Astro 507 Lecture 8 Feb. 7, 2020

Announcements:

- Problem Set 1 due 5pm today
- Preflight 2 posted, due noon next Friday

Last time

 \vdash

- radiation in the Universe energy density ε va a? ρ?
 if thermal: T(a)? ρ?
- pressure: *Q: cosmic first law of thermodynamics?*
- Q: cosmic equation of state?
 - minimal ingredients for a realistic cosmology?

Ingredients of a Minimally Realistic(?) Universe

For sure, the universe contains:

- Matter Q: evidence? $\rho_{\rm m} \propto a^{-3}$
- Radiation Q: evidence? $\rho_{\rm r} \propto a^{-4}$

Quite possibly, the universe could contain:

- Curvature
 - curvature term $\propto a^{-2}$
- Cosmo Const (or worse!) $\rho_{\Lambda} \propto a^0 = const$
- [№] So: "minimal" but also "realistic" account of U must include these pieces: $\rho = \rho_{tot} = \sum_i \rho_i$

Cosmodynamics in a Minimally Realistic(?) Universe

for a "minimally realistic" universe, Friedmann sez:

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \left(\rho_{r,0}a^{-4} + \rho_{m,0}a^{-3} + \rho_{\Lambda}\right) - \frac{\kappa c^{2}}{R^{2}}a^{-2}$$
$$= H_{0}^{2} \left[\Omega_{r}a^{-4} + \Omega_{m}a^{-3} + \Omega_{\Lