoving

neighbor is given by the relative velocity

~v′pec = ~vpec − ~vcom

(where we used the non-rel velocity addition law)

and so the peculiar velocity changes by

δ~vpec = −Hδ~xphys = −ȧ

a
~vpecδt = −δa

a
~vpec (48)

Q: physical implications?

3
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δvpec/vpec = −δa/a ⇒ physical peculiar velocity vpec ∝ 1/a:

• mvnon−rel = pnon−rel = p0/a

• comoving peculiar velocity dℓcom/dt ∝ 1/a2

slowdown w.r.t. comoving frame: velocity “decays”

not a “cosmic drag” but rather kinematic effect

due to struggle to overtake receding of cosmic milestones

Quantum picture:

recall for photons, prel = h/λ ∼ 1/a (de Broglie)

but de Broglie holds for matter too: pnon−rel = h/λdeB ∼ 1/a

⇒ again, pnon−rel = p0/a

true in general, now apply to thermal gas

3
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non-relativistic gas: Maxwell-Boltzmann

n =
g

(2πh̄)3
e−(mc2−µ)/kTa−3

∫

d3p0 e−p20/2mka2T

if occupation number constant (particle conservation)

need a2 T(a) = T0 = const and thus Tnon−rel ∝ 1/a2:

Tnon−rel,decoupled =

(

adec
a

)2
Tdecoupling =

(

1+ z

1 + zdec

)2

Tdecoupling

evaluate for zdec = zri: estimate

Tgas,today ∼ Tγ,0

1+ zdec,gas
∼ 6× 10−3 K (49)

Q: do the experiment...?

Q: what went wrong?

3
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Inhomogeneities: The Spice of Life

So far: we have assumed perfect homogeneity!

If universe strictly homogeneous

indeed would cool to Tgas ≪ T0

But happily, U. definitely inhomogeneous on small scales!

gravity amplifies density contrast Q: why?

“the rich get richer, the poor get poorer”

this allows for motion, condensation of matter

halo formation, mergers, shocks, star formation, quasars, ...

these overdense structures release energy

lead to diversity of cosmic matter and radiation today!

But how did we get the inhomogeneities?

And what set the primordial composition of baryons?

→ events in the very early Universe...

3
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Momentum Redshifting: Rigorously

the preceding heuristic arguments give the right result, but to

obtain this rigorously requires General Relativity (if you haven’t

had GR yet, never mind)

in GR: a free particle’s motion is a geodesic

so 4-momentum pµ = mdxµ/ds = m(γ, γ~v) = (E, ~p) changes as

pα∇αp
µ = pα∂αp

µ +Γ
µ
αβp

αpβ = 0 (50)

and we see that the change in u is due to the connection term

Γ, i.e., to curvature

→ curvature tells matter how to move

note: homogeneity hugely simplifies: pµ = pµ(t)

so ∂µp = 0 except for ∂tp = ṗ

3
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consider the µ = i ∈ (x, y, z) component of the geodesic eq

pα∂αp
i +Γi

αβp
αpβ = Eṗ+Γi

αβp
αpβ (51)

= 0 (52)

note that in FRW, if we write ds2 = dt2 − hijdx
idxj

where hij is the spatial metric, then nonzero Γi
αβ are

Γi
0j =

ȧ

a
δij (53)

where δij is the Kronecker delta (try it!)

We then have

Eṗi +
ȧ

a
Epi = 0 (54)

and thus

d~p/dt = −ȧ

a
~p (55)

|~p| ∝ 1

a
(56)

3
5



Note that this result is completely general, i.e., works for all

relativistic p, so

• in non-rel limit, v ∝ 1/a: vel redshifts, and free particles

eventually come to rest wrt the comoving background

• in ultra-rel limit, v = p/E ≈ c, doesn’t redshift, but

since E ≈ p, E ∝ 1/a: energy redshifts

note classical derivation: didn’t need Planck/de Broglie relation

p ∝ 1/λ to show this (though that still works too)

3
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Linear Theory II: Sketch of Relativistic Treatment

see, e.g., Dodelson text, Liddle & Lyth Ch. 14

Recall limits of Newtonian treatment:

• only appropriate for scales λ ≪ dH: sub-horizon

• relativistic effects like time dilation absent or ad hoc

General Relativistic approach to cosmological perturbations

• as in Newtonian analysis, perturb density, velocity

→ this perturbs stress-energy

schematically “δT ≈ δρ+ δP = δρ+ c2sδρ”

• must therefore add small perturbations to metric:

gµν = gFRW
µν + hµν

• these are related by Einstein’s Equation

Gµν ≈ “∂∂gFRW + ∂∂h” = 8πGNTµν ≈ “8πGN(ρ+ δρ)”
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Metric Perturbations

Perturbations to metric tensor can be classified as:

• scalar – density perturbations couple to these

these are most important

• vector – velocity perturbations couple to these

these are least important (perturbations decay with time)

• tensor – source of gravity waves

inflationary quantum perturbation excite these modes!

focus on scalar perturbations, which modify FRW metric thusly:

(ds2)perturbed = a(η)2
[

(1 + 2 Ψ )dη2 − (1− 2 Φ )δijdx
idxj

]

(57)

Coordinate freedom ↔ “gauge” choice ↔ spacetime “slicing”

⇒ here: “conformal Newtonian gauge”:

• Ψ(~x, t),Φ(~x, t) Schwarzchild-like forms if a = 1, ȧ = 0

3
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Substitute perturbed metric into Einstein, keep only linear terms

in Φ and Ψ, e.g., neglect Φ2

use conformal time

and go to k-space

• ∇µTµ0 → “continuity”

dδ

dη
+ ikv +3

dΦ

dη
= 0 (58)

• ∇µTµi → “Euler”

dv

dη
+

da/dη

a
v + ikΨ = pressure sources (59)

• Gµν = 8πGNTµν → “Poisson”

k2Φ = −4πGa2ρδ (60)

k2(Ψ−Φ) = −8πGa2“〈Px − Py〉” (61)

expect anisotropic stress small: 〈Px − Py〉 ≪ ρδ → Ψ ≈ Φ

3
9



Recall: conformal time η gives particle horizon

On sub-horizon scales λ ∼ 1/k ≪ η:

relativistic treatment gives back Newtonian result

in fact: justifies our Newtonian treatment

On super-horizon scales λ ∼ 1/k ≫ η:

relativistic treatment still valid

→ will use this to follow inflationary perturbations

through horizon crossing

4
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