Astro 507 Lecture 40 May 4, 2020

Announcements:

• Preflight 6c due Wednesday

give feedback on others thanks for your nice contributions

Last time: baryons, dark matter, and the CMB *Q: pre-recombination behavior on small scales: DM vs plasma? Q: CMB signature on small scales? Q: CMB signature on large scales?*

 \vdash

The CMB Observed

- Observe 2-D sky distribution of $T(\hat{n}) \equiv \Theta(\hat{n})$ in direction \hat{n}
- Decompose temperature into spherical harmonics

$$T(\hat{n}) = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta, \phi)$$
(1)

with $Y_{\rm Im}$ spherical harmonics, and coefficients

$$a_{\ell m} = \int T(\theta, \phi) Y_{\ell m}(\theta, \phi) d\Omega$$
 (2)

• Lowest mode: $\ell = 0$, m = 0, $Y_{00} = 1$ so $a_{00} = \int T_{obs}(\theta, \phi) \ d\Omega = \langle T \rangle$: monopole

N

• Next: $\ell = 1$, m = (-1, 0, +1), $Y_{1m} = e^{im} \cos \theta$ so $a_{lm} = \int T(\theta, \phi) e^{im} \cos \theta \ d\Omega = \langle T \rangle$: *dipole* note: cos term automatically removes mean isolates fluctuation, here on angular scales 180° same goes for higher order terms ($\ell = 2$ quadrupole, etc)

Angular Correlation Function

Spherical harmonics are "Fourier transform of sky"

Construct 2-point angular correlation function: compare T at two directions separated by angle θ

$$\langle T(\hat{n}_1) \ T(\hat{n}_2) \rangle = \frac{1}{4\pi} \sum_{\ell=2}^{\infty} (2\ell+1) \left\langle |a_{\ell m}|^2 \right\rangle P_{\ell}(\hat{n}_1 \cdot \hat{n}_1)$$
(3)
$$= \frac{1}{4\pi} \sum_{\ell=2}^{\infty} (2\ell+1) C_{\ell} P_{\ell}(\cos\vartheta)$$
(4)

where $\cos \vartheta = \hat{n}_1 \cdot \hat{n}_1$, and P_ℓ is Legendre roughly: multipole ℓ corresponds to $\theta \sim 180^\circ/\ell$

average over the m azimiuhal modes:

ω

corresponds to no special directions, i.e., global isotropy \rightarrow all that matters is angle of displacement, not its orientation this is a testable and verified assumption!

CMB Polarization: Twitter Version

- Thomson scattering γe → γe creates polarized photons
 if incident quadrupole anisotropy
- gravitational waves drive quadrupole motion and thus are also polarization sources
- as CMB photons pass through cosmic structure gravitational lensing also creates polarization

Therefore:

- CMB should have nonzero polarization
- polarization and temperature fluctuations intimately linked
- encodes gravity wave and structure info

4

Polarization Observed

First detection: pre-WMAP! \star DASI (2002) ground-based interferometer at level predicted based on T anisotropies! Woo hoo!

WMAP (2003): first polarization-T correlation function

WMAP (2006):

(л

- better statistics
- also polarization autocorrelation
- \bigstar used T-pol'n links to get model-independent
 - 3-D density power spectrum: consistent with scale invariant!

Today: Planck (2018), SPT etc

- strong detection of polarization, in both E modes and B modes
- temperature-polarization correlations verify basic CMB physics
- clear evidence of B-modes due to gravitational lensing as CMB photons pass through cosmic structure

Sunyaev-Zel'dovich Effect: Twitter Version

the post-recombination Universe is a CMB "foreground" and does more than lensing

Sunyaev & Zel'dovich (1972): consider a galaxy cluster filled with hot, ionized gas hot intracluster electrons will scatter a fraction $\tau \sim few\%$ of CMB photons

- *Q:* consequence of $T_{CMB} \ll T_e$?
- *Q: effect on scattered photons?*
- Q: cluster CMB image at low ν ? high ν ?
- *Q*: how to confirm the effect?
 - Q: what can we do with this?

