
Astro 507

Lecture 38

April 29, 2020

Announcements:

• Preflight 6b due this Friday May 1

draft your Wikipedia upgrade, post for comments

have fun, ask if you need advice/help

Last time: Jeans linear analysis of gravitational instability

for perturbations of wavelength λ and wavenumber k = 2π/λ

warmup: artificially static universe

Q: perturbation behavior δk(t) on small scales? on large scales?

Q: what determines which behavior–i.e., key scale?1



Linear Perturbations: Static Universe

• small scales: δk(t) ∝ cos(cskt) oscillation

• large scales: δk(t) ∝ exp(+ωfft) collapse

• small/large set by Jeans length λJ ∼ csτff
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now for expanding universe:

Q: similarities?

Q: differences?
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Linear Perturbations: Expanding Universe

• small scales: oscillation

• large scales: δk(t) ∝ t2/3 collapse

• small/large set by Jeans length λJ ∼ csτff
• qualitatively similar fates, Jeans length plays same role

• but cosmic expansion (“Hubble drag”) opposes collapse

so unstable modes grow as power law, not exponentially
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Linear Growth Factor

each unstable Fourier mode grows with time as

δk(t) ∝ D(t) ∼ t2/3 ∼ a ∼ η2conform (1)

growth independent of wavenumber k

• in k-space, all unstable modes grow by same factor

and transform to real space, find

• on large scales (but still subhorizon)

δ(t, ~xlarge) ≃ D(t)δ(ti, ~xlarge) (2)

⇒ entire density contrast pattern grows

with same amplification:

⇒ linear grow factor D(t) applies to whole field

Q: what would this look like for δ(x)? www: animation
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Applications to CMB: Näıve Inferences

before decoupling: pressure dominated by photons

→ expect oscillations – and see them!

after decoupling: growing mode

CMB anisotropies are a snapshot

of perturbations at last scattering

can quantify level: (δT/T)ls ∼ 10−5 at zls ∼ 1100

But matter has ρ ∝ a−3 ∝ T3, so δρ/ρ = 3δT/T

→ δobs(z = 1100) ∼ 3× 10−5 at last scattering

So today, expect fluctuations of size

δ0 =
D0

Dls
δls =

a0
als

δls = (1+ zls)δls ∼ 0.05 ≪ 1 (3)

Should still be very small–no nonlinear structures, such as us!

Q: obviously wrong–egregiously näıve! What’s the flaw?

What’s the fix?
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Perturbation Growth: Dark Matter vs Baryons

dark matter: pressureless

→ all k modes unstable if inside Hubble length

but: perturbations grow sloooowly during radiation era (see Ex-

tras)

→ DM structures begin formation at matter-radiation equality

then δm(t) = δm,init D(t) with D(t) ∝ a(t) ∝ t2/3

baryons: until recomb, tightly coupled to photons

→ feel huge photon pressure Pγ ∝ T4

→ sound speed cs ∼ c/
√
3 huge!

so all sub-horizon modes stable! just oscillate

→ relativistic pressure-mediated (i.e., acoustic) standing waves!6



Cosmic Diversity: Evolution of Multiple Components

Thus far: implicitly assumed a baryons-only universe: not ours!

Cosmic “fluid” contains many different species

with different densities, interactions

baryons, photons, neutrinos, dark matter, dark energy

Each component i has its own equations of motion, e.g.:

δ̈i +2Hδ̇i = −
c2s,ik

2

a2
δi +4πGρ0

∑

j

Ωjδj (4)

species interact via pressure, gravity: evolution eqs coupled

⊲ gravity from dominant Ω drives the other components

⊲ each species’ (pressure) response depends on

microphysics of its interactions, encoded in sound speed cs,i
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Intermission: Questions?
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CMB Anisotropies
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CMB Anisotropies

Between matter-radiation equality and recombination:

• dark matter perturbations grow

form deepening potential wells

• baryons, electrons tightly coupled to photons (plasma)

undergo oscillations: gravity vs pressure = acoustic

Q: what is the largest scale which can oscillate?

Q: for each mode k, what sets oscillation frequency?

Q: at fixed t, which scales have oscillated the most? the least?

Q: how is this written on the CMB?
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Pre-Recombination: Acoustic Oscillations

Baryons in DM-dominated background

δ̈b +2
ȧ

a
δ̇b ≃ 4πGρδdm − k2c2s

a2
δb ∼

δdm
t2

− k2c2s
a2

δb (5)

key comparison: mode scale λ ∼ k−1

vs comoving sound horizon cst/a = ds,com

for large scales kcst/a ≪ 1: baryons follow DM

for small scales kcst/a ≫ 1: baryons oscillate, as

δb ∼
1√
acsk

ei
∫

kcsdη (6)

(PS 6) where dη = dt/a is conformal time

Q: for fixed k, what is δ time behavior?

Q: at fixed t, what is δ pattern vs k?

