
Astro 507

Lecture 37

April 27, 2020

Announcements:

• Problem Set 6 extended to today

I will stay on after lecture

• Preflight 6b due this Friday May 1

draft your Wikipedia upgrade, post for comments

have fun, ask if you need advice/help

Last time: building cosmological perturbation theory

goal: calcul

ate density fluctuation growth in linear regime

Q: for which δ = δρ/ρ should this approach be valid?

In other words–for what δ should linear theory break down?
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Cosmological Perturbation Theory

Perturbative approach:

assumes fluctuations small compared to background

so |δρ| ≪ ρ0 and thus |δ| ≪ 1

and certainly expect linear theory to fail when |δ| ∼ 1

Newtonian fluid equations:

∂tρ+∇ · (ρ~v) = 0 (1)

ρ∂t~v + ρ~v∇ · ~v = −∇P − ρ∇Φ (2)

∇2Φ = 4πGρ (3)

firs step: perturb around

a homogeneous fluid ρ0 with pressure P0 at rest ~v0 = 02



Linear Theory 0: Newtonian, Non-expanding

consider static, uniform (infinite) distribution of matter

and introduce perturbations

ρ(~x) = ρ0 [1 + δ(~x)] (4)

v(~x) = ~u(~x) (5)

Φgrav(~x) = Φ0 +Φ1(~x) (6)

focus on linear regime–small perturbations: δ ≪ 1, and Φ1, ~u

we want: time development of (initially) small perturbations

following Sir James Jeans

many key ideas of full expanding-Universe GR result

already appear here!

Fluid equations: continuity (mass conservation), to first order

∂tρ+∇ · (ρ~v) = 0 (7)

ρ0δ̇ + ρ0∇ · [(1 + δ)~u] ≈ ρ0δ̇ + ρ0∇ · ~u = 0 (8)
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Euler (“F = ma”);

ρd~v/dt = ρ∂t~v + ρ~v · ∇~v = −∇p− ρ∇Φ (9)

ρ0~̇u ≈ −ρ0c
2
s∇δ − ρ0∇Φ1 (10)

where adiabatic sound speed c2s = ∂p/∂ρ

Gravity: Poisson (Gauss’ law = inverse square force)

∇2Φ = 4πGρ (11)

∇2Φ1 ≈ 4πGρ0δ (12)

note inconsistency=cheat! ∇2Φ0 6= 4πGρ0: “Jeans swindle”

PS6: can combine to single eq for linearized density contrast:

∂2t δ − c2s∇2δ = 4πGρ0δ (13)

Q: significance of ∂2t −∇2 operator?
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Solve for One Wavelength/Mode: Fourier Analysis

∂2t δ − c2s∇2δ = 4πGρ0δ

note wave operator! seek wavelike solutions

δ(t, ~x) = Aei(ωkt−~k·~x) (14)

with Fourier amplitude δ0(~x) = e−i~k·~x for wavevector |~k| = 2π/λ

and time evolution is set by exponent ωk:

ω2
k = c2sk

2 − 4πGρ0 ≡ c2s(k
2 − k2J) =

(

cs

kJ

)2 [(
λJ
λ

)2

− 1

]

(15)

key length scale: Jeans length

kJ =

√
4πGρ0
cs

λJ =
cs

√

Gρ0/π
∼ csτfreefall (16)

combine this with background density ρ0:

characteristic Jeans mass: M(λJ/2) = 4π/3 ρ0(π/kJ)
3 ∼ c3s/G

3/2ρ
1/2
0

5



perturbation evolves as δk(t) = δk(timit)e
iωkt :

solution for wavenumber k factorizes

δk(t) = δk,init D(t) (17)