SZ Effect: A Cosmological Goldmine

becuase $T_{CMB} \ll T_e$: CMB photons gain energy scattered photons: frequency shift upwards

- at small ν : fewer photons, cluster appears as "hole"
- at large ν : more photons, cluster appears point source
- and there is a null frequency with no change!

Observational signature: check this frequency pattern! Confirmed! www: SPT image with SZ holes

Applications of SZ:

- identification of galaxy clusters independent of redshift! gives unbiased cluster sample!
- ✓ probes cluster properties
 - probes structure formation

CMB Summary and Outlook

What has the CMB done for us?

- confirmed hot, dense, smooth early universe
- measured primordial power spectrum, consistent w/ inflation
- seen acoustic peaks
- measured a wealth of cosmological parameters
- seen polarization: confirms underlying physics model
- not yet seen: polarization due to primordial gravity waves

What will the CMB do for us?

- very soon (this year and next): confirmation(?) of gravity wave signal from inflation!
- CMB as background illumination for structure formation
- $^{\infty}$ SZ effect, 21-cm, ...
 - stay tuned!

Intermission: Questions?

Dark Matter–Cold and Hot

Perturbation growth & clustering depends on dark matter internal motions—i.e., "temperature" or velocity dispersion key idea: velocity dispersion (spread) is like pressure → stability criterion is Jeans-like

Cold Dark Matter (CDM)

slow velocity dispersion-trapped by gravitational potentials no lower (well, very small) limit to structure sizes perturbation growth only limited by onset of matter dom \rightarrow small, subhorizon objects form first, then larger

→ hierarchical structure formation: "bottom-up"

Hot Dark Matter (HDM)

10

high velocity dispersion–escape small potentials small objects can't form–large must come first then fragment to form smaller: "top down"

- *Q: particle candidate for HDM?*
- Q: physical implications for HDM structure formation?
- Q: how can this be tested?
- *Q:* how does HDM alter the power spectrum (transfer function)?

Hot Dark Matter: Neutrino Cocktail

HDM classic candidate: massive $(m_{\nu} \sim 1 \text{ eV})$ neutrinos if light enough, relativistic before z_{eq}

- → "free streaming" motion out of high-density regions
- \rightarrow characteristic streaming scale: horizon size when ν \rightarrow nonrel

$$\lambda_{\text{FS},\nu} \sim 40 \ \Omega_m^{-1/2} \ \sqrt{1 \text{ eV}/m_{\nu}} \ \text{Mpc}$$
(5)

 \star perturbations on scales $\lambda < \lambda_{\rm FS}$ suppressed

 \star $\lambda_{FS,\nu}$ sensitive to absolute ν masses!

If HDM is dominant DM: expect *no* structure below λ_{FS} \rightarrow a pure HDM universe already ruled out!

If "mixed dark matter," dominant CDM, with "sprinkle" of HDM HDM reduces structure below $\lambda_{\rm FS}$

 $\rightarrow \lambda_{FS}$ written onto power spectrum (transfer function) \rightarrow accurate measurements of, e.g., P(k) sensitive to m_{ν} cosmic structure can weigh neutrinos! (goal of DES, et al)

$\land CDM$

"Standard" Cosmology today: ACDM ...namely:

- FLRW universe
- today dominated by cosmological constant $\Lambda \neq 0$
- with cold dark matter
- \Rightarrow hierarchical, bottom-up structure formation
- ...and usually also inflation: scale invariant, Gaussian, adiabatic

This is the "standard" model but not the only one

Q: arguments in favor?

13

- Q: arguments for other possibilities?
- Q: which pieces most solid? which shakiest?

At minimum: ACDM is *fiducial / benchmark* model standard of comparison for alternatives

...and so we will adopt ΛCDM the rest of the way

Nonlinear Reality

So far: much success in understanding structures in the linear regime $\delta \ll 1$

But the real universe is nonlinear! What happens when perturbations become large? ⇒ both theory and observations become challenging!

Theory: nonlinear dynamics rich = interesting = hard some ingenious analytical approximations, special cases but serious calculations require numerical solution

14

Observation: collapsed objects can be easy to find
e.g., bright galaxies-but more to the picture than meets the eye
can't see the DM halos (usually!); mass doesn't trace light
how to define a halo? measure its mass?
Q: why would this be ambiguous?

