Astro 507 Lecture 39 May 1, 2020

Announcements:

- Preflight 6b due today
- Preflight 6c due Wednesday

give feedback on others

Last time: a tale of two species–dark matter and baryons *Q: why do DM vs baryon perturbations behave differently? Q: which begins growth first?*

dark matter: dominates matter density weakly interacting \rightarrow treat as pressureless **baryons:** (really, both nuclei and electrons) subdominant density before recombination, feel strong photon pressure

radiation era: perturbation growth suppressed due to large pressure, high sound speed $c_s = c/\sqrt{3}$ so Jeans length ~ sound horizon ~ particle horizon

matter-dominated era before recombination:

- dark matter fluctuations grow form potential wells beginning at matter-radiation equality $z_{eq} = 3402 \pm 26$
- insize horizon: baryons oscillate in DM potentials

after recombination:

Ν

baryons see pressure drop, collapse
 CMB released, today gives snapshot of oscillations

Small Scales: Acoustic Oscillations

at matter-radiation equality: dark matter has been collapsing overdensities forms gravity potential wells

baryons begin oscillations:
standing waves driven by DM gravity
with radiation pressure as restoring force continues until recombination

ω

scale λ has $\delta_b(k) \sim -\cos(2\pi c_s t/\lambda)$ slowest oscillation is near sound horizon $\lambda \sim r_s = \int c_s dt/a$ give largest-scale δ_b^2 extremum: at recombination first compression (1/2 period)

Q: what scale gives next δ_h^2 extremum? and the next?

CMB Acoustic Peaks

consider density variance δ_b^2 at different λ at time of recombination

- $\lambda_{comov} \sim r_s$: 1/2 cycle completed first compression \rightarrow maximum δ_b^2 extra strong since baryon gravity adds to potential
- $\lambda_{comov} \sim r_s/2$: 1 cycle completed first rarefaction: minimum in δ_b but maximum δ_b^2 weaker than first peak since baryon gravity minimized

Q: in general, what's the pattern of extrema?

[▶] Q: on small scales, is an overdensity a hot spot or cold spot? why?

Spots Cold and Hot: Small Scales

Define temperature fluctuation $\Theta = \delta T/T$

On Small Scales: Adiabatic

standing waves lead to fluctuations in $\rho_b \sim T^3$, so

$$\Theta \equiv \frac{\delta T}{T} = \frac{1}{3} \left(\frac{\delta \rho}{\rho} \right)_b \tag{1}$$

 \Rightarrow extrema in density \rightarrow extrema in $\Theta \propto \delta_{\gamma}$

 \star photon T contrast reflects T distribution at source

• but both high and low density give large $(\delta T/T)^2$! photon climb out of potential doesn't change $\delta T/T$ much \rightarrow CMB hot spots are high density, cold are low

С

Q: what about on large scales $\lambda > r_s$?

Very Large Scales: Sachs-Wolfe

beyond horizon: no oscillations, main effects gravitational (GR):

- gravitational redshift: photon climbs out of potential $\delta \Phi < 0$ redshift $\delta \lambda / \lambda = \Phi_0 - \Phi_{ls} = -\delta \Phi$ and since $T \sim 1/\lambda$, $(\delta T/T)_{redshift} = \delta \Phi$: photons cooled!
- time dilation: takes longer to climb out of overdensity looking at younger, hotter universe $\delta t/t = \delta \Phi$, and since $a \sim t^{2/3}$ and $T \sim 1/a$ then $T \sim t^{-2/3}$, and $(\delta T/T)_{\text{dilation}} = -2/3 \ \delta \Phi$ net effect: Sachs - Wolfe

$$\left(\frac{\delta T}{T}\right)_{SW} = \left(\frac{\delta T}{T}\right)_{\text{redshift}} + \left(\frac{\delta T}{T}\right)_{\text{dilation}} = \frac{1}{3}\delta\Phi \qquad (2)$$

***** overdensities are cold spots, underdensities hot

Note: this regime is what tests inflation
 Q: what predicted?

Inflation and Sachs-Wolfe

Inflation: quantum fluctuations \rightarrow density fluctuations

- adiabatic (all species)
- Gaussian
- scale invariant—what does this mean?

Extras: inflation scale invariance for wavenumber ksets "power spectrum" – mean-square fluctuation at k

$$\langle |\delta_k|^2 \rangle = P_{\text{scale-inv}}(k) = Ak^{n_{\text{scale-inv}}}$$
 (3)

with A a constant (sets fluctutations amplitudes) and m = 1

and $n_{\text{scale}-\text{inv}} = 1$

Predictions:

~

- fluctuations occur on all scales
- largest amplitudes for big $k \rightarrow$ small scales
- $\delta_k \rightarrow 0$ for $k \rightarrow 0$, as we must find *Q*: why?