• initial amplitude δk,init
• and linear growth factor D(t) = eiωkt

whose oscillation frequency is

ω2
k = c2sk

2 − 4πGρ0 ≡ c2s(k
2 − k2J) (18)

we we define Jeans length ∼ csτfreefall:

sound travel distance in freefall time

consider short-wavelength modes

with k > kJ so λ < λJ

Q: how do these mode amplitudes evolve with time?
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Short Wavelength Modes

if k > kJ so λ < λJ, then

• ω2
k ≈ c2sk

2: has real roots

• giving ωk = csk

so amplitude evolves with linear growth factor

Dk<kJ
(t) ≈ cos(ωkt) = cos

(

2πcst

λ

)

(19)

were we took the real part of the complex exponential

physically: oscillations about hydrostatic equilib

Q: what if k < kJ, i.e., λ > λJ?
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Long Wavelength Modes

if k < kJ so λ > λJ, then

• ω2
k = −c2sk

2
J: has imaginary roots

• giving ωk = ±icskJ

so linear growth factor is

Dk>kJ
(t) ≈ e+ωkt ∼ et/τff (20)

exponential increase!

δ(t) ∼ eωt ∼ e+t/tfreefall

(also an uninteresting decaying mode e−ωkt)

physically: runaway perturbation growth

gravitational or Jeans instability

leading collapse to gravitational collapse
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What Just Happened?

perturbation evolution sets characteristic physical scales

∂2t δ − c2s∇2δ = 4πGρ0δ

• fixed sound speed c2s = ∂P/∂ρ

sets “pressure response speed”

• fixed freefall time for unperturbed medium τ2ff = 1/4πGρ0
• from these can form a characteristic distance:

Jeans length λJ ∼ csτff
• also mode-dependent“crossing time” τcrospsing = λ/cs = 2/pi/ωk
time for sound wave to cross perturbation of size λ

Perturbation fate:

• if λ < λJ then τcrossing ≪ τff
pressure forces have time “organize repsonse” to perturbation

and exert restoring force: oscillations result!

• but if λ > λJ then no time to “organize” restoring force

collapse ensues!
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Intermission: Questions?
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Linear Theory I: Newtonian Analysis in Expanding U.

Recall: Newtonian analysis legal for small scales, weak gravity

→ okay for linear analysis inside Hubble length

apply to matter-dominated U.

Coordinate choices

Eulerian time-indep grid ~x fixed in physical space

expansion moves unperturbed fluid elts past as ~x(t) = a(t)~r

Lagrangian coords ~r time-indep but expand in physical space

following fluid element: locally comoving

⇒ spatial gradients: ∇~x = (1/a)∇~r

1
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Now add perturbations ρ1 = ρ0δ, ~v1, Φ1 simplest to use comov-

ing (Lagrangian) coords

follow observers in unperturbed Hubble flow

perturbation fluid elements ~x(t) = a(t)~r(t)

peculiar fluid velocity ~v1(t) = a(t)~u(t)

plug in, keep only terms linear in perturbations (∇ = ∇~r)

→ perturbation evolution to first (leading, linear) order

~̇u+2
ȧ

a
~u = − 1

a2
∇Φ1 − 1

a

∇δp

ρ0
(21)

δ̇ = −∇ · ~u (22)

consider the case of Φ1 = 0 and δp = 0, but initial ~u 6= 0

Q: what does this represent physically? what happens? why?

Q: implications for the situation when Φ1 6= 0 and δρ 6= 0?
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Velocity Perturbation Evolution

peculiar velocity ~v1 = a(t) ~u evolves as

~̇u+2
ȧ

a
~u = − 1

a2
∇Φ1 − 1

a

∇δp

ρ0
(23)

if no pressure nor density perturbations

then u̇ = −2Hu, and so u ∝ 1/a2

and physical speed evolves as v1 ∝ 1/a

but recall: long ago derived FLRW test particle speed

evolves as ~v(t) = ~v0/a(t)

→ pressureless fluid’s peculiar vel redshifts same as free particle

→ expansion acts as “drag” on particles

if Φ1, δp 6= 0: Hubble “drag” still present

removes kinetic energy from collapsing objects

allows total energy to change (decrease) with time

→ binding increases!
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Linearized Density Evolution

now look for plane-wave solutions ↔ write as Fourier modes

e.g., δ(~r) ∼ e−i~k·~r, with ~k comoving wavenumber

δ̈k +2
ȧ

a
δ̇k =

(

4πGρ0 − c2sk
2

a2

)

