Astro ⁵⁰⁷ Lecture ⁵Jan 31, ²⁰²⁰

Announcements:

 $\overline{}$

- Happy New Year!
- Problem Set ¹ due next Friday, Feb. ⁷Director's Cut Extras today: magnitude scale
- Preflight ¹ was due today–thanks!

Last time: an expanding universe

- Q : how do we describe cosmic kinematics $=$ particle motions?
- Q: what is $a(t)$ physically? units? values?
- Q: why is ^a important cosmologically?
- Q: what is ^a "comoving" coordinate?
- Q: how should cosmic matter density ρ depend on a ?

Today: cosmic dynamics – what determines $a(t)$?

Density Evolution: Matter

definition: to cosmologist <mark>matter</mark> ≡ *non-relativistic* matter

in the non-relativistic regime:

- particle speeds $v \ll c$, and/or $kT\ll mc$ ² (particle rest energy)
- mass is conserved

in comoving sphere with volume $V\propto a^3$, mass conservation gives:

$$
dM = d(\rho V) \propto d(\rho a^3) = 0 \tag{1}
$$

gives density

$$
\mathord{\text{\rm\scriptsize{N}}}
$$

$$
\rho_{\text{non-rel}} \propto \frac{1}{V} \propto a^{-3} \tag{2}
$$

density scaling with a :

$$
\rho_{\text{non-rel}} \propto \frac{1}{V} \propto a^{-3} \tag{3}
$$

today: $\rho_{\mathsf{matter}}(t_0) \equiv \rho_{\mathsf{m},\mathsf{0}}$

so at other epochs (while still non-relativistic):

$$
\rho \mathsf{m} = \rho \mathsf{m}, \mathsf{o} \, a^{-3} \tag{4}
$$

Q: what is ρ _m?

Matter Density: Time Change

matter density depends only on scale factor:

$$
\rho \mathsf{m} = \rho \mathsf{m}, \mathsf{0} \ a^{-3} \tag{5}
$$

and so

$$
\dot{\rho}_{m} = -3 \rho_{m,0} \dot{a} a^{-4} = -3H\rho_{m}
$$
 (6)

Hubble sets rate for density decrease!

Q: how must this be altered in the steady-state cosmology?

Matter and the Steady State Cosmology

steady-state cosmology adopts perfect cosmological principle: \triangleright homogeneous $+$ isotropic $+$ time invariant a non-evolving universe

this demands $\dot{\rho}=0$: density constant but expansion carries galaxies away! \rightarrow must be new matter created to replace it
mass creation rate per unit volume: a mass creation rate per unit volume: q:

$$
\frac{d(\rho a^3)}{dt} = q a^3 \tag{7}
$$

$$
\dot{\rho} + 3H \rho = q \tag{8}
$$

to maintain steady state: creation rate density must be

$$
q = 3H\rho
$$

\n $\approx 6 \times 10^{-47} \text{ g cm}^{-3} \text{ s}^{-1} = 10^{-6} \text{ GeV}/c^2 \text{ cm}^{-3} \text{ Gyr}^{-1}$
\nQ: implications?

5

Alternative Derivation: Fluid Picture

in fluid picture: mass conservation \rightarrow continuity equation

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \tag{9}
$$

put $\rho = \rho(t)$ and $\vec{v} = H\vec{r}$:

$$
\dot{\rho} + H\rho \nabla \cdot \vec{r} = \dot{\rho} + 3\frac{\dot{a}}{a} \tag{10}
$$

$$
\frac{d\rho}{\rho} = -3\frac{da}{a}\rho\tag{11}
$$

$$
\rho \propto a^{-3} \tag{12}
$$

 σ

Cosmic Forces

- **on microscale:** particles scatter, collide via electromagnetic forces (also strong and weak forces) but no net electric charges or electric currents \rightarrow no EM, strong, or weak forces on cosmo scales
Prossure forces: manifectation of random velocities
- **pressure forces:** manifestation of random velocities but pressure spatially uniform → no net pressure forces!*
O: why uniform? why no not P force? (recall hydrostat Q : why uniform? why no net P force? (recall hydrostat eq)
- at large scales: only force is **gravity**
- Q: what theoretical tools needed to describe this?

[∗]Fine print for experts:

since $P \propto \textsf{KE}$ density, *does* contribute to net mass-energy and thus to *gravity*,
this is a real offect and can be important for relativistic species with $v \approx e$ this is a real effect and can be important for relativistic species with $v \approx c$
but even in this case, no pressure forces in the usual sense. \sim ...but even in this case, no pressure *forces* in the usual sense

Cosmodynamics Computed

cosmic dynamics is evolution of ^a system which is

- gravitating,
- \bullet *homogeneous*, and
- isotropic

Complete, correct treatment: General Relativity \Rightarrow we will sketch this starting next week

quick 'n dirty: Non-relativistic (Newtonian) cosmologypro: gives intuition, and right answer con: involves some ad hoc assumptions only justified by GR