Angular vs Linear Scales

So far: decomposed fluctuations in (3-D) \vec{k} -space but observe on sky: 2-D angular distribution

Transformation: projection of plane waves at fixed k: see intersection of wave with last scattering shell www: Wayne Hu animation

appears on a range of angular scales but typical angular size is $\theta \sim \lambda/d_{rec,com} \sim (kd_{rec,com})^{-1}$

```
large angles \rightarrow large \lambda (check!)
for large angular scales \theta > \theta_{hor,diam} \sim 1^{\circ}, superhorizon
perturbations not affected by oscillation
for small angular scales, see standing waves
```

peaks at extrema, harmonics of sound horizon
 k are in ratios 1:2:3:...

 ∞

Intermission

The CMB Observed

- Observe 2-D sky distribution of $\frac{\Delta T}{T}(\hat{n}) \equiv \Theta(\hat{n})$ in direction \hat{n}
- Decompose into spherical harmonics

$$\Theta(\hat{n}) = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta, \phi)$$
(4)

with Y_{Im} spherical harmonics Q: why not $\ell = 0, 1$? Q: angular size vs ℓ ? λ vs ℓ ?

Form angular correlation function Q: what is this physically?

$$\langle \Theta(\hat{n}_1)\Theta(\hat{n}_2)\rangle = \frac{1}{4\pi} \sum_{\ell=2}^{\infty} (2\ell+1) \left\langle |a_{\ell m}|^2 \right\rangle P_{\ell}(\hat{n}_1 \cdot \hat{n}_1)$$
(5)
$$= \frac{1}{4\pi} \sum_{\ell=2}^{\infty} (2\ell+1) C_{\ell} P_{\ell}(\cos\vartheta)$$
(6)

10

where $\cos \vartheta = \hat{n}_1 \cdot \hat{n}_1$ *Q: averaged over the m azimuthal modes*–*why*? all interesting anisotropy information encoded in

$$C_{\ell} = \left\langle |a_{\ell m}|^2 \right\rangle \tag{7}$$

isotropy \rightarrow azimuthal dependence averages to zero

Note: analog of Δ^2 (variance per log scale) is $\mathcal{T}^2(\ell) = \ell(\ell+1)C_\ell$: usually what is plotted

Since
$$P_{\ell}(\cos \theta) \sim (\cos \theta)^{\ell} \sim \cos(\ell \theta)$$

at fixed ℓ , angular size $\theta \sim 2\pi/\ell = 180^{\circ}/\ell$
e.g., $\ell = 2$ quadrupole $\rightarrow \theta \sim 90^{\circ}$
and horizon size $\theta \sim 1^{\circ}$ is at $\ell \sim 200$

and since $\theta \sim \lambda/d_{rec} \sim 1/dk$: \exists multipoles scale as $\ell \sim 1/\theta \sim k \sim 1/\lambda$ low $\ell \rightarrow$ big angular, physical scales \rightarrow small k

CMB Anisotropy Observations: Strategy

- achieve high sensitivity, remove systematics make a "difference experiment" i.e., measure δT directly, don't subtract
- observe as much of the sky as possible (or as needed!) balloons/ground: limited coverage satellites (COBE, WMAP, Planck): all-sky
- remove Galactic contamination: "mask" plane
- recover Θ for observed region
- \bullet decompose into spherical harmonics $Y_{\ell m}$
- construct power spectrum $\ell(\ell+1)C_\ell$
- report results
- $\stackrel{i}{\sim}$ collect thousands of citations, prominent Prizes

CMB Temperature Anisotropies: Results

COBE (1993)

- first detection of $\delta T/T \neq 0$
- receiver horn angular opening ~ 8°
 → only sensitive to large angular scales
 i.e., superhorizon size
- found $(\delta T/T)_{\rm rms} \sim 10^{-5}$
- power $\ell(\ell+1)C_{\ell}$ flat \rightarrow implies $P(k) \sim k!$
 - n = 1 spectrum: scale invariant!