δk (24)

if no expansion (a = 1, ȧ = 0), recover Jeans solution

with expansion:

• Hubble “friction” or “drag” −2Hδ̇ opposes density growth

• still critical Jeans scale: kJ =
√

4πGρ0a
2/c2s

expect oscillations on small scales, collapse on larger
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Unstable Modes: Matter-Dominated U

Consider large scales λ ≫ λJ

δ̈k +2
ȧ

a
δ̇k ≈ 4πGρ0δk (25)

in Matter-dominated U: 8πGρ/3 = H2 = (2/3t)−2 = 4/9t2, so

δ̈k +
4

3t
δ̇k − 2

3t2
δk = 0 (26)

Q: how many independent solutions? how to solve?
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Matter-dominated U, large scales:

δ̈k +
4

3t
δ̇k − 2

3t2
δk = 0 (27)

eq homogeneous in t → try power law solution

trial δ ∼ ts works if

s(s− 1) + 4s/3− 2/3 = 0 (28)

solutions s = 2/3,−1:

growing and decaying modes

δ+(t) = δ+(ti)

(

t

ti

)2/3

; δ−(t) = δ−(ti)
(

t

ti

)−1

(29)

• growing mode dominates

• Hubble friction: exponential collapse softened to power law

⋆ Note: solutions indep of k Q: why a big deal?
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Linear Growth Factor

each unstable Fourier mode grows with time as

δk(t) ∝ D(t) ∼ t2/3 ∼ a ∼ η2conform (30)

growth independent of wavenumber k

• in k-space, all unstable modes grow by same factor

and transform to real space, find

• on large scales (but still subhorizon)

δ(t, ~xlarge) ≃ D(t)δ(ti, ~xlarge) (31)

⇒ entire density contrast pattern grows

with same amplification:

⇒ linear grow factor D(t) applies to whole field

Q: what would this look like for δ(x)?
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Applications to CMB: Näıve Inferences

before decoupling: pressure dominated by photons

→ expect oscillations – and see them!

after decoupling: growing mode

CMB anisotropies are a snapshot

of perturbations at last scattering

can quantify level: (δT/T)ls ∼ 10−5 at zls ∼ 1100

But matter has ρ ∝ a−3 ∝ T3, so δρ/ρ = 3δT/T

→ δobs(z = 1100) ∼ 3× 10−5 at last scattering

So today, expect fluctuations of size

δ0 =
D0

Dls
δls =

a0
als

δls = (1+ zls)δls ∼ 0.05 ≪ 1 (32)

Should still be very small–no nonlinear structures, such as us!

Q: obviously wrong–egregiously näıve! What’s the flaw?

What’s the fix?
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Perturbation Growth: Dark Matter vs Baryons

dark matter: pressureless

→ all k modes unstable if inside Hubble length

but: perturbations grow verry sloooowly during radiation era

→ DM structures begin formation at matter-radiation equality

then δm(t) = δm,init D(t) with D(t) ∝ a(t) ∝ t2/3

baryons: until recomb, tightly coupled to photons

→ feel huge photon pressure Pγ ∝ T4

→ sound speed cs ∼ c/
√
3 huge!

so all sub-horizon modes stable! just oscillate

→ relativistic pressure-mediated (i.e., acoustic) standing waves!

oscillation frequency ν = cs/λ:

small-scale modes oscillate many times

largest-scale modes λ = csηhor oscillates only once
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Pre-Recombination: Acoustic Oscillations

Baryons in DM-dominated background

δ̈b +2
ȧ

a
δ̇b ≃ 4πGρδdm − k2c2s

a2
δb ∼

δdm
t2

− k2c2s
a2

δb (33)

key comparison: mode scale λ ∼ k−1

vs comoving sound horizon cst/a = ds,com

for large scales kcst/a ≪ 1: baryons follow DM

for small scales kcst/a ≫ 1: baryons oscillate, as

δb ∼
1√
acsk

ei
∫

kcsdη (34)

(PS 6) where dη = dt/a is conformal time

Q: for fixed k, what is δ time behavior?