Q: what sets largest λ that oscillates?
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baryonic perturbations do not grow, but oscillate:

δb ∼
1√
acsk

ei
∫

kcsdη (7)

to simplify, imagine constant cs, δb ∼ eikcsη

at fixed k, sinusoidal oscillations

phase counts number of cycles N = kcsη/2π = csη/λ

oscillation frequency: ω ∼ kcs ∼ cs/λ ∝ 1/λ

at fixed t → fixed η:

small λ and large k → rapid oscillations

largest oscillations at scale λ ∼ csη ∼ cst/a: sound horizon

Q: when do oscillations stop? observable signature?

1
2



Recombination: Snapshot Taken

At recombination, free e− abundance drops

baryons quickly decouple from photons

huge drop in pressure → cs→0

begin to collapse onto DM potentials

photons travel freely (typically) afterwards

fluctuation pattern at recomb is “frozen in”

δ vs scale records different # of cycles at recomb

P(k) = ‖δk‖2 ∼ sin(2kcsηrec)

2kcsηrec
Pinit(k) (8)

written onto temperature pattern (“say cheese!”)

Recomb fast → CMB is image of last scattering surface

Q: on small scales, is an overdensity a hot spot or cold spot?

why?

1
3



Spots Cold and Hot: Small Scales

Define temperature fluctuation Θ = δT/T

On Small Scales: Adiabatic

standing waves lead to fluctuations in ρb ∼ T3, so

Θ ≡ δT

T
=

1

3

(

δρ

ρ

)

b

(9)

⇒ extrema in density → extrema in Θ ∝ δγ

⋆ photon T contrast reflects T distribution at source

• but both high and low density give large (δT/T)2!

photon climb out of potential doesn’t change δT/T much

→ CMB hot spots are high density, cold are low

Q: what about on large scales?
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Very Large Scales: Sachs-Wolfe

beyond horizon: no oscillations, main effects gravitational (GR):

• gravitational redshift: photon climbs out of potential δΦ < 0

redshift δλ/λ = Φ0 −Φls = −δΦ

and since T ∼ 1/λ, (δT/T)redshift = δΦ: photons cooled!

• time dilation: takes longer to climb out of overdensity

looking at younger, hotter universe

δt/t = δΦ, and since a ∼ t2/3 and T ∼ 1/a

then T ∼ t−2/3, and (δT/T)dilation = −2/3 δΦ

net effect: Sachs - Wolfe
(

δT

T

)

SW
=

(

δT

T

)

redshift
+

(

δT

T

)

dilation
=

1

3
δΦ (10)

⋆ overdensities are cold spots, underdensities hot

Note: this regime is what tests inflation

Q: what predicted?
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Inflation and Sachs-Wolfe

Inflation: quantum fluctuations → density fluctuations

• adiabatic (all species)

• Gaussian

• scale invariant–what does this mean?

Extras: inflation scale invariance for wavenumber k

sets “power spectrum” – mean-square flucuation at k
〈

|δk|2
〉

= Pscale−inv(k) = Aknscale−inv (11)

with A a constant (sets flucutaions amplitudes)

and nscale−inv = 1

Predictions:

• fluctuations occur on all scales

• largest amplitudes for big k → small scales

• δk→0 for k→0, as we must find Q: why?
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Angular vs Linear Scales

So far: decomposed fluctuations in (3-D) ~k-space

but observe on sky: 2-D angular distribution

Transformation: projection of plane waves

at fixed k: see intersection of wave with last scattering shell

www: Wayne Hu animation

appears on a range of angular scales

but typical angular size is θ ∼ λ/drec,com ∼ (kdrec,com)−1

large angles → large λ (check!)

for large angular scales θ > θhor,diam ∼ 1◦, superhorizon

perturbations not affected by oscillation

for small angular scales, see standing waves

• peaks at extrema, harmonics of sound horizon

k are in ratios 1:2:3:...
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The CMB Observed

• Observe 2-D sky distribution of ∆T
T (n̂) ≡ Θ(n̂) in direction n̂

• Decompose into spherical harmonics

Θ(n̂) =
∞
∑

ℓ=2

ℓ
∑

m=−ℓ

aℓmYℓm(θ, φ) (12)

with Ylm spherical harmonics Q: why not ℓ = 0,1?

Q: angular size vs ℓ? λ vs ℓ?

Form angular correlation function Q: what is this physically?

〈Θ(n̂1)Θ(n̂2)〉 =
1

4π

∞
∑

ℓ=2

(2ℓ+1)
〈

|aℓm|2
〉

Pℓ(n̂1 · n̂1) (13)

=
1

4π

∞
∑

ℓ=2

(2ℓ+1)CℓPℓ(cosϑ) (14)

where cosϑ = n̂1 · n̂1

Q: averaged over the m azimuthal modes–why?
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all interesting anisotropy information encoded in

Cℓ =
〈

|aℓm|2
〉

(15)

isotropy → azimuthal dependence averages to zero

Note: analog of ∆2 (variance per log scale) is

T 2(ℓ) = ℓ(ℓ+1)Cℓ: usually what is plotted

Since Pℓ(cos θ) ∼ (cos θ)ℓ ∼ cos(ℓθ)

at fixed ℓ, angular size θ ∼ 2π/ℓ = 180◦/ℓ
e.g., ℓ = 2 quadrupole → θ ∼ 90◦

and horizon size θ ∼ 1◦ is at ℓ ∼ 200

and since θ ∼ λ/drec ∼ 1/dk:

multipoles scale as ℓ ∼ 1/θ ∼ k ∼ 1/λ

low ℓ → big angular, physical scales → small k
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CMB Anisotropy Observations: Strategy

• achieve high sensitivity, remove systematics

make a “difference experiment”

i.e., measure δT directly, don’t subtract

• observe as much of the sky as possible (or as needed!)

balloons/ground: limited coverage

satellites (COBE, WMAP, Planck): all-sky

• remove Galactic contamination: “mask” plane

• recover Θ for observed region

• decompose into spherical harmonics Yℓm
• construct power spectrum ℓ(ℓ+1)Cℓ

• report results

• collect thousands of citations, prominent Prizes
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CMB Temperature Anisotropies: Results

COBE (1993)

• first detection of δT/T 6= 0

• receiver horn angular opening ∼ 8◦

→ only sensitive to large angular scales

i.e., superhorizon size

• found (δT/T)rms ∼ 10−5

• power ℓ(ℓ+1)Cℓ flat → implies P(k) ∼ k!

n = 1 spectrum: scale invariant!

Interregnum (late 90’s, early 00’s)

• ground-based, balloons confirmed anisotropy

• acoustic peaks discovered

strong indication of first peak

2
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WMAP (2003-)

• first all-sky survey of small angular scales

• n = 1 confirmed, indication of small tilt n− 1 6= 0?

consistent with inflation! and non-trivially so!

• acoustic peaks mapped: good measurement of 1st, 2nd

detection of third

• first peak: ℓ ∼ 200 horizon at recomb!

• power dropoff seen at large ℓ

→ nonzero thickness of last scattering

due to photon diffusion, non-instantaneous decoupling

2
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Director’s Cut Extras

2
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Matter Instability in the Radiation Era

(dark) matter perturbation δm during radiation domination

• pick subhorizon scale: growth possible

• focus on k < kJ : Jeans unstable (can ignore pressure)

and high-k modes just oscillate anyway

• treat radiation perturbations as smooth: δrad ≈ 0

Pr = ρr/3: huge, fast cs ∼ c

any perturbations will be oscillatory anyway

• dark matter: weak interactions → pressureless → cs = 0!

Evolution simple – to rough approximation, for these k:

δ̈m +2
ȧ

a
δ̇m

rad−dom
= δ̈m +

1

t
δ̇m ≈ 0 (16)

Simple solutions: growing mode plus decaying mode

δm(t) = D(t)δm(ti) =

(

D1 log t+
D2

t

)

δm(ti) (17)

Q: implications? what about baryons?
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Found D(t) ∼ D1 log t: “growing” mode hardly grows!

⋆ dark matter perturbations frozen during rad dom

dark matter growth quenched by

→ non-growth of radiation perturbations

→ extra expansion due to radiation

⋆ dark matter perturbation growth stalled

until end of radiation era: matter-radiation equality

i.e., ρmatter = ρradiation when zeq ∼ 3× 104

Q: is before or after BBN? recomb?

⇒ this marks onset of structure formation

Q: how does this update our naive CMB calculation?

Hint: then, correct reasoning for δ = δb only

2
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baryons tightly coupled to photons till recombination

→ so dark matter perturbations begin growth earlier

And so: DM has grown more! update earlier estimate

and focus on dark matter

δm,0 =
Dls

Deq
δb,0 ∼ 1+ zeq

1+ zls
δb ∼ 30× 0.05 ∼ 1 (18)

DM can grow to nonlinearity today!

⋆ existence of collapsed cosmic structures

requires collisionless dark matter!

⋆ independent argument for large amounts of

weakly interacting matter throughout universe!
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Inflation and Sachs-Wolfe

Inflation: quantum fluctuations → density fluctuations

• adiabatic (all species)

• Gaussian

• scale invariant–what does this mean?

In detail: inflation predicts that the dimensionless

fluctuations in the gravitational potential ↔ local curvature

are independent of scale

→ this was what we really calculated in Inflation discussion

inflationary scale-invariance is for grav potential:

i.e., Fourier mode contribution ∆2
Φ ∼ k3|Φk|2 ∼ const indep of k

→ scale invariant: |Φk|2 ∼ k−3

Q: how related ot P(k)?
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need to connect gravitational potential/curvature perturbations

to density perturbations

But in Newtonian regime, know how to do this:

Poisson relates potential and density:

∇2δΦ = 4πGδρ → Φk ∼ δk/k
2 (19)

and so P(k) = |δk|2 ∼ k4|Φk|2

thus scale invariant gravitational potential

gives power spectrum:

Pscale−inv(k) ∼ k4
∣

∣Φscale−inv(k)
∣

∣

2 ∼ k (20)

i.e., scale invariance: P(k) ∼ kn, nscale−inv = 12
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