Astro ⁵⁰⁷ Lecture ³⁹May 1, ²⁰²⁰

Announcements:

- Preflight 6b due today
- Preflight 6c due Wednesday

give feedback on others

Last time: ^a tale of two species–dark matter and baryons Q: why do DM vs baryon perturbations behave differently?Q: which begins growth first?

dark matter: dominates matter density weakly interacting → treat as pressureless
harvons: (really both nuclei and electrons baryons: (really, both nuclei and electrons) subdominant densitybefore recombination, feel strong photon pressure

radiation era: perturbation growth suppressed due to large pressure, high sound speed $c_s = c/\sqrt{3}$ so Jeans length \sim sound horizon \sim particle horizon

matter-dominated era before recombination:

- dark matter fluctuations grow form potential wells beginning at matter-radiation equality $z_{\text{eq}} = 3402 \pm 26$
- insize horizon: baryons oscillate in DM potentials

after recombination:

 \overline{C}

• baryons see pressure drop, collapseCMB released, today gives snapshot of oscillations

Small Scales: Acoustic Oscillations

at matter-radiation equality: dark matter has been collapsing overdensities forms gravity potential wells

baryons begin oscillations: standing waves driven by DM gravity • with radiation pressure as restoring forcecontinues until recombination

 ω

scale λ has $\delta_b(k) \sim -\cos(2\pi c_s t/\lambda)$ slowest oscillation is near sound horizon $\lambda \sim r_s = \int c_s dt/a$ give largest-scale δ_b^2 at recombination first compression (1/2 period) $\frac{2}{b}$ extremum:

Q: what scale gives next δ^2_b $\frac{2}{b}$ extremum? and the next?

CMB Acoustic Peaks

consider density variance δ_b^2 at different λ at time of recombination

- λ _{comov} ~ r_s : 1/2 cycle completed first compression \rightarrow maximum δ_b^2 extra strong since baryon gravity adds to potential
- \bullet $\lambda_{\mathsf{comov}} \sim r_s/2$: 1 cycle completed first rarefaction: minimum in δ_b but maximum δ_b^2 weaker than first peak since baryon gravity minimized

Q: in general, what's the pattern of extrema?

Q: on small scales, is an overdensity ^a hot spot or cold spot?why? \rightarrow

Spots Cold and Hot: Small Scales

Define temperature fluctuation $\Theta = \delta T /T$

On Small Scales: Adiabatic

standing waves lead to fluctuations in $\rho_b\sim T^3$, so

$$
\Theta \equiv \frac{\delta T}{T} = \frac{1}{3} \left(\frac{\delta \rho}{\rho} \right)_b \tag{1}
$$

 \Rightarrow extrema in density \rightarrow extrema in $\Theta \propto \delta_{\gamma}$

 \star photon T contrast reflects T distribution at source

 \bullet but both high and low density give large $(\delta T/T)^2!$ photon climb out of potential doesn't change $\delta T/T$ much \rightarrow CMB hot spots are high density, cold are low

 σ

 Q : what about on large scales $\lambda > r_s$?

Very Large Scales: Sachs-Wolfe

beyond horizon: no oscillations, main effects gravitational (GR):

- **gravitational redshift:** photon climbs out of potential $\delta \Phi < 0$ redshift $\delta \lambda / \lambda = \Phi_0$ and since $T\sim1/\lambda$, $(\delta T /T)_{\rm redshift}=\delta\Phi$: photons cooled! $\Phi_{\sf l s}=-\delta\Phi$
- **time dilation:** takes longer to climb out of overdensity looking at younger, hotter universe $\delta t/t=\delta\Phi$, and since $a\sim t^{2/3}$ and \hat{a} \sqrt{c} then $T\sim t^{-2/3}$, and $(\delta T/T)_{\rm dilation}=-2/3$ 3 and $T\sim1/a$ net effect: Sachs - Wolfe 3 , and $(\delta T/T)_{\rm dilation}=-2/3\;\delta\Phi$

$$
\left(\frac{\delta T}{T}\right)_{SW} = \left(\frac{\delta T}{T}\right)_{\text{redshift}} + \left(\frac{\delta T}{T}\right)_{\text{dilation}} = \frac{1}{3}\delta\Phi\tag{2}
$$

 \star overdensities are cold spots, underdensities hot

Note: this regime is what tests inflationQ: what predicted? σ

Inflation and Sachs-Wolfe

Inflation: quantum fluctuations → density fluctuations

- adiabatic (all species)
- Gaussian
- scale invariant–what does this mean?

