Astro 507 Lecture 38 April 29, 2020

Announcements:

• Preflight 6b due this Friday May 1

draft your Wikipedia upgrade, post for comments have fun, ask if you need advice/help

Last time: Jeans linear analysis of gravitational instability for perturbations of wavelength λ and wavenumber $k = 2\pi/\lambda$ warmup: artificially static universe

Q: perturbation behavior $\delta_k(t)$ on small scales? on large scales?

, Q: what determines which behavior-i.e., key scale?

Linear Perturbations: Static Universe

- small scales: $\delta_k(t) \propto \cos(c_s kt)$ oscillation
- large scales: $\delta_k(t) \propto \exp(+\omega_{\rm ff}t)$ collapse
- small/large set by Jeans length $\lambda_{\rm J} \sim c_s \tau_{\rm ff}$

Linear Perturbations: Expanding Universe

- small scales: oscillation
- large scales: $\delta_k(t) \propto t^{2/3}$ collapse
- small/large set by Jeans length $\lambda_{\rm J} \sim c_s \tau_{\rm ff}$
- qualitatively similar fates, Jeans length plays same role
- but cosmic expansion ("Hubble drag") opposes collapse so unstable modes grow as power law, not exponentially

Linear Growth Factor

each unstable Fourier mode grows with time as

$$\delta_k(t) \propto D(t) \sim t^{2/3} \sim a \sim \eta_{\text{conform}}^2$$
 (1)

growth independent of wavenumber \boldsymbol{k}

- in *k*-space, all unstable modes grow by same factor and transform to real space, find
- on large scales (but still subhorizon)

$$\delta(t, \vec{x}_{\text{large}}) \simeq D(t)\delta(t_i, \vec{x}_{\text{large}})$$
 (2)

 \Rightarrow entire density contrast pattern grows

with same amplification:

 \Rightarrow linear grow factor D(t) applies to whole field

4

Q: what would this look like for $\delta(x)$? www: animation

Applications to CMB: Naïve Inferences

before decoupling: pressure dominated by photons \rightarrow expect oscillations – and see them! after decoupling: growing mode

CMB anisotropies are a snapshot of perturbations at last scattering can quantify level: $(\delta T/T)_{\rm ls} \sim 10^{-5}$ at $z_{\rm ls} \sim 1100$

But matter has $\rho \propto a^{-3} \propto T^3$, so $\delta \rho / \rho = 3\delta T / T$ $\rightarrow \delta_{obs}(z = 1100) \sim 3 \times 10^{-5}$ at last scattering So today, expect fluctuations of size

$$\delta_0 = \frac{D_0}{D_{\rm ls}} \delta_{\rm ls} = \frac{a_0}{a_{\rm ls}} \delta_{\rm ls} = (1 + z_{\rm ls}) \delta_{\rm ls} \sim 0.05 \ll 1$$
(3)

σ

Should still be very small-no nonlinear structures, such as us! *Q: obviously wrong-egregiously naïve! What's the flaw? What's the fix?*

Perturbation Growth: Dark Matter vs Baryons

dark matter: pressureless

 \rightarrow all k modes unstable if inside Hubble length

but: perturbations grow sloooowly during radiation era (see Extras)

 \rightarrow DM structures begin formation at matter-radiation equality then $\delta_{\rm m}(t) = \delta_{\rm m,init} D(t)$ with $D(t) \propto a(t) \propto t^{2/3}$

baryons: until recomb, tightly coupled to photons

 \rightarrow feel huge photon pressure $P_\gamma \propto T^4$

 \rightarrow sound speed $c_s \sim c/\sqrt{3}$ huge!

so all sub-horizon modes stable! just oscillate

 $_{\sigma}$ \rightarrow relativistic pressure-mediated (i.e., acoustic) standing waves!

Cosmic Diversity: Evolution of Multiple Components

Thus far: *implicitly assumed a baryons-only universe*: not ours!

Cosmic "fluid" contains many different species with different densities, interactions baryons, photons, neutrinos, dark matter, dark energy

Each component *i* has its own equations of motion, e.g.:

$$\ddot{\delta}_i + 2H\dot{\delta}_i = -\frac{c_{s,i}^2 k^2}{a^2} \delta_i + 4\pi G \rho_0 \sum_j \Omega_j \delta_j \tag{4}$$

species interact via pressure, gravity: evolution eqs *coupled*> gravity from dominant Ω drives the other components
→ each species' (pressure) response depends on microphysics of its interactions, encoded in sound speed c_{s,i}

Intermission: Questions?

CMB Anisotropies

Between matter-radiation equality and recombination:

- dark matter perturbations grow form deepening potential wells
- baryons, electrons tightly coupled to photons (plasma) undergo oscillations: gravity vs pressure = acoustic

Q: what is the largest scale which can oscillate?