Q: at fixed t, what is δ pattern vs k?

Q: what sets largest λ that oscillates?
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baryonic perturbations do not grow, but oscillate:

δb ∼
1√
acsk

ei
∫

kcsdη (35)

to simplify, imagine constant cs, δb ∼ eikcsη

at fixed k, sinusoidal oscillations

phase counts number of cycles N = kcsη/2π = csη/λ

oscillation frequency: ωk ∼ kcs ∼ cs/λ ∝ 1/λ

at fixed t → fixed η:

small λ and large k → rapid oscillations

largest oscillations at scale λ ∼ csη ∼ cst/a: sound horizon

Q: when do oscillations stop? observable signature?
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Cosmic Diversity: Evolution of Multiple Components

Thus far: implicitly assumed a baryons-only universe: not ours!

Cosmic “fluid” contains many different species

with different densities, interactions

baryons, photons, neutrinos, dark matter, dark energy

Each component i has its own equations of motion, e.g.:

δ̈i +2Hδ̇i = −
c2s,ik

2

a2
δi +4πGρ0

∑

j

Ωjδj (36)

species interact via pressure, gravity: evolution eqs coupled

⊲ gravity from dominant Ω drives the other components

⊲ each species’ (pressure) response depends on

microphysics of its interactions, encoded in sound speed cs,i

2
2



Matter Instability in the Radiation Era

(dark) matter perturbation δm during radiation domination

• pick subhorizon scale: growth possible

• focus on k < kJ : Jeans unstable (can ignore pressure)

and high-k modes just oscillate anyway

• treat radiation perturbations as smooth: δrad ≈ 0

Pr = ρr/3: huge, fast cs ∼ c

any perturbations will be oscillatory anyway

• dark matter: weak interactions → pressureless → cs = 0!

Evolution simple – to rough approximation, for these k:

δ̈m +2
ȧ

a
δ̇m

rad−dom
= δ̈m +

1

t
δ̇m ≈ 0 (37)

Simple solutions: growing mode plus decaying mode

δm(t) = D(t)δm(ti) =

(

D1 log t+
D2

t

)

δm(ti) (38)

Q: implications? what about baryons?
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Found D(t) ∼ D1 log t: “growing” mode hardly grows!

⋆ dark matter perturbations frozen during rad dom

dark matter growth quenched by

→ non-growth of radiation perturbations

→ extra expansion due to radiation

⋆ dark matter perturbation growth stalled

until end of radiation era: matter-radiation equality

i.e., ρmatter = ρradiation when zeq ∼ 3× 104

Q: is before or after BBN? recomb?

⇒ this marks onset of structure formation

Q: how does this update our naive CMB calculation?

Hint: then, correct reasoning for δ = δb only

2
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baryons tightly coupled to photons till recombination

→ so dark matter perturbations begin growth earlier

And so: DM has grown more! update earlier estimate

and focus on dark matter

δm,0 =
Dls

Deq
δb,0 ∼ 1+ zeq

1+ zls
δb ∼ 30× 0.05 ∼ 1 (39)

DM can grow to nonlinearity today!

⋆ existence of collapsed cosmic structures

requires collisionless dark matter!

⋆ independent argument for large amounts of

weakly interacting matter throughout universe!
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Director’s Cut Extras

2
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Unperturbed (zeroth order) eqs,

using ρ0 = ρ0(t), ~v0 = ȧ
a~x = ȧ~r

∂tρ0 +∇ · (ρ0~v) = ρ̇0 + ρ0
ȧ

a
∇~x · ~x = 0 (40)

ρ̇0 +3
ȧ

a
ρ0 = 0 ⇒ ρ0 ∝ a−3 (41)
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Poisson:

∇2Φ0 =
1

x2
∂x(x∂xΦ0) = 4πGρ0 ⇒ Φ0 =

2πGρ0
3

x2 =
2πGρ0

3
a2r2

∇~xΦ0 =
4πGρ0

3
~x ∇~rΦ0 =

4πGρ0
3

a~r

Euler

d(ȧ~r)/dt = ä~r =
ä

a
~x = −4πGρ0

3
~x (42)

ä

a
= −4πGρ0

3
(43)

Fried accel; with continuity → Friedmann

Zeroth order fluid equations → usual expanding U

in non-rel approximation
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Non-relativistic Cosmic Kinematics

gas particles have random thermal speeds, momenta

how are these affected by cosmic expansion?

Classical picture:

consider non-rel free∗ particle moving w.r.t. comoving frame
~ℓcom(t) 6= const, and so ~ℓphys = a(t)ℓcom(t):

~v = d~ℓphys/dt = ȧ(t)ℓcom(t) + a(t)ℓ̇com(t)

= H~ℓphys + ~vpec
= Hubble flow + peculiar velocity

Note that peculiar velocity v is always w.r.t. the comoving

frame–i.e., the particle speed compared to that of a stationary

fundamental observer at the same point

∗i.e., except for gravitation

2
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consider a comoving observer at the origin, ~x = 0

in time δt, a particle moves w.r.t. comov frame

physical dist δ~xphys = ~vpecδt

but due to Hubble flow, a comoving (fundamental) observer at

δ~xphys is moving away from the origin at speed ~vcom = Hδ~xphys

thus the new speed of the particle relative to its new comoving

neighbor is given by the relative velocity

~v′pec = ~vpec − ~vcom

(where we used the non-rel velocity addition law)

and so the peculiar velocity changes by

δ~vpec = −Hδ~xphys = −ȧ

a
~vpecδt = −δa

a
~vpec (44)

Q: physical implications?
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δvpec/vpec = −δa/a ⇒ physical peculiar velocity vpec ∝ 1/a:

• mvnon−rel = pnon−rel = p0/a

• comoving peculiar velocity dℓcom/dt ∝ 1/a2

slowdown w.r.t. comoving frame: velocity “decays”

not a “cosmic drag” but rather kinematic effect

due to struggle to overtake receding of cosmic milestones

Quantum picture:

recall for photons, prel = h/λ ∼ 1/a (de Broglie)

but de Broglie holds for matter too: pnon−rel = h/λdeB ∼ 1/a

⇒ again, pnon−rel = p0/a

true in general, now apply to thermal gas

3
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non-relativistic gas: Maxwell-Boltzmann

n =
g

(2πh̄)3
e−(mc2−µ)/kTa−3

∫

d3p0 e−p20/2mka2T

if occupation number constant (particle conservation)

need a2 T(a) = T0 = const and thus Tnon−rel ∝ 1/a2:

Tnon−rel,decoupled =

(

adec
a

)2
Tdecoupling =

(

1+ z

1 + zdec

)2

Tdecoupling

evaluate for zdec = zri: estimate

Tgas,today ∼ Tγ,0

1+ zdec,gas
∼ 6× 10−3 K (45)

Q: do the experiment...?

Q: what went wrong?
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Inhomogeneities: The Spice of Life

So far: we have assumed perfect homogeneity!

If universe strictly homogeneous

indeed would cool to Tgas ≪ T0

But happily, U. definitely inhomogeneous on small scales!

gravity amplifies density contrast Q: why?

“the rich get richer, the poor get poorer”

this allows for motion, condensation of matter

halo formation, mergers, shocks, star formation, quasars, ...

these overdense structures release energy

lead to diversity of cosmic matter and radiation today!

But how did we get the inhomogeneities?

And what set the primordial composition of baryons?

