Astro 507 Lecture 4 Jan 29, 2020

Announcements:

Preflight 1 due Friday at noon
 be sure to do both parts: discussion + reading response

Today:

- ★ Implications of Cosmo Principle + Hubble Law
- ★ Cosmodynamics I–Newtonian Cosmology

Don't Be Perturbed ... Yet

The Universe is rich and complex our understanding will come from a series of ever-better and ever more complex *approximations*

for the beginning of the course:

- "zeroth order" approximation: the "unperturbed universe"
- \Rightarrow study universes where *cosmological principle is exact*
- perfect homogeneity and isotropy
- the only bulk motions are due to "Hubble flow"

by the end of the course:

higher order approximation: include density perturbations

- how we think they were created
- how they grow over time

N

• how they affect cosmic structure and dynamics

Recap

Last time:

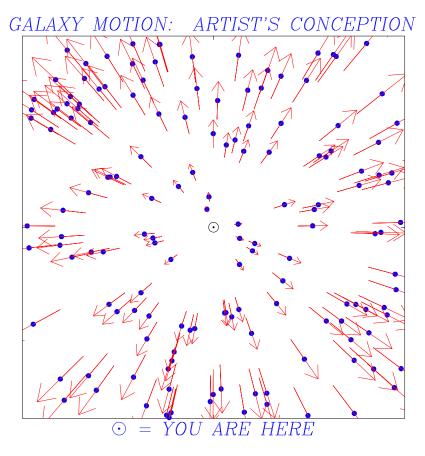
Observational/Conceptual Foundations of Cosmology

★ Cosmological Principle *Q: namely*?

- ★ Observed Cosmic Kinematics: Hubble's Law
 - Q: what's that?
 - *Q:* what's a parameter, what's a variable?
 - *Q: qualitative behavior–restate in simple language*?
 - Q: velocity field pattern?

Structure + Dynamics: Evolution

observe:


Ь

- U. homogeneous, isotropic
- Hubble law $\vec{v} = H\vec{r}$

this pattern cries out for explanation!

a consistent model must account for both properties

Q: how to reconcile? at least 2 logical possibilities...

Explaining Hubble: Kinematic Model of Milne (1933)

imagine an explosion at t = 0

- let galaxies all start in region of size $\ll ct_{today}$ fly away with uniform distribution speeds v_{gal}
- we remain at center r = 0 until now: $t_{today} = t_0$

after explosion, let each galaxy *coast* maintaining its initial velocity

```
after time \Delta t = t_0:
```

- $\vec{r}_{gal} \rightarrow \vec{v}_{gal} t_0$ fastest \rightarrow farthest!
- so $\vec{v}_{gal} \rightarrow \vec{r}_{gal}/t_0 \equiv H_0 \vec{r}_{gal} \propto \vec{r}_{gal}$: recover Hubble's law!
- solve for cosmic age

 $t_{0,\text{Milne}} = \frac{1}{H_0} \tag{1}$

С

Hubble Flow: Characteristic Scales

Hubble's law today: $\vec{v} = H_0 \vec{r}$ introduces Hubble parameter $H_0 = 100 \ h \ {\rm km \ s^{-1} \ Mpc^{-1}}$ with $h \approx 0.7$

Hubble time

$$t_{\rm H} \equiv \frac{1}{H_0} = 9.778 \ h^{-1} \ {\rm Gyr} = 13.97 \ {\rm Gyr} \left(\frac{0.70}{h}\right)$$

where 1 Gyr = 10^9 years \Rightarrow sets \sim scale of "expansion age" of Universe

Hubble length

$$d_{\rm H} \equiv \frac{c}{H_0} = ct_{\rm H} = 2.998 \ h^{-1} \ {\rm Gpc} = 4.283 \ {\rm Gpc}\left(\frac{0.70}{h}\right)$$
 (2)

 $_{\circ}$ a useful lengthscale even to non-egoists!

Q: why? what does this measure?

The Hubble Length

In the Milne Kinematic/Explosion Model

- $\bullet\ c$ sets maximum galaxy speed
- so max distance travelled is $d_{max} = ct_0 = d_H$ size of Milne universe: distance to edge!
- but also: $d_{\rm H}$ is max range of photons limit to size of the Universe we can see

Beyond Milne

- homogeneity: no center, no edge!
- but finite lightspeed still important
- \star Hubble length $d_{\rm H}$ sets scale of *observable* Universe

Kinematic/Egoist/Explosion Model (Milne) is logically possible! i.e., can fit basic cosmo structure, kinematic data

But...