Press-Schechter Analysis

Outlook

adopt hierarchical picture (i.e., some form of CDM) ⇒ matter at *every* point belongs to some structure over time: go from many small structures to fewer, larger ones

Goal

Given properties of density field–i.e., $P_{\text{init}}(k) = \left\langle \delta_k^2 \right\rangle$ Compute distribution of structures as function of mass, time

Quantitatively: want "mass function" comoving number density of structures in mass range (M, M + dM):

$$\frac{dn_{\mathsf{com}}}{dM}(M,t)$$
 (6)

15

from this, can compute many other things e.g., density in (M, M + dM) Q: which is...?

Press-Schechter Ingredients/Assumptions

• given mass M, *filter* density field on comoving length R such that $M = 4\pi/3 \rho_{\text{bg,com}}(t)R^3$ density contrast has *variance* $\sigma^2(M) = \int P(k) W(k;R) d^3k$

• *in linear regime*, density field obeys *Gaussian statistics*: in filtered field, probability of finding contrast in $(\delta_{\text{lin}}, \delta_{\text{lin}} + d\delta_{\text{lin}})$:

$$P(\delta_{\text{lin}}; M, t) \ d\delta_{\text{lin}} = \frac{1}{\sqrt{2\pi\sigma^2(M, t)}} \exp\left[-\frac{\delta_{\text{lin}}^2}{2\sigma^2(M, t)}\right] \ d\delta_{\text{lin}}$$
(7)

why only good in linear regime Q: why?

16

- Spherical collapse model maps from linear \rightarrow nonlinear identifies *linear contrast threshold* $\delta_c \simeq 1.69$ for collapsed objects note: δ_c is time indep! (in EdS cosmo)
- \Rightarrow can find fraction of cosmic mass in objects of mass M Q: how?

fraction of mass or of comoving volume in collapsed objects of mass M at time t is

$$f(>\delta_c; M, t) = \int_{\delta_c}^{\infty} P(\delta_{\text{lin}}; M, t) \, d\delta_{\text{lin}}$$
(8)
$$= \frac{1}{\sqrt{2\pi\sigma^2(M, t)}} \int_{\delta_c}^{\infty} \exp\left[-\frac{\delta_{\text{lin}}^2}{2\sigma^2(M, t)}\right] \, d\delta_{\text{lin}}$$
(9)
$$= \frac{1}{\sqrt{2\pi}} \int_{\delta_c/\sqrt{2\sigma}}^{\infty} e^{-u^2} \equiv \frac{1}{2} \operatorname{erfc}\left[\frac{\delta_c}{\sqrt{2\sigma}(M, t)}\right]$$
(10)

- for realistic P(k), $\sigma^2(M) \sim \int k^3 P(k) W_k(M) dk/k \sim M^{-(n+3)/3}$ \rightarrow at fixed mass, $\sigma(M,t)$ monotonically decreases with M(down to some minimum M cutoff)
- $\sigma(M,t)$ evolves (linearly) as $\sigma \sim a(t) \sim 1/(1+z)$
- Q: implications for mass distribution at fixed time? Q: implications for structure formation over time?

Press-Schechter: mass fraction and structure formation

$$f(>\delta_c; M, t) = \frac{1}{\sqrt{2\pi}} \int_{\delta_c/\sqrt{2\sigma}}^{\infty} e^{-u^2} = \frac{1}{2} \operatorname{erfc} \left[\frac{\delta_c}{\sqrt{2\sigma}(M, t)} \right]$$
(11)

 \star mass distribution at fixed t:

as filter mass M decreases, variance $\sigma(M)$ increases

 \triangleright more large fluctuations \rightarrow more above threshold

more structures at smaller masses

i.e., $\delta_c/\sqrt{2}\sigma(M)$ decreases \rightarrow larger f

 \Rightarrow smallest halos most numerous \rightarrow hierarchy of masses!

 \star time evolution at fixed M:

18

at time, scale factor increases, variance $\sigma(t) \propto a(t)$ increases

b more structures at fixed mass

▷ small structures merge → larger (at expense of smallest)
 ⇒ hierarchical clustering!