Extras: inflation scale invariance for wavenumber k sets "power spectrum" – mean-square fluctuation at k

$$
\langle |\delta_k|^2 \rangle = P_{\text{scale} - \text{inv}}(k) = Ak^{n_{\text{scale} - \text{inv}}}
$$
 (3)

with A a constant (sets fluctutaions amplitudes)

and $n_{\sf scale-inv} = 1$

Predictions:

 $\overline{}$

- fluctuations occur on all scales
- largest amplitudes for big $k \to$ small scales
• $\delta_{k} \rightarrow 0$ for $k \rightarrow 0$ as we must find Ω ; why?
- \bullet $\delta_k{\rightarrow}0$ for $k{\rightarrow}0$, as we must find Q : why?

Angular vs Linear Scales

So far: decomposed fluctuations in (3-D) \vec{k} -space but observe on sky: 2-D angular distribution

Transformation: projection of plane waves at fixed k : see intersection of wave with last scattering shell www: Wayne Hu animation

appears on ^a range of angular scales but typical angular size is $\theta \sim \lambda/d$ rec,com $\sim (k d$ rec,com) $^{-1}$

large angles \rightarrow large λ (check!)
for large angular scales $\theta > \theta$. for large angular scales $\theta>\theta_{\sf hor,diam}\sim 1^\circ$, superhorizon perturbations not affected by oscillationfor small angular scales, see standing waves

• peaks at extrema, harmonics of sound horizon k are in ratios 1:2:3:...

 ∞

Intermission

The CMB Observed

- \bullet • Observe 2-D sky distribution of $\frac{\Delta T}{T}(\hat{n}) \equiv \Theta(\hat{n})$ in direction \hat{n}
- Decompose into spherical harmonics

$$
\Theta(\hat{n}) = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta, \phi)
$$
 (4)

with Y_{lm} spherical harmonics Q : why not $\ell = 0, 1$?
Angular size vs ℓ ? A vs ℓ ? Q : angular size vs ℓ ? λ vs ℓ ?

Form angular correlation function Q: what is this physically?

$$
\langle \Theta(\hat{n}_1) \Theta(\hat{n}_2) \rangle = \frac{1}{4\pi} \sum_{\ell=2}^{\infty} (2\ell+1) \langle |a_{\ell m}|^2 \rangle P_{\ell}(\hat{n}_1 \cdot \hat{n}_1) \quad (5)
$$

$$
= \frac{1}{4\pi} \sum_{\ell=2}^{\infty} (2\ell+1) C_{\ell} P_{\ell}(\cos \vartheta) \quad (6)
$$

10

where $\cos \vartheta = \widehat{n}_1 \cdot \widehat{n}_1$ Q : averaged over the m azimuthal modes–why? all interesting anisotropy information encoded in

$$
C_{\ell} = \left\langle |a_{\ell m}|^2 \right\rangle \tag{7}
$$

isotropy \rightarrow azimuthal dependence averages to zero

Note: analog of Δ^2 (variance per log scale) is $\mathcal{T}^2(\ell) = \ell(\ell+1)$ $\ell^2(\ell) = \ell(\ell+1)C_\ell$: usually what is plotted

Since
$$
P_{\ell}(\cos \theta) \sim (\cos \theta)^{\ell} \sim \cos(\ell \theta)
$$

at fixed ℓ , angular size $\theta \sim 2\pi/\ell = 180^{\circ}/\ell$
e.g., $\ell = 2$ quadrupole $\rightarrow \theta \sim 90^{\circ}$
and horizon size $\theta \sim 1^{\circ}$ is at $\ell \sim 200$

and since $\theta \sim \lambda/d$ rec $\sim 1/dk$: \Box multipoles scale as $\ell \sim 1/\theta \sim k \sim 1/\lambda$ low $\ell \to$ big angular, physical scales \to small k