Q: give a philosophical reason why we don't believe this?

Q: give a physical reason why this treatment can't be right?

Q: give an observational reason why we don't believe this?

Critiques of Cosmic Egoism

Are we at the center of the universe?

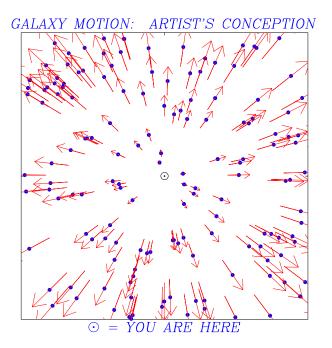
Philosophically:

• not Copernican ("principle of mediocrity")

Physically:

Q

• haven't included gravity!


Observationally:

• Milky Way, Local Group don't look special

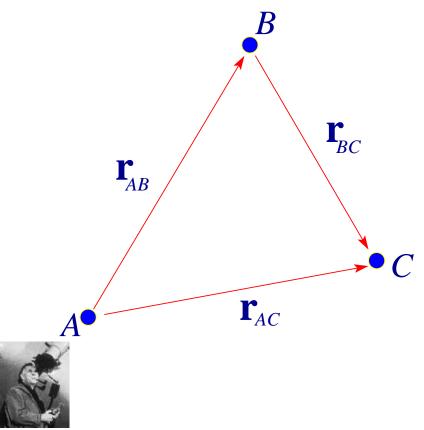
not what expect from center of explosion

cf. supernova \rightarrow compact remnant: neutron star, black hole

...yet radial v pattern does make us *look* special...

The Magic of Hubble

consider three arbitrary cosmic points: $\vec{r}_{BC} = \vec{r}_{AC} - \vec{r}_{AB}$


Assume A sees Hubble's law:

- $\vec{v}_{AB} = H\vec{r}_{AB}$
- $\vec{v}_{AC} = H\vec{r}_{AC}$

Then ask: what does B see? C?

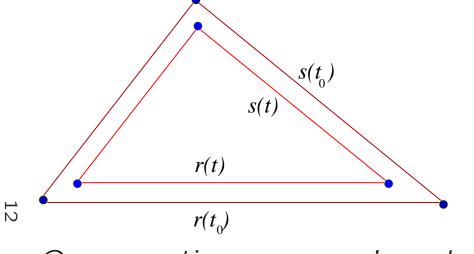
find velocities relative to B: $\vec{v}_{BC} = \vec{v}_{AC} - \vec{v}_{AB} = H(\vec{r}_{AC} - \vec{r}_{AB}) = H\vec{r}_{BC}$

HereHereHereG: why?What have we proven?

we have shown:

if A sees Hubble's law, then so do (arbitrary) B and C thus: if *any* observer measures Hubble's law then *all* observers will measure Hubble's law!

so: Hubble law implies $\rightarrow all$ galaxies recede according to same law \rightarrow no need for center, space has no special points


Moreover: Hubble law is *only* motion which preserves homogeneity and isotropy i.e., *any* other motion breaks cosmo principle ...and lo, Hubble law is exactly the observed motion!

Cosmo Principle Constrains Kinematics

consider arbitrary triangle defined by 3 observers at tHubble law \rightarrow observers in relative motion \rightarrow at later time t_0 , larger triangle

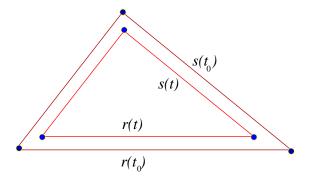
the claim:

later Δ always *similar to* original Δ *Q: what are similar triangles? Q: why must similarity hold?*

Q: connections among r's and s's?

similar: triangle angles preserved ⇒ side ratios preserved,

so ratios at any two time


$$\frac{r(t)}{r(t_0)} = \frac{s(t)}{s(t_0)}$$

holds for any triangle,

so side *length ratio depends only on time t:*

$$a(t) = \frac{r(t)}{r(t_0)} = \frac{s(t)}{s(t_0)}$$

Q: what does this imply about cosmic kinematics?