Press-Schechter Mass Function I: Quick-n-Dirty

Press & Schechter (1974):

note that structures can only be made from *over*densities but *under*densities (voids) occupy mass fraction $f(\delta_{\text{lin}} < 0) = 1/2$ so fraction of *overdensites* in collapsed objects of M is

$$F(>\delta_c; M, t) = \frac{f(\delta_{\text{lin}} > \delta_c)}{f(\delta_{\text{lin}} > 0)} = 2f(\delta_{\text{lin}} > \delta_c)$$
(12)

famous factor of two!

Compare mass fraction at M and M + dM: difference

$$dF = F(M + dM) - F(M) \simeq \frac{dF}{dM} dM$$
(13)

$$= \sqrt{\left(\frac{2}{\pi}\right)} \frac{d\sigma(M)^{-1}}{dM} \frac{\delta_c}{\sigma(M)} e^{-\delta_c^2/2\sigma^2(M)} dM \qquad (14)$$

19

But probability of finding structure M in filter volume $V_{\rm Com} = M/\rho_{\rm bg}$ is

$$dF(M) = V \frac{dn}{dM} dM = \frac{M}{\rho_{\text{bg}}} \frac{dn}{dM} dM$$
(15)

and so PS mass function is

$$M\frac{dn}{dM} = \frac{\rho_{\text{bg}}}{M} M\frac{dF}{dM} = \sqrt{\frac{2}{\pi}} \frac{d\ln\sigma(M)^{-1}}{d\ln M} \frac{\delta_c}{\sigma(M)} \frac{\rho_{\text{bg}}}{M} e^{-\delta_c^2/2\sigma^2(M)}$$

- implicitly also a function of t via $\rho_{bg}(t)$ and $\sigma(M,t)$
- encodes and quantifies hierarchical clustering

from this can immediately find, e.g., distribution of (comoving) density across masses of collapsed objects:

$$\frac{d\rho(M)}{dM} = M \frac{dn}{dM} \tag{16}$$

20

Press-Schechter: Summary

Quantitative Output

★ Easy to use, very powerful (semi-)analytic mass function

Qualitative Worldview/Limitations

- ★ every point lies in exactly one structure: largest above threshold
- **★** all structures have $\delta_{\text{lin}} = \delta_c$: born today!
- ★ PS blind to interior substructure and formation history of a given object
- *Q: how to test PS theory?*
- $_{N}$ Q: which structures should be best described? worst?

Tests of Press-Schechter

Versus Numerical Simulations

PS is idealized analytic approximation of hierarchical clustering assumes true density field δ perfectly mapped onto linear field δ_{lin} vis spherical collapse model

Even if underlying CDM, hierarchy idea right, PS approximate \rightarrow test against numerical simulations w/ non-ideal δ field results: unreasonably good agreement!

Versus Observations

Best applicable to those just formed: $\sigma(R) \sim \sigma_8 \sim 1$ \rightarrow galaxy clusters! $M \sim 10^{15} M_{\odot}$, and so PS gives

$$n(M) \sim M \frac{dn}{dM} \sim \frac{\rho_0}{M} \nu e^{-\nu^2/2} \sim \frac{\rho_0}{M} \sim 10^{-4} \text{ Mpc}^{-3}$$
 (17)

22

about right! (where $\nu = \delta_c/\sqrt{2}\sigma \sim 1$)

...and works unreasonably well at other scales too

Applications of Press-Schechter

Mergers

PS very powerful because gives mass function vs time:

$$\mathcal{N}(M,t) = M \frac{dn}{dM}(t) \sim \nu(t) \ e^{-\nu^2(t)/2}$$
 (18)

with

23

$$\nu(t) = \frac{\delta_c}{\sigma(M,t)} = \frac{\delta_c}{D(t)\sigma_{\text{init}}(M)} = \frac{a(t_{\text{init}})}{a(t)}\nu_{\text{init}}$$
(19)

recall: $\sigma_{init}(M)$ decreases with $M \ Q$: why?

So to find time change: just take derivative

$$\dot{\mathcal{N}} \sim |\dot{\nu}| (\nu^2 - 1) e^{-\nu^2/2} \sim \text{creation} - \text{destruction}$$
 (20)
Q: merging for large, small ν ? large, small M?

at fixed time t

$$\dot{\mathcal{N}} \sim |\dot{\nu}| (\nu^2 - 1) e^{-\nu^2/2}$$
 (21)

small $M \to \text{largest } \sigma: \nu = \delta_c / \sigma(m) < 1$ $\dot{N} > 0$: net destruction and so large $M \to \text{net creation} - \text{at expense of small objects}$

PS Application II: Quasar Abundance

- Quasars must be massive (Eddington limit) black holes at galaxy centers \rightarrow demands $M_{\rm gal} > M_{\rm bh} \gtrsim 10^{12} M_{\odot}$
- Quasars found out to high redshift z>3 (in fact $\gtrsim 7$) PS: can find number density of objects with $M>10^{12}M_{\odot}$ at epoch z=3

$$n_{\rm com}(>10^{12}M_{\odot}; z=3) = \int_{10^{12}M_{\odot}} \frac{dn}{dM} dM \sim 10^{-8} \,\,{\rm Mpc}^{-3}$$
 (22)

24

about right!

CMB Polarization

Recall: pre-recombination, photons coupled to baryons via Thomson scattering with electrons

Key fact: Thomson scattering is anisotropic and polarized polarization of scattered radiation scales as

$$\frac{d\sigma_T}{d\Omega} \propto |\hat{\epsilon}_{\rm in} \cdot \hat{\epsilon}_{\rm sc}|^2 = \cos^2\theta \tag{23}$$

where:

 $\hat{\epsilon}_{in}$ is *incident photon polarization* $\hat{\epsilon}_{sc}$ is *scattered photon polarization* and propagation is transverse: $\hat{\epsilon}_{in} \cdot \hat{n}_{in} = 0$

 $\stackrel{\text{\tiny $\&$}}{\sim}$ Q: in what direction is polarization max? min? Q: why physically? hint: think of e as antenna max scattered polarization when in plane normal to initial pol'n zero scattered intensity in direction of initial pol'n

```
classical picture: e^- as dipole antenna
incident polarized wave accelerates e^-
\rightarrow azimuthally symmetric radiation,
peaks in \theta = 0 plane
```


note: since $\cos^2 \theta \propto \cos 2\theta$, scattered rad has 180^0 periodicity \rightarrow a "pole" every 90⁰: quadrupole

 $\stackrel{\aleph}{\sim}$ Q: what if unpolarized radiation from 2 opposite directions? Q: what if isotropic unpolarized radiation?

still linearly polarized!

unpolarized!

...as demanded by symmetry

Polarization and Inhomogeneity

Pre-recomb: repeated Thomson scattering randomizes polarization \rightarrow CMB unpolarized

But at recomb, last scattering evens "uncompensated"

- if plasma homogeneous: still no net polarization
- \bullet but inhomogeneities \rightarrow net linear polarization in CMB

Consider point on hot-cold "wall"

- Q: what is scattered polarization? why?
- *Q*: what temperature pattern seen at point?

pattern seen at point: *dipole* anisotropy extra polarized radiation from hot region cancels

Now consider point on "checkerboard vertex" Q: what is scattered polarization? why? Q: what temperature pattern seen at point?

dipole anisotropy:

point sees *quadrupole* anisotropy extra polarization from hot regions doesn't cancel

quarupole anisotropy: linear polarization

 \rightarrow net linear polarization towards us, aligned w/ "cold" axis www: cool Wayne Hu movie

Q: what about edge of circular hot spot? cold spot? hot spot cold spot

32

Note: polarization & T anisotropies $\it linked$ \rightarrow consistency test for CMB theory and hence hot big bang

Polarization: *E* and *B* **Modes**

CMB polarization makes headless vector field on sky i.e., at each point, polarization vector (possibly zero) but vector has no "forward/backward" arrow

can decompose polarization field into

- *E* modes: $\operatorname{div} \vec{P} \neq 0$ and $\operatorname{curl} \vec{P} = 0$
- *B* modes: $\operatorname{div} \vec{P} = 0$ and $\operatorname{curl} \vec{P} \neq 0$

Q: which modes from hot spots? cold spots?

can show:

- temperature (scalar) perturbations only excite E modes
- \mathfrak{A} tensor (gravity wave) perturbations excite both E and B modes

B Modes and Gravity Waves

recall: gravity waves preserved volume but stretch and squeeze in + and \times modes

effect on CMB: velocity perturbation leads to linear polarization gravity wave: linear polarization

Cosmology with Clusters: S-Z Effect

clusters contain $T \sim 1/4$ keV gas seen in X-rays \rightarrow intracluster medium (ICM) fully ionized \rightarrow free $e^$ these are targets which scatter photons-including CMB!