CMB Anisotropy Observations: Strategy

- achieve high sensitivity, remove systematics make ^a "difference experiment"i.e., measure δT directly, don't subtract
- observe as much of the sky as possible (or as needed!) balloons/ground: limited coveragesatellites (COBE, WMAP, Planck): all-sky
- remove Galactic contamination: "mask" plane
- recover ^Θ for observed region
- \bullet decompose into spherical harmonics $Y_{\ell m}$
- \bullet construct power spectrum $\ell(\ell+1)C_\ell$
- report results
- collect thousands of citations, prominent Prizes 12

CMB Temperature Anisotropies: Results

COBE (1993)

13

- first detection of $\delta T/T\neq 0$
- receiver horn angular opening $\sim8°$ → only sensitive to large angular scales i.e., superhorizon size
- \bullet found $(\delta T/T)_{\rm rms} \sim 10^{-5}$
- power $\ell(\ell+1)C_{\ell}$ flat \rightarrow implies $P(k) \sim k!$
≈ 1 spectrum: scale invariantl
	- $n=1$ spectrum: scale invariant!

Interregnum (late 90's, early 00's)

- ground-based, balloons confirmed anisotropy
- acoustic peaks discovered
- strong indication of first peak

WMAP (2003-)

- first all-sky survey of small angular scales
- $n = 1$ confirmed, indication of small tilt $n 1 \neq 0$? consistent with inflation! and non-trivially so!
- acoustic peaks mapped: good measurement of 1st, 2nddetection of third
- first peak: $\ell \sim 200$ horizon at recomb!
- power dropoff seen at large ℓ
	- \rightarrow nonzero thickness of last scattering
due to photon diffusion, non-instantan

due to photon diffusion, non-instantaneous decoupling

Planck (2013–2018)

- exquisite measurements of cosmological parameters
- small deviation from scale invariance measuredat high confidence
- no detection of non-Gaussianity
- \bullet sensitivity to $N_{\sf eff}$ and $Y_{\sf p}$

CMB Polarization

Recall: pre-recombination, photons coupled to baryons via Thompson scattering with electrons

Key fact: Thompson scattering is anisotropic and polarized polarization of scattered radiation scales as

$$
\frac{d\sigma_T}{d\Omega} \propto |\hat{\epsilon}_{\text{in}} \cdot \hat{\epsilon}_{\text{SC}}|^2 = \cos^2 \theta \tag{8}
$$

where:

 $\widehat{\epsilon}_{\sf in}$ is incident photon polarization $\widehat{\epsilon}_\mathsf{SC}$ is scattered photon polarization and propagation is transverse: $\hat{\epsilon}_{in} \cdot \hat{n}_{in} = 0$

Q: in what direction is polarization max? min? Q: why physically? hint: think of ^e as antenna16

max scattered polarization when in plane normal to initial pol'nzero scattered intensity in direction of initial pol'n

classical picture: e^- as dipole antenna incident polarized wave accelerates e^+ \rightarrow azimuthally symmetric radiation,
peaks in $\theta = 0$ plane peaks in $\theta = 0$ plane

note: since cos ${}^{2\theta}$ \propto cos 2 θ , scattered rad has 180 0 periodicity \rightarrow a "pole" every 90⁰: quadrupole

Q: what if unpolarized radiation from ² opposite directions ?Q: what if isotropic unpolarized radiation?17

still linearly polarized!

unpolarized!