13

We have shown:

Cosmo Principle demands any length r(t) evolves as

$$r(t) \propto a(t)$$
 (3)

and so without loss of generality we may write

$$r(t) = a(t) r_0 \tag{4}$$

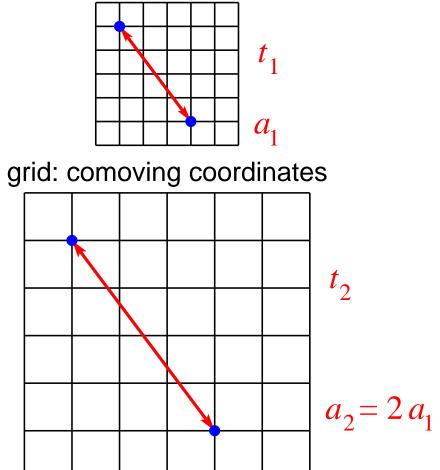
where we choose $a(t_0) = 1$ today, and $r_0 = r(t_0)$ is *present value* of length ("comoving coordinate")

a(t) must be universal cosmic scale factor can depend only on time and at any t: a has same value everywhere in space

↓ This is huge!
Q: why? What have we proven? What is character of motion?

Explaining Hubble: Expansion

the meaning of Hubble Law: Take 2


2. Einstein interpretation:
using General Relativity:
Universe is expanding
all galaxies receding from all others
bold, strange idea!

In fact: Einstein himself initially found it unacceptably strange in 1917, modified GR equations with "fudge factor" \rightarrow "cosmological constant" \wedge designed to keep Universe static after Hubble's 1929 work, Einstein allegedly said this was his "greatest blunder"

...but wait a few lectures...

ц С

Expansion: Stretching Coordinate Grid

comoving grid with two comoving observers

factor 2 expansion

Expansion: Einstein \rightarrow Hubble

www: animation demo: cosmic expansion

for two arbitrary observers (e.g., "galaxies") scale factor gives distances

 $\vec{r}(t) = a(t) \ \vec{r}_0$

SO VELOCITY IS: where "overdot" is time derivative: $\dot{x} \equiv dx/dt$

$$\vec{v}(t) = \dot{\vec{r}} = \vec{r}_0 \ \dot{a} = \frac{\dot{a}}{a} \ a \ \vec{r}_0 \equiv H(t) \ \vec{r}(t)$$
 (5)

⇒ recover Hubble law! now interpret "Hubble parameter" as expansion rate $H(t) \equiv \dot{a}/a$

17

Cosmic Scale Factor Revisited

for two "particles" (possibly Galaxies!) distance evolves according to

$$\vec{\ell}(t) = \begin{array}{c} a(t) & \vec{\ell}_{0} \\ \text{scale factor present distance} \\ time varying fixed once and for all \end{array}$$
(6)

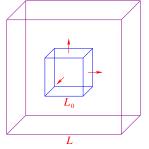
and thus

$$\vec{v} = H\vec{\ell} \tag{7}$$

with $H = \dot{a}/a$

Q: implications-present, past, future values for a?

present: at t_0 , a(t) = 1 by convention Universe is expanding, so


past: a(t) < 1future: a(t) > 1

e.g., at some time in past a = 1/2"galaxies twice as close"

Q: how do cosmic volumes depend on a? e.g., Q: when a = 1/2?

Expansion and Areas, Volumes

consider a cube, galaxies at corners present side length L_0 at any time: length $L(t) = a(t) L_0$

cube is "comoving" w/ expansion

- volume $V = L^3 = L_0^3 a^3 = V_0 a^3$, thus $V \propto a^3$
- area of a side: $A = L^2 = A_0 a^2$, thus $A \propto a^2$

```
www: raisin cake analogy
www: balloon analogy
Q: what is tricky, imperfect about each analogy?
```

Cosmodynamics II

a(t) gives expansion history of the Universe which in turn tells how densities, temperatures change \rightarrow given a(t) can recover all of cosmic history!

but...

How do we know a(t)? What controls how scale factor a(t) grow with time?

Q: what force(s) are at work microscopically? between galaxies? Q: how are the force(s) properly described?

21