Ingredients of Non-Relativistic Cosmology

Inputs: for some arbitrary cosmic time t

- motions described by $\vec{r}(t) = a(t) \vec{r}_0$
- \bullet cosmic mass density $\rho(t)$, spatially uniform
- \bullet cosmic pressure $P(t)$: in general, comes with matter but for non-relativistic matter, P not important source of energy and thus mass $(E=mc)$ so ignore: take $P = 0$ for now (really: $P \ll \rho c$ 2) and thus gravity 2)

thus: *gravity is only force* all cosmic matter is in "free fall"

Construction:pick arbitrary point $\vec{r}_{\mathsf{center}} = 0$, surround by comoving sphere, radius $r(t)$ that moves in order to always enclosesome arbitrary but fixed mass

$$
M(r) = \frac{4\pi}{3} r^3 \rho = const \qquad (13)
$$

$$
\left(\begin{array}{c}\n\cdot & \cdot \\
\cdot & \cdot \\
\hline\n\end{array}\right)^{\rho}
$$

consider ^a point on the sphereQ: is it accelerated?Q: what is $\ddot{\vec{r}} = ?$

Newtonian Cosmodynamics

^a point on the sphere feels acceleration

$$
\ddot{\vec{r}} = \vec{g} = -\frac{GM}{r^2}\hat{r}
$$
\n(14)

with pressure $P = 0$

multiply by $\dot{\vec{r}}$ and integrate:

$$
\dot{\vec{r}} \cdot \frac{d}{dt} \dot{\vec{r}} = -GM \frac{\hat{r} \cdot d\vec{r}/dt}{r^2} \tag{15}
$$

$$
\frac{1}{2}\dot{r}^2 = \frac{GM}{r} + K = \frac{4\pi}{3}G\rho r^2 + K\tag{16}
$$

 Q : physical significance of K ? of it's sign? Q: what happens when we introduce scale factor?11

Friedmann (Energy) Equation

introduce cosmic scale factor: $r(t) = a(t)$ r_0

"energy" eqn: Friedmann equation

$$
H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho - \frac{\kappa c^{2}}{R^{2}a^{2}}
$$
(17)

we will see: full GR gives $K=-2r_0^2(\kappa c^2/\kappa c^2)$ $^2_0(\kappa c^2/R^2$ 2) where

- $\bullet\;\kappa=\pm1,0$, and
- const R is lengthscale: "*curvature*" of U.

In full GR:

⊲ Friedmann eq. holds even for relativistic matter, but \triangleright where $\rho = \sum_{{\rm species},i} \varepsilon_i/c^2$: mass-energy density 12

The Mighty Friedmann (Energy) Equation

fundamental equation of the Standard Cosmology:

$$
H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{\kappa c^2}{R^2 a^2}
$$
 (18)

Q: why is it so important?

Q: what's ^a variable?Q: what's ^a parameter?

Q: $a(t)$ behavior if $K = \kappa = 0$? if $\kappa \neq 0$?

Dissecting Friedmann

$$
H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho - \frac{\kappa c^{2}}{R^{2}a^{2}}
$$
(19)

variables change with time

- ^a: cosmic scale factor
- ρ : total cosmic mass-energy density
- **parameters** constant, fixed for all time
	- $\kappa = \pm 1$ or 0: sign of "energy" (curvature) term
	- R: characteristic lengthscale, GR \rightarrow curvature scale
- Q: how does expansion of ^U depend on contents of U?Q: how does expansion of ^U not depend on contents of U?

14

 $Q:$ what about acceleration– a ?

Friedmann Acceleration Equation

Newtonian analysis gives \ddot{a} for $P{\rightarrow}0$ ่า⊲ In full GR: with $P\neq0$, get Friedmann acceleration eq.

$$
\frac{\ddot{a}}{a} = -\frac{4\pi}{3}G(\rho + 3P/c^2)
$$
 (20)

Pressure and Friedmann

- \star in "energy" (a) eq.: P absent, even in full GR
- \star in acceleration eq., GR → P present, same sign as ρ $2T1$ adds to "active gravitational mass"Q: why? Q: contrast with hydrostatic equilibrium?

Friedmann energy eq is "equation of motion" for scale factor

- i.e., governs evolution of $a(t)$.
- To solve, need to know how ρ depends on a
	- Q: how figure this out?

15

^A Matter-Only Universe

consider a universe containing *only* non-relativistic matter Friedmann:

$$
\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{\kappa c^2}{R^2} \frac{1}{a^2}
$$
\n
$$
= \frac{8\pi G}{3}\rho_0 a^{-3} - \frac{\kappa c^2}{R^2} a^{-2}
$$
\n(22)

For $\kappa = 0$: "Einstein-de Sitter"

$$
(\dot{a}/a)^2 = \frac{8\pi G}{3}\rho_0 a^{-3} \tag{23}
$$

evaluate today: H_0^2 0 $\epsilon_0^2 = 8\pi G \rho_0/3$

$$
a^{1/2}da = H_0 dt \t\t(24)
$$

$$
2/3 \, a^{3/2} \ = \ H_0 \, t \tag{25}
$$

16

Q: implicit assumptions in solution?