Sunyaev & Zel'dovich 1972

consider CMB photon passes thru a cluster scattering rate per photon $\Gamma_{sc} = n_e \sigma_T c$ in time to move increment ds = c dt, # scatterings is

$$d\tau = \Gamma_{\rm SC} dt = n_e \sigma_{\rm T} ds = \frac{ds}{\lambda_{\rm mfp}}$$
(24)

i.e., number of mean free paths $\lambda_{mfp} = (n\sigma)^{-1}$ traversed total # scatterings: optical depth in line-of-sight thru cluster

$$\tau = \sigma_{\rm T} \int_{\rm los} n_e ds \simeq \sigma_{\rm T} \frac{f_{\rm baryon} M_{\rm cluster}/m_p}{R_{\rm cluster}^2} \sim 0.004 \left(\frac{M_{\rm cluster}}{10^{15} M_{\odot}}\right) \left(\frac{2 \text{ Mpc}}{R_{\rm cluster}}\right)^2$$

$$Q: \text{ which means?}$$

CMB Scattering by Intracluster Gas

mean free path is that for Thompson scattering: $\ell_{\nu}^{-1} = \alpha_{\nu} = n_e \sigma_{\mathsf{T}}$ independent of frequency and thus optical depth is integral over cloud sightline

$$\tau_{\nu} = \int \alpha_{\nu} \, ds = \sigma_{\mathsf{T}} \int n_e \, ds \tag{25}$$

thus transmission probability is $e^{-\tau_{\nu}}$, and so absorption probability is $1 - e^{-\tau_{\nu}}$

but for galaxy clusters: $\tau < 10^{-3} \ll 1$, and so *absorption probability* is just τ

Q: implications?

36

Q: effect of scattering if electrons cold, scattering is elastic? Q: what if electrons are hot?

if electrons are hot, they transfer energy to CMB photons change temperature pattern, in frequency-dependent way

What is net change in energy? initial photon energy density is $u_0 = u_{cmb} = 4\pi B(T_{cmb})/c$ power transfer per electron is $P_{Compt} = 4(kT_e/m_ec^2)\sigma_Tc u_0$, so

$$\frac{\partial u}{\partial t} = P_{\text{Compt}} \ n_e = 4 \frac{kT_e}{m_e c^2} \sigma_{\text{T}} c \ u_0 \ n_e \tag{26}$$

and thus net energy density change

$$\Delta u = 4\sigma_{\rm T} \ u_0 \int \frac{n_e \ kT_e}{m_e c^2} ds = 4 \frac{kT_e}{m_e c^2} \tau \ u_0$$
(27)

Q: implications?

CMB energy density change through cluster

$$\Delta u = 4\sigma_{\rm T} \ u_0 \int \frac{n_e \ kT_e}{m_e c^2} ds = 4 \frac{kT_e}{m_e c^2} \tau \ u_0 \equiv 4y \ u_0$$
(28)

dimensionless Compton-y parameter

$$y \equiv \sigma_{\rm T} \int \frac{n_e \ kT_e}{m_e c^2} ds \simeq \tau \frac{kT_e}{m_e c^2} \simeq 3\tau \beta^2 \tag{29}$$

• note $n_e k T_e = P_e$ electron pressure $\rightarrow y$ set by line-of-sight pressure

fractional change in (integrated) energy density $\Delta u/u_0 = 4y$

- positive change \rightarrow (small) net heating of CMB photons
- since $u \propto I$, this also means

ω

$$\frac{\Delta I_{\rm cmb}}{I_{\rm cmb}} = 4y \tag{30}$$

cluster generated net CMB "hotspot"

Q: expected frequency dependence?