...as demanded by symmetry

Polarization and Inhomogeneity

Pre-recomb: repeated Thompson scatteringrandomizes polarization \rightarrow CMB unpolarized

But at recomb, last scattering evens "uncompensated"

- if plasma homogeneous: still no net polarization
- \bullet but inhomogeneities \rightarrow net linear polarization in CMB

Consider point on hot-cold "wall"

- Q: what is scattered polarization? why?
- Q: what temperature pattern seen at point?

pattern seen at point: *dipole* anisotropy extra polarized radiation from hot region cancels

Now consider point on " checkerboard vertex"Q: what is scattered polarization? why?Q: what temperature pattern seen at point?

dipole anisotropy:unpolarized

point sees *quadrupole* anisotropy extra polarization from hot regions doesn't cancel

quarupole anisotropy:linear polarization

→ net linear polarization towards us, aligned w/ "cold" axis
------- ------ "karre II:: marie www: cool Wayne Hu movie

Q: what about edge of circular hot spot? cold spot?
hot spot cold spot cold spot

22

Note: polarization & T anisotropies linked
Note: polarization & T anisotropies linked \rightarrow consistency test for CMB theory and hence hot big bang

Director's Cut Extras

Recombination: Snapshot Taken

At recombination, free e^- abundance drops baryons quickly decouple from photons huge drop in pressure $\rightarrow c_s{\rightarrow}0$ begin to collapse onto DM potentials photons travel freely (typically) afterwards fluctuation pattern at recomb is "frozen in" δ vs scale records different $\#$ of cycles at recomb

$$
P(k) = \|\delta_k\|^2 \sim \frac{\sin(2k c_s \eta_{\text{rec}})}{2k c_s \eta_{\text{rec}}} P_{\text{init}}(k)
$$
(9)

written onto temperature pattern ("say cheese!")

 $\sf Recomb$ fast \to CMB is image of last scattering surface 24

Pre-Recombination: Acoustic Oscillations

Baryons in DM-dominated background

$$
\ddot{\delta}_b + 2\frac{\dot{a}}{a}\dot{\delta}_b \simeq 4\pi G\rho \delta_{dm} - \frac{k^2 c_s^2}{a^2} \delta_b \sim \frac{\delta_{dm}}{t^2} - \frac{k^2 c_s^2}{a^2} \delta_b \tag{10}
$$

key comparison: mode scale $\lambda\sim k^{-1}$ \sim \sim $\sqrt{2}$ vs **comoving sound horizon** $c_st/a=d_{s,com}$

for *large scales* $k c_s t/a \ll 1$ *: baryons follow DM*
for small scales $k c_s t/a \gg 1$: baryons oscillate a for small scales $k c_s t/a \gg 1$: baryons oscillate, as

$$
\delta_b \sim \frac{1}{\sqrt{ac_s k}} e^{i \int k c_s d\eta} \tag{11}
$$

(PS 6) where $d\eta = dt/a$ is conformal time

 Q : for fixed k , what is δ time behavior? Q : at fixed t, what is δ pattern vs k ? Q : what sets largest λ that oscillates? 25

baryonic perturbations do not grow, but oscillate:

$$
\delta_b \sim \frac{1}{\sqrt{ac_s k}} e^{i \int k c_s d\eta} \tag{12}
$$

to simplify, imagine constant $c_s, \ \delta_b \sim e^{i k c_s \eta}$

at fixed k , sinusoidal oscillations phase counts number of cycles $N=k c_s \eta/2\pi=c_s \eta/\lambda$ oscillation frequency: $\omega \sim k c_s \sim c_s/\lambda \propto 1/\lambda$ $s \sim c_s/\lambda \propto 1/\lambda$

at fixed t \rightarrow fixed η :
small λ and large k

small λ and large $k \to$ rapid oscillations
largest escillations at scale λ and manufat largest oscillations at scale $\lambda\sim c_s\eta\sim c_st/a$: sound horizon

26

Q: when do oscillations stop? observable signature?

CMB Anisotropies and Cosmological Parameters

Small angular scales: peaks at density extremacan measure peak scales $(\ell$ positions), amplitudes

Peak Positions

recall: all oscillations begin together (in phase) then scale k has phase $\omega\eta=c_{s}k\eta$ observe: density at recomb, when phase is $c_{\pmb{s}} k d_{\sf rec}$

 Q : what is largest scale to show δT extremum? what extremum?
 \widehat{Q} Q: what is next largest scale to show extremum?Q: implications?