→ events in the very early Universe...
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Momentum Redshifting: Rigorously

the preceding heuristic arguments give the right result, but to

obtain this rigorously requires General Relativity (if you haven’t

had GR yet, never mind)

in GR: a free particle’s motion is a geodesic

so 4-momentum pµ = mdxµ/ds = m(γ, γ~v) = (E, ~p) changes as

pα∇αp
µ = pα∂αp

µ +Γ
µ
αβp

αpβ = 0 (46)

and we see that the change in u is due to the connection term

Γ, i.e., to curvature

→ curvature tells matter how to move

note: homogeneity hugely simplifies: pµ = pµ(t)

so ∂µp = 0 except for ∂tp = ṗ

3
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consider the µ = i ∈ (x, y, z) component of the geodesic eq

pα∂αp
i +Γi

αβp
αpβ = Eṗ+Γi

αβp
αpβ (47)

= 0 (48)

note that in FRW, if we write ds2 = dt2 − hijdx
idxj

where hij is the spatial metric, then nonzero Γi
αβ are

Γi
0j =

ȧ

a
δij (49)

where δij is the Kronecker delta (try it!)

We then have

Eṗi +
ȧ

a
Epi = 0 (50)

and thus

d~p/dt = −ȧ

a
~p (51)

|~p| ∝ 1

a
(52)
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Note that this result is completely general, i.e., works for all

relativistic p, so

• in non-rel limit, v ∝ 1/a: vel redshifts, and free particles

eventually come to rest wrt the comoving background

• in ultra-rel limit, v = p/E ≈ c, doesn’t redshift, but

since E ≈ p, E ∝ 1/a: energy redshifts

note classical derivation: didn’t need Planck/de Broglie relation

p ∝ 1/λ to show this (though that still works too)
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Linear Theory II: Sketch of Relativistic Treatment
see, e.g., Dodelson text, Liddle & Lyth Ch. 14

Recall limits of Newtonian treatment:

• only appropriate for scales λ ≪ dH: sub-horizon

• relativistic effects like time dilation absent or ad hoc

General Relativistic approach to cosmological perturbations

• as in Newtonian analysis, perturb density, velocity

→ this perturbs stress-energy

schematically “δT ≈ δρ+ δP = δρ+ c2sδρ”

• must therefore add small perturbations to metric:

gµν = gFRW
µν + hµν

• these are related by Einstein’s Equation

Gµν ≈ “∂∂gFRW + ∂∂h” = 8πGNTµν ≈ “8πGN(ρ+ δρ)”

3
7



Metric Perturbations

Perturbations to metric tensor can be classified as:

• scalar – density perturbations couple to these

these are most important

• vector – velocity perturbations couple to these

these are least important (perturbations decay with time)

• tensor – source of gravity waves

inflationary quantum perturbation excite these modes!

focus on scalar perturbations, which modify FRW metric thusly:

(ds2)perturbed = a(η)2
[

(1 + 2 Ψ )dη2 − (1− 2 Φ )δijdx
idxj

]

(53)

Coordinate freedom ↔ “gauge” choice ↔ spacetime “slicing”

⇒ here: “conformal Newtonian gauge”:

• Ψ(~x, t),Φ(~x, t) Schwarzchild-like forms if a = 1, ȧ = 0
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Substitute perturbed metric into Einstein, keep only linear terms

in Φ and Ψ, e.g., neglect Φ2

use conformal time

and go to k-space

• ∇µTµ0 → “continuity”

dδ

dη
+ ikv +3

dΦ

dη
= 0 (54)

• ∇µTµi → “Euler”

dv

dη
+

da/dη

a
v + ikΨ = pressure sources (55)

• Gµν = 8πGNTµν → “Poisson”

k2Φ = −4πGa2ρδ (56)

k2(Ψ−Φ) = −8πGa2“〈Px − Py〉” (57)

expect anisotropic stress small: 〈Px − Py〉 ≪ ρδ → Ψ ≈ Φ
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Recall: conformal time η gives particle horizon

On sub-horizon scales λ ∼ 1/k ≪ η:

relativistic treatment gives back Newtonian result

in fact: justifies our Newtonian treatment

On super-horizon scales λ ∼ 1/k ≫ η:

relativistic treatment still valid

→ will use this to follow inflationary perturbations

through horizon crossing
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