SZ Effect: Frequency Dependence

on average, we expect photons to gain energy adding intensity at high ν , at the expense of low ν

but note that in isotropic electron population

- some scatterings will reduce energy
- while others will increase it

detailed derivation is involved:

- allow for ordinary and stimulated emission
- include effects of electron energy distribution
- allow for Compton shift in energy
- use Thomson (Klein-Nishina) angular distribution
- 39

full equation (Kompaneets and generalization) describes *"diffusion" in energy (frequency) space* but key aspect comes from basic Compton property *Q: namely?*

Thermal SZ Effect as a Probe of Galaxy Cluster

in each line of sight

SZ measures Comptonization parameter in a cluster:

$$y = \sigma_{\mathsf{T}} \int \frac{n_e \ kT_e}{m_e c^2} ds = \frac{\sigma_{\mathsf{T}}}{m_e c^2} \int P_e \ ds \approx \frac{\sigma_{\mathsf{T}} \ kT_e}{m_e c^2} \int n_e \ ds \qquad (31)$$

direct measurement of *projected pressure* in column and if T_e known, a measure of electron column density

SZ flux measures

$$\int \cos\theta \ y \ d\Omega \approx \int y \ d\Omega = \frac{\int y \ dA}{D_{\mathsf{A}}^2}$$
(32)

where $D_A(z)$ is the (angular diameter) distance

$$\int y \ dA \approx \frac{\sigma_{\rm T} \ kT_e}{m_e c^2} \int n_e \ ds \ dA \propto M_{\rm gas}$$
(33)

 \rightarrow SZ flux gives *intracluster cluster gas mass!* Q: cosmo apps?

SZ Effect: Cosmological Applications

- SZ identifies all clusters without redshift bias! \rightarrow SZ can be used to discover high-z clusters
- SZ + X-ray gives cluster size, gas mass, T_e if cluster physics well-understood (Ricker, Vijayaraghavan) \rightarrow cluster mass
- cluster number density ("abundance") and mass vs z
 i.e., cluster mass function a sensitive probe of cosmology

today: clusters are the *largest bound objects*; in early U: rare number and mass vs time sensitive to *cosmic acceleration* that competes with *structure growth via gravitational instability* \Rightarrow clusters probe this competition

Q: so how to find clusters, measure redshifts?

41

note that SZ redshift independence also means SZ does not give cluster redshift

Dark Energy Survey key project: optical images, redshifts of clusters compare with SZ survey by South Pole Telescope

www: SPT survey image

SZ Effect: More Cosmological Applications

even for clusters not clearly imaged in SZ SZ effect from all clusters still imprinted on CMB affects $\Delta T_{\rm cmb}$ perturbation pattern on sky

typical angular size of cluster SZ: for large cluster $\theta_{cluster} \sim R_{cluster}/d_{\rm H} \sim 3 \text{ Mpc}/4 \text{ Gpc} \sim 3 \text{ arcmin}$ i.e., SZ affects small angular scales in C_{ℓ} multipole space this corresponds to $\ell \sim 200/\theta_{deg} \sim 4000$

SZ statistical imprint on CMB anisotropies: exquisitely sensitive measure of *cosmic structure* for experts: angular power spectrum $C_{\ell}^{SZ} \propto \sigma_8^7$!

43

To date: SZ contribution to power spectrum not seen! Planck?

Press-Schechter II: Excursion Sets

More sophisticated (and insightful) derivation of same result

Sketch of procedure:

44

- 1. given initial density field and (Gaussian) filter window
- 2. pick a point \vec{x} in space, filter over neighborhood R, mass M(R)
- 3. scan down in mass: at $M \rightarrow \infty$, $\sigma(M) \rightarrow 0$ Q: why? and so filtered $\delta(\vec{x})_M = 0$
- 3. as M decreases, $\sigma(M)$ increases filtered $\delta(\vec{x})_M \neq 0$, alternates sign, amplitude $\Rightarrow \delta(\vec{x})_M$ is a random walk vs $\sigma(M)$! exactly!
- 4. can ask: at which M does $\delta(\vec{x})_M$ first cross threshold δ_c \Rightarrow this sets M of structure containing point \vec{x}
- 5. repeat for all \vec{x} and average \rightarrow PS distribution follows!

Q: limitations/implicit assumptions?

Structure and Horizons

Particle horizons set range for causal physics including growth of structure so two requirements for perturbation growth \star perturbation must be inside "horizon," i.e., $\lambda \leq d_H = H^{-1} \star U$. must be matter-dominated: $z < z_{eq}$

Choreography:

inflation lays down perturbations at \boldsymbol{z} enormous all frozen in until matter domination , then

- on scales already inside Hubble length at z_{eq} δ_m growth stalled until matter-domination
- \bullet on superhorizon scales at $z_{\rm eq},~\delta_m$ growth begins immediately after $d_H>\lambda$
- Today: observe scales in both regimes

Q: What should be the difference?

What characteristic scale divides these regimes?

Key scale in cosmic structure distribution: comoving Hubble length at matter-rad equality

$$d_{\rm H,com}(z_{\rm eq}) = \frac{1}{a_{\rm eq}H_{\rm eq}} = \frac{a_{\rm eq}^{1/2}d_{\rm H,0}}{\sqrt{2\Omega_{\rm m}}} \sim 60 \ h^{-1} \ {\rm Mpc}$$
 (34)

corresponding to $k_{eq} = 1/d_{H,com} = 0.02 \ h \ Mpc^{-1}$ *Q: sound familiar?*

How do does perturbation growth differ on scales sub/super horizon at at z_{eq} ?

46

in linear regime ($\delta \ll 1$) linear growth factor: $D(t) = \delta_k(t)/\delta_k(t_{init})$; k-independent

- large scales have linear growth factor D_0/D_{enter}
- small scales have grown more in absolute terms but less than linear extrap from horizon entry only grown by $D_0/D_{eq} < D_0/D_{enter}$

Dividing scale at equality horizon:

 $\lambda_{eq} = d_{com,hor}(z_{eq}) \sim \eta_{eq}$ and corresponding k_{eq} if smaller scale, horizon entry at pre-eq redshift z_{enter} such that $d_{hor,com}(z_{enter}) = \eta_{enter} = \lambda$ \rightarrow small scales have growth "stunted" by factor

$$\frac{D_{\text{small}}}{D_{\text{large}}} = \frac{a_{\text{enter}}}{a_{\text{eq}}} = \left(\frac{\eta_{\text{enter}}}{\eta_{\text{eq}}}\right)^2 = \left(\frac{\lambda}{\lambda_{\text{eq}}}\right)^2 = \left(\frac{k_{\text{eq}}}{k}\right)^2 < 1 \quad (35)$$

where we used $D \propto a \propto \eta^2$ in matter-dom

Different scales have not grown by same amount!

 \rightarrow to recover initial power spectrum need to account for this

Transfer Function

Theory (initial power spectrum) connected with Observation (power spectrum processed by growth) via transfer function-measures "stunting correction"

$$T_{k}(z) = \frac{\text{present density spectrum}}{\text{extrapolated initial spectrum}} = \frac{\delta_{k, \text{today}}}{D(z)\delta_{k}(z)} \quad (36)$$

$$\rightarrow \begin{cases} 1 & k < k_{\text{eq}} \\ (k_{\text{eq}}/k)^{2} & k > k_{\text{eq}} \end{cases} \quad (37)$$

Note: since $\delta_{k,\text{init}} \sim \delta_{k,0}/T_k$ power spectrum goes as $P_{k,\text{init}} \sim P_{k,0}/T_k^2$

Now apply to observations

48

Recovering the Initial Power Spectrum

Apply transfer function to invert observed spectrum

Observed power spectrum

• peak at \sim 30 Mpc $\simeq \lambda_{eq}$ (check!)

• for
$$k < k_{eq}$$
, $P_{obs}(k) \sim k^1 = P_{init}(k)$
 \rightarrow scale invariant! (check!)

- for $k > k_{eq}$, turnover in power spectrum (check!) quantitatively: $P_{obs}(k) \rightarrow k^{-3}$ so $P_{init} \sim P_{obs}/T^2 \sim k^4 P_{obs} \sim k$ also scale invariant (check!)
- ^b observed power spectrum consistent with gravitational growth of scale-invariant spectrum!