27

oscillations begin together (in phase) at recomb, scale k has phase $c_s k d_{\mathsf{rec}}$

peaks at extrema

1st peak: scale that just reached 1st compression 2nd peak: scale that just reach 1st rarefaction 3rd peak: scale that just reach 2nd compression...

peak locations: comoving wavelengths

$$
\lambda = 2c_s d_{\text{rec,com}} \left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots \right) \tag{13}
$$

harmonics, first peak scale $\sim 2d_{\mathsf{S},\mathsf{hor}}\sim d_{\mathsf{hor},\mathsf{com}}$

Q: what do we actually measure on CMB sky? implications? $\frac{2}{3}$

fluctuation size on $sky = angular$ diameter measurement! standard ruler=comoving horizon sensitive to geometry→ curvature \Rightarrow peak positions: $\boxed{\Omega_0}$

why? in flat matter-dominated U: physical particle horizon ⁱ s $d_{\mathsf{hor}, \mathsf{phys}}(z) = (1+z)$ $z) d_{\mathsf{hor}, \mathsf{com}}(z) = (1_z)$ $z) \int_{\mathsf{O}}$ $\int_0^{\infty} dt/a 2\Omega_{\rm IT}^{-1}$ 1 $\frac{1}{\sqrt{2}}$ 2 $m^{\perp/2}d$ $d_{\mathsf{H},\mathsf{0}}(1+z$ $z)$ 1 $\frac{1}{\sqrt{2}}$ 2angular diameter distance is

$$
d_{\mathsf{A}}(z) = \frac{r(z)}{1+z} = 2\Omega_{\mathsf{m}}^{-1/2} d_{\mathsf{H},0}(1+z)
$$
 (14)

and so expect sound horizon angular diameter

$$
\vartheta_{\text{hor,s}} = \frac{c_s}{c} \vartheta_{\text{hor}} = \frac{c_s d_{\text{hor,phys}}(z_{\text{rec}})}{d_{\text{A}}(z_{\text{rec}})} \simeq \frac{1}{\sqrt{3}} \frac{1}{\sqrt{1 + z_{\text{rec}}}} \sim 1^{\circ} \quad (15)
$$

29

WMAP: first peak at $\ell_{\sf peak} \sim 200 \to \vartheta_{\sf peak,obs} \sim 1^{\circ}$ SY IST N Q: what about amplitudes? 1st peak? 2nd peak? $\frac{\circ}{\Omega_0} \rightarrow \boxed{\Omega_0 = 1}$

Acoustic Peak Amplitudes

Amplitude measures degree of compression/rarefaction \rightarrow strength of driving force \rightarrow matter density
mostly DM density, but baryons too mostly DM density, but baryons too

Q: effect of baryons on 1st peak? 2nd peak? other peaks?

Effect of baryons: alter the gravitational potential well ⊲ during compression: baryons make well deeper ⊲ during rarefaction: baryons make well shallower Net effect: higher $\Omega_{\text{baryon}} \rightarrow$ bigger odd peaks (compression)
smaller aven (rarefaction) peaks smaller even (rarefaction) peaks

If measure one of each, e.g., 1st $+$ 2nd peaks \rightarrow get $\Omega_B!$

* CMB is cosmic baryometer!

⋆ independent of BBN (also more precise) As we saw: decent CMB-BBN concordance

...but Li problem remains

Q: why do fluctuations die off at small angular scales?31

CMB Damping Tail

so far: assumed recombination *instantaneous*

- decoupling as sharp transition
- all photons have last scattering at same instant

in reality:

32

last scattering is smooth transitionphoton mean free path quickly but smoothly increases \rightarrow not all photons last scatter at same time \rightarrow last scattering surface has nonzero thickness

expect CMB signal *damping* on scales ≪ thickness
A en smaller scales, photon scattering diffusive → on smaller scales, photon scattering diffusive
→ expensatially suppresses temperature signal \rightarrow exponentially suppresses temperature signal