- Q: for each mode k, what sets oscillation frequency?
- Q: at fixed t, which scales have oscillated the most? the least?
- *Q:* how is this written on the CMB?

Pre-Recombination: Acoustic Oscillations

Baryons in DM-dominated background

$$\ddot{\delta}_b + 2\frac{\dot{a}}{a}\dot{\delta}_b \simeq 4\pi G\rho\delta_{dm} - \frac{k^2c_s^2}{a^2}\delta_b \sim \frac{\delta_{dm}}{t^2} - \frac{k^2c_s^2}{a^2}\delta_b \tag{5}$$

key comparison: mode scale $\lambda \sim k^{-1}$ vs **comoving sound horizon** $c_s t/a = d_{s,com}$

for large scales $kc_st/a \ll 1$: baryons follow DM for small scales $kc_st/a \gg 1$: baryons oscillate, as

$$\delta_b \sim \frac{1}{\sqrt{ac_s k}} e^{i \int k c_s d\eta} \tag{6}$$

(PS 6) where $d\eta = dt/a$ is conformal time

 $\stackrel{\square}{\vdash}$ Q: for fixed k, what is δ time behavior? Q: at fixed t, what is δ pattern vs k? Q: what sets largest λ that oscillates? baryonic perturbations do not grow, but oscillate:

$$\delta_b \sim \frac{1}{\sqrt{ac_s k}} e^{i \int k c_s d\eta} \tag{7}$$

to simplify, imagine constant c_s , $\delta_b \sim e^{ikc_s\eta}$

at fixed k, sinusoidal oscillations phase counts number of cycles $N = kc_s\eta/2\pi = c_s\eta/\lambda$ oscillation frequency: $\omega \sim kc_s \sim c_s/\lambda \propto 1/\lambda$

at fixed $t \rightarrow$ fixed η :

small λ and large $k \rightarrow$ rapid oscillations largest oscillations at scale $\lambda \sim c_s \eta \sim c_s t/a$: sound horizon

12

Q: when do oscillations stop? observable signature?

Recombination: Snapshot Taken

At recombination, free e^- abundance drops baryons quickly decouple from photons huge drop in pressure $\rightarrow c_s \rightarrow 0$ begin to collapse onto DM potentials photons travel freely (typically) afterwards fluctuation pattern at recomb is "frozen in" δ vs scale records different # of cycles at recomb

$$P(k) = \|\delta_k\|^2 \sim \frac{\sin(2kc_s\eta_{\text{rec}})}{2kc_s\eta_{\text{rec}}} P_{\text{init}}(k)$$
(8)

written onto temperature pattern ("say cheese!")

Recomb fast \rightarrow CMB is image of last scattering surface

13

Q: on small scales, is an overdensity a hot spot or cold spot? why?

Spots Cold and Hot: Small Scales

Define temperature fluctuation $\Theta = \delta T/T$

On Small Scales: Adiabatic

standing waves lead to fluctuations in $\rho_b \sim T^3$, so

$$\Theta \equiv \frac{\delta T}{T} = \frac{1}{3} \left(\frac{\delta \rho}{\rho} \right)_b \tag{9}$$

 \Rightarrow extrema in density \rightarrow extrema in $\Theta \propto \delta_{\gamma}$

 \star photon T contrast reflects T distribution at source

• but both high and low density give large $(\delta T/T)^2$! photon climb out of potential doesn't change $\delta T/T$ much \rightarrow CMB hot spots are high density, cold are low

14

Q: what about on large scales?

Very Large Scales: Sachs-Wolfe

beyond horizon: no oscillations, main effects gravitational (GR):

- gravitational redshift: photon climbs out of potential $\delta \Phi < 0$ redshift $\delta \lambda / \lambda = \Phi_0 - \Phi_{ls} = -\delta \Phi$ and since $T \sim 1/\lambda$, $(\delta T/T)_{redshift} = \delta \Phi$: photons cooled!
- time dilation: takes longer to climb out of overdensity looking at younger, hotter universe $\delta t/t = \delta \Phi$, and since $a \sim t^{2/3}$ and $T \sim 1/a$ then $T \sim t^{-2/3}$, and $(\delta T/T)_{\text{dilation}} = -2/3 \ \delta \Phi$ net effect: Sachs Wolfe

$$\left(\frac{\delta T}{T}\right)_{SW} = \left(\frac{\delta T}{T}\right)_{\text{redshift}} + \left(\frac{\delta T}{T}\right)_{\text{dilation}} = \frac{1}{3}\delta\Phi \qquad (10)$$

***** overdensities are cold spots, underdensities hot

G Note: this regime is what tests inflation *Q: what predicted?*

Inflation and Sachs-Wolfe

Inflation: quantum fluctuations \rightarrow density fluctuations

- adiabatic (all species)
- Gaussian
- scale invariant—what does this mean?