Interregnum (late 90's, early 00's)

- ground-based, balloons confirmed anisotropy
- acoustic peaks discovered
- strong indication of first peak

13

WMAP (2003-)

- first all-sky survey of small angular scales
- n = 1 confirmed, indication of small tilt $n 1 \neq 0$? consistent with inflation! and non-trivially so!
- acoustic peaks mapped: good measurement of 1st, 2nd detection of third
- first peak: $\ell\sim 200$ horizon at recomb!
- power dropoff seen at large ℓ
 - \rightarrow nonzero thickness of last scattering

due to photon diffusion, non-instantaneous decoupling

Planck (2013–2018)

- exquisite measurements of cosmological parameters
- small deviation from scale invariance measured at high confidence
- no detection of non-Gaussianity
- sensitivity to $N_{\rm eff}$ and $Y_{\rm p}$

CMB Polarization

Recall: pre-recombination, photons coupled to baryons via Thompson scattering with electrons

Key fact: Thompson scattering is anisotropic and polarized polarization of scattered radiation scales as

$$\frac{d\sigma_T}{d\Omega} \propto |\hat{\epsilon}_{\rm in} \cdot \hat{\epsilon}_{\rm sc}|^2 = \cos^2\theta \tag{8}$$

where:

 $\hat{\epsilon}_{in}$ is *incident photon polarization* $\hat{\epsilon}_{sc}$ is *scattered photon polarization* and propagation is transverse: $\hat{\epsilon}_{in} \cdot \hat{n}_{in} = 0$

 $\overline{5}$ Q: in what direction is polarization max? min? Q: why physically? hint: think of e as antenna max scattered polarization when in plane normal to initial pol'n zero scattered intensity in direction of initial pol'n

```
classical picture: e^- as dipole antenna
incident polarized wave accelerates e^-
\rightarrow azimuthally symmetric radiation,
peaks in \theta = 0 plane
```


note: since $\cos^2 \theta \propto \cos 2\theta$, scattered rad has 180^0 periodicity \rightarrow a "pole" every 90⁰: quadrupole

 $\overline{\neg}$ Q: what if unpolarized radiation from 2 opposite directions? Q: what if isotropic unpolarized radiation?

still linearly polarized!

unpolarized!

...as demanded by symmetry

Polarization and Inhomogeneity

Pre-recomb: repeated Thompson scattering randomizes polarization \rightarrow CMB unpolarized

But at recomb, last scattering evens "uncompensated"

- if plasma homogeneous: still no net polarization
- \bullet but inhomogeneities \rightarrow net linear polarization in CMB

Consider point on hot-cold "wall"

- *Q*: what is scattered polarization? why?
- *Q*: what temperature pattern seen at point?

pattern seen at point: *dipole* anisotropy extra polarized radiation from hot region cancels

Now consider point on "checkerboard vertex" *Q: what is scattered polarization? why? Q: what temperature pattern seen at point?*

dipole anisotropy:

point sees *quadrupole* anisotropy extra polarization from hot regions doesn't cancel

quarupole anisotropy: linear polarization

 \rightarrow net linear polarization towards us, aligned w/ "cold" axis www: cool Wayne Hu movie

Q: what about edge of circular hot spot? cold spot? hot spot cold spot

^N Note: polarization & T anisotropies *linked* \rightarrow consistency test for CMB theory and hence hot big bang

Recombination: Snapshot Taken

At recombination, free e^- abundance drops baryons quickly decouple from photons huge drop in pressure $\rightarrow c_s \rightarrow 0$ begin to collapse onto DM potentials photons travel freely (typically) afterwards fluctuation pattern at recomb is "frozen in" δ vs scale records different # of cycles at recomb

$$P(k) = \|\delta_k\|^2 \sim \frac{\sin(2kc_s\eta_{\text{rec}})}{2kc_s\eta_{\text{rec}}} P_{\text{init}}(k)$$
(9)

written onto temperature pattern ("say cheese!")

 \aleph Recomb fast \rightarrow CMB is image of last scattering surface

Pre-Recombination: Acoustic Oscillations

Baryons in DM-dominated background

$$\ddot{\delta}_b + 2\frac{\dot{a}}{a}\dot{\delta}_b \simeq 4\pi G\rho\delta_{dm} - \frac{k^2c_s^2}{a^2}\delta_b \sim \frac{\delta_{dm}}{t^2} - \frac{k^2c_s^2}{a^2}\delta_b \tag{10}$$

key comparison: mode scale $\lambda \sim k^{-1}$ vs **comoving sound horizon** $c_s t/a = d_{s,com}$

for large scales $kc_st/a \ll 1$: baryons follow DM for small scales $kc_st/a \gg 1$: baryons oscillate, as

$$\delta_b \sim \frac{1}{\sqrt{ac_s k}} e^{i \int k c_s d\eta} \tag{11}$$

(PS 6) where $d\eta = dt/a$ is conformal time

Q: for fixed k, what is δ time behavior? Q: at fixed t, what is δ pattern vs k? Q: what sets largest λ that oscillates? baryonic perturbations do not grow, but oscillate:

$$\delta_b \sim \frac{1}{\sqrt{ac_s k}} e^{i \int k c_s d\eta} \tag{12}$$

to simplify, imagine constant c_s , $\delta_b \sim e^{ikc_s\eta}$

at fixed k, sinusoidal oscillations phase counts number of cycles $N = kc_s\eta/2\pi = c_s\eta/\lambda$ oscillation frequency: $\omega \sim kc_s \sim c_s/\lambda \propto 1/\lambda$

at fixed $t \rightarrow$ fixed η :

small λ and large $k \rightarrow$ rapid oscillations largest oscillations at scale $\lambda \sim c_s \eta \sim c_s t/a$: sound horizon

26

Q: when do oscillations stop? observable signature?

CMB Anisotropies and Cosmological Parameters

Small angular scales: peaks at density extrema can measure peak scales (ℓ positions), amplitudes

Peak Positions

recall: all oscillations begin together (in phase) then scale k has phase $\omega \eta = c_s k \eta$ observe: density at recomb, when phase is $c_s k d_{rec}$

Q: what is largest scale to show δT extremum? what extremum? Q: what is next largest scale to show extremum? Q: implications?

27

oscillations begin together (in phase) at recomb, scale k has phase $c_s k d_{rec}$

peaks at extrema

1st peak: scale that just reached 1st compression2nd peak: scale that just reach 1st rarefaction3rd peak: scale that just reach 2nd compression...

peak locations: comoving wavelengths

$$\lambda = 2c_s d_{\text{rec,com}} \left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots \right)$$
(13)

harmonics, first peak scale $\sim 2d_{\rm s,hor} \sim d_{\rm hor,com}$

 \mathbb{Q} Q: what do we actually measure on CMB sky? implications?

fluctuation size on sky = angular diameter measurement! standard ruler=comoving horizon sensitive to geometry \rightarrow curvature \Rightarrow peak positions: Ω_0

why? in flat matter-dominated U: physical particle horizon is $d_{\text{hor,phys}}(z) = (1+z)d_{\text{hor,com}}(z) = (1_z)\int_0 dt/a2\Omega_{\text{m}}^{-1/2}d_{\text{H},0}(1+z)^{1/2}$ angular diameter distance is

$$d_{\mathsf{A}}(z) = \frac{r(z)}{1+z} = 2\Omega_{\mathsf{m}}^{-1/2} d_{\mathsf{H},0}(1+z)$$
(14)

and so expect sound horizon angular diameter

$$\vartheta_{\text{hor},\text{s}} = \frac{c_s}{c} \vartheta_{\text{hor}} = \frac{c_s}{c} \frac{d_{\text{hor},\text{phys}}(z_{\text{rec}})}{d_{\text{A}}(z_{\text{rec}})} \simeq \frac{1}{\sqrt{3}} \frac{1}{\sqrt{1+z_{\text{rec}}}} \sim 1^{\circ} \quad (15)$$

29

WMAP: first peak at $\ell_{\text{peak}} \sim 200 \rightarrow \vartheta_{\text{peak,obs}} \sim 1^{\circ} \rightarrow \Omega_0 = 1$ Q: what about amplitudes? 1st peak? 2nd peak?

Acoustic Peak Amplitudes

Amplitude measures degree of compression/rarefaction \rightarrow strength of driving force \rightarrow matter density mostly DM density, but baryons too

Q: effect of baryons on 1st peak? 2nd peak? other peaks?

Effect of baryons: alter the gravitational potential well
during compression: baryons make well deeper
during rarefaction: baryons make well shallower
Net effect: higher Ω_{baryon} → bigger odd peaks (compression) smaller even (rarefaction) peaks

If measure one of each, e.g., 1st + 2nd peaks \rightarrow get Ω_B !

★ CMB is cosmic baryometer!

 \star independent of BBN (also more precise)

As we saw: decent CMB-BBN concordance

...but Li problem remains

 $\stackrel{\omega}{\vdash}$ Q: why do fluctuations die off at small angular scales?

CMB Damping Tail

so far: assumed recombination *instantaneous*

- decoupling as sharp transition
- all photons have last scattering at same instant

in reality:

last scattering is smooth transition photon mean free path quickly but smoothly increases \rightarrow not all photons last scatter at same time \rightarrow *last scattering surface has nonzero thickness*

expect CMB signal *damping* on scales \ll thickness \rightarrow on smaller scales, photon scattering diffusive \rightarrow exponentially suppresses temperature signal

ω 2