Einstein-de Sitter:

$$
t = \frac{2}{3}a^{3/2}H_0^{-1}
$$

\n
$$
a = \left(\frac{3}{2}H_0t\right)^{2/3} = \left(\frac{t}{t_0}\right)^{2/3}
$$
\n(27)

Now unpack the physics:

- boundary condition: $a = 0$ at $t = 0 \rightarrow$ "big bang"
• $a \propto t^{2/3}$ O; interpretation?
- $a \propto t^{2/3}$ Q: interpretation?
- evaluate Hubble parameter

$$
H = \frac{\dot{a}}{a} = \frac{21}{3 t} \tag{28}
$$

Q: interpretation?

• present age:

$$
t_0 = \frac{2}{3} H_0^{-1} = \frac{2}{3} t_{\mathsf{H}}
$$
 (29)

17

Hubble time t_{H} sets scale
Or note that to set in whi Q : note that $t_{\mathbf{0}} < t_{\mathsf{H}}$: why? Other Einstein-de Sitter fun facts:

- U. half its present age at $a = 2^{-2}$ $\frac{2}{ }$ $3 = 0.63$
- objects half present separation (and $8\times$ more compressed) at $t = 2^{-3/2}$ $2t_0 = 0.35t_0$
- using measured value of H_0 , calculate $t_0 = 8.9$ Gyr but know globular clusters have ages $t_{\textsf{gc}}$ \gtrsim \gtrsim 12 Gyr Q: huh?

Director's Cut Extras: The Magnitude Scale

Star Brightness: Magnitudes

star brightness (flux) measured in **magnitude** scale magnitude = "rank" : smaller *m* → **brighter**, *more* flux
Serry Sorry.

Magnitudes use a logarithmic scale:

• difference of ⁵ mag is factor of ¹⁰⁰ in flux:

 $m_2-m_1= \frac{2.5 \log_{10}F_2/F_1}{2}$ (definition of mag scale!)

 • mag units: dimensionless! (but usually say "mag") since always a log of ratio of two dimensionful fluxes with physical units like W/m²

What is mag difference m_2-m_1 :

Q: if $F_2 = F_1$?

- Q : what is sign of difference if $F_2 > F_1$? 20
	- Q: for equidistant light bulbs, $L_1 = 100$ Watt, $L_2 = 50$ Watt?

Apparent Magnitude

a measure of star flux $=$ (apparent) brightness

- no distance needed
- arbitrary mag zero point set for convenience: historically: use bright star Vega: $m(\text{Vega}) \equiv 0$ then all other mags fixed by ratio to Vega flux
- ex: Sun has apparent magnitude $m_{\odot} = -26.74$ i.e., -2.5 log $_{10}(F_{\odot}/F_{\rm Vega}) = -26.74$ so $F_{\rm Vega} = 10^{-26.74/2.5} F_{\odot} = 2 \times 10^{-11} F_{\odot}$
- ex: Sirius has $m_{\text{Sirius}} = -1.45 \rightarrow \text{brighter}$ than Vega
so: $E_{\text{max}} = 3.8E_{\text{max}} = 8 \times 10^{-11} E$ so: $F_{\mathsf{Sirius}} = 3.8 F_{\mathsf{Vega}} = 8 \times 10^{-11} F_{\odot}$
- μ_{eq} ex: $m_{\text{Polaris}} = 2.02$ Q: rank Polaris, Sirius, Vega?

 \star if distance to a star is known can also compute Absolute Magnitude

abs mag $M =$ apparent mag if star placed at $d_0 = 10$ pc

Q: what does this measure, effectively?

Absolute Magnitude

absolute magnitude $M =$ apparent mag at $d_0 = 10$ pc

places all stars at constant fixed distance

- \rightarrow a stellar "police lineup"
by then differences in F of
- \rightarrow then differences in F only due to diff in L
A absolute mag effectively measure lumines
- \rightarrow absolute mag effectively measure luminosity

```
Sun: abs mag M_{\odot}= 4.76 mag
Sirius: M_{\mathsf{Sirius}} = +1.43 mag
Vega: M_{\rm Vega}=+0.58 mag
Polaris: M<sub>Polaris</sub> = −3.58 mag<br>- Eridani: M
\epsilon Eridani: M_{\epsilon E}ri = +6.19 mag (nearest exoplanet host; d = 3.2 pc)
Q: rank them in order of descending L?
```
Immediately see that Sun neither most nor least luminous star around23

Distance Modulus

take ratio of actual star flux vs "lineup" fluxat abs mag distance $d_0 = 10$ pc:

$$
\frac{F}{F_0} = \frac{L/4\pi d^2}{L/4\pi d_0^2}
$$
\n(30)

which, after simplification, leads to

$$
m - M = 5 \log \left(\frac{d}{10 \text{ pc}} \right) \tag{31}
$$

- \bullet depends only on distance d , not on luminosity! can use as measure of distance
- $m M \equiv$ "distance modulus", sometimes denoted μ

24