Extras: inflation scale invariance for wavenumber ksets "power spectrum" – mean-square flucuation at k

$$\left\langle |\delta_k|^2 \right\rangle = P_{\text{scale-inv}}(k) = Ak^{n_{\text{scale-inv}}}$$
 (11)

with A a constant (sets flucutations amplitudes)

and $n_{\text{scale}-\text{inv}} = 1$

Predictions:

16

- fluctuations occur on all scales
- largest amplitudes for big $k \rightarrow$ small scales
- $\delta_k \rightarrow 0$ for $k \rightarrow 0$, as we must find *Q*: why?

Angular vs Linear Scales

So far: decomposed fluctuations in (3-D) \vec{k} -space but observe on sky: 2-D angular distribution

Transformation: projection of plane waves at fixed k: see intersection of wave with last scattering shell www: Wayne Hu animation

appears on a range of angular scales but typical angular size is $\theta \sim \lambda/d_{rec,com} \sim (kd_{rec,com})^{-1}$

```
large angles → large λ (check!)
for large angular scales θ > θ<sub>hor,diam</sub> ~ 1°, superhorizon perturbations not affected by oscillation
for small angular scales, see standing waves
peaks at extrema, harmonics of sound horizon
```

```
k are in ratios 1:2:3:...
```

17

The CMB Observed

- Observe 2-D sky distribution of $\frac{\Delta T}{T}(\hat{n}) \equiv \Theta(\hat{n})$ in direction \hat{n}
- Decompose into spherical harmonics

$$\Theta(\hat{n}) = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta, \phi)$$
(12)

with Y_{Im} spherical harmonics Q: why not $\ell = 0, 1$? Q: angular size vs ℓ ? λ vs ℓ ?

Form angular correlation function Q: what is this physically?

$$\langle \Theta(\hat{n}_1)\Theta(\hat{n}_2)\rangle = \frac{1}{4\pi} \sum_{\ell=2}^{\infty} (2\ell+1) \left\langle |a_{\ell m}|^2 \right\rangle P_{\ell}(\hat{n}_1 \cdot \hat{n}_1)$$
(13)
$$= \frac{1}{4\pi} \sum_{\ell=2}^{\infty} (2\ell+1) C_{\ell} P_{\ell}(\cos\vartheta)$$
(14)

18

where $\cos \vartheta = \hat{n}_1 \cdot \hat{n}_1$ *Q: averaged over the m azimuthal modes*–*why*? all interesting anisotropy information encoded in

$$C_{\ell} = \left\langle |a_{\ell m}|^2 \right\rangle \tag{15}$$

isotropy \rightarrow azimuthal dependence averages to zero

Note: analog of Δ^2 (variance per log scale) is $\mathcal{T}^2(\ell) = \ell(\ell+1)C_\ell$: usually what is plotted

Since
$$P_{\ell}(\cos \theta) \sim (\cos \theta)^{\ell} \sim \cos(\ell \theta)$$

at fixed ℓ , angular size $\theta \sim 2\pi/\ell = 180^{\circ}/\ell$
e.g., $\ell = 2$ quadrupole $\rightarrow \theta \sim 90^{\circ}$
and horizon size $\theta \sim 1^{\circ}$ is at $\ell \sim 200$

and since $\theta \sim \lambda/d_{rec} \sim 1/dk$: \exists multipoles scale as $\ell \sim 1/\theta \sim k \sim 1/\lambda$ low $\ell \rightarrow$ big angular, physical scales \rightarrow small k

CMB Anisotropy Observations: Strategy

- achieve high sensitivity, remove systematics make a "difference experiment" i.e., measure δT directly, don't subtract
- observe as much of the sky as possible (or as needed!) balloons/ground: limited coverage satellites (COBE, WMAP, Planck): all-sky
- remove Galactic contamination: "mask" plane
- recover Θ for observed region
- decompose into spherical harmonics $Y_{\ell m}$
- construct power spectrum $\ell(\ell+1)C_\ell$
- report results
- $^{\aleph}$ collect thousands of citations, prominent Prizes

CMB Temperature Anisotropies: Results

COBE (1993)

- first detection of $\delta T/T \neq 0$
- receiver horn angular opening ~ 8°
 → only sensitive to large angular scales
 i.e., superhorizon size
- found $(\delta T/T)_{\rm rms} \sim 10^{-5}$
- power $\ell(\ell+1)C_{\ell}$ flat \rightarrow implies $P(k) \sim k!$
 - n = 1 spectrum: scale invariant!

Interregnum (late 90's, early 00's)

- ground-based, balloons confirmed anisotropy
- acoustic peaks discovered
- strong indication of first peak

21

WMAP (2003-)

- first all-sky survey of small angular scales
- n = 1 confirmed, indication of small tilt $n 1 \neq 0$? consistent with inflation! and non-trivially so!
- acoustic peaks mapped: good measurement of 1st, 2nd detection of third
- first peak: $\ell\sim 200$ horizon at recomb!
- \bullet power dropoff seen at large ℓ
 - \rightarrow nonzero thickness of last scattering

due to photon diffusion, non-instantaneous decoupling

Matter Instability in the Radiation Era

(dark) matter perturbation δ_m during radiation domination

- pick subhorizon scale: growth possible
- focus on $k < k_J$: Jeans unstable (can ignore pressure) and high-k modes just oscillate anyway
- treat radiation perturbations as smooth: $\delta_{rad} \approx 0$ $P_r = \rho_r/3$: huge, fast $c_s \sim c$ any perturbations will be oscillatory anyway
- dark matter: weak interactions \rightarrow pressureless \rightarrow $c_s = 0!$

Evolution simple – to rough approximation, for these k:

$$\ddot{\delta}_m + 2\frac{\dot{a}}{a}\dot{\delta}_m \stackrel{\text{rad}-\text{dom}}{=} \ddot{\delta}_m + \frac{1}{t}\dot{\delta}_m \approx 0 \tag{16}$$

Simple solutions: growing mode plus decaying mode

$$\delta_m(t) = \frac{D(t)}{\delta_m(t_i)} = \left(D_1 \log t + \frac{D_2}{t}\right) \delta_m(t_i)$$
(17)

Q: implications? what about baryons?

Found $D(t) \sim D_1 \log t$: "growing" mode hardly grows!

 \star dark matter perturbations *frozen* during rad dom dark matter growth quenched by

- \rightarrow non-growth of radiation perturbations
- \rightarrow extra expansion due to radiation

★ dark matter perturbation growth stalled

until end of radiation era: matter-radiation equality

- i.e., $\rho_{\rm matter} = \rho_{\rm radiation}$ when $z_{\rm eq} \sim 3 \times 10^4$
- *Q*: *is before or after BBN? recomb?*
- \Rightarrow this marks onset of structure formation
- $\stackrel{\text{$\begin{subarray}{c}{l} \linesigned \end{subarray}}{l} Q: how does this update our naive CMB calculation?$ $Hint: then, correct reasoning for <math>\delta = \delta_b$ only

baryons tightly coupled to photons till recombination \rightarrow so dark matter perturbations begin growth earlier

And so: DM has grown more! update earlier estimate and focus on dark matter

$$\delta_{m,0} = \frac{D_{\mathsf{ls}}}{D_{\mathsf{eq}}} \delta_{b,0} \sim \frac{1 + z_{\mathsf{eq}}}{1 + z_{\mathsf{ls}}} \delta_b \sim 30 \times 0.05 \sim 1 \tag{18}$$

DM can grow to nonlinearity today!

- ★ existence of collapsed cosmic structures requires collisionless dark matter!
- * independent argument for large amounts of weakly interacting matter throughout universe!

Inflation and Sachs-Wolfe

Inflation: quantum fluctuations \rightarrow density fluctuations

- adiabatic (all species)
- Gaussian
- scale invariant—what does this mean?

In detail: inflation predicts that the dimensionless fluctuations in the *gravitational potential* \leftrightarrow *local curvature* are independent of scale \rightarrow this was what we really calculated in Inflation discussion

inflationary scale-invariance is for grav potential:

i.e., Fourier mode contribution $\Delta_{\Phi}^2 \sim k^3 |\Phi_k|^2 \sim const$ indep of k

 P_{3} → scale invariant: $|Φ_{k}|^{2} \sim k^{-3}$ Q: how related of P(k)? need to connect gravitational potential/curvature perturbations to density perturbations

But in Newtonian regime, know how to do this: Poisson relates potential and density:

$$\nabla^2 \delta \Phi = 4\pi G \delta \rho \quad \rightarrow \quad \Phi_k \sim \delta_k / k^2 \tag{19}$$

and so $P(k) = |\delta_k|^2 \sim k^4 |\Phi_k|^2$

thus scale invariant gravitational potential gives power spectrum:

20

$$P_{\text{scale}-\text{inv}}(k) \sim k^4 |\Phi_{\text{scale}-\text{inv}}(k)|^2 \sim k$$
(20)
i.e., scale invariance: $P(k) \sim k^n$, $n_{\text{scale}-\text{inv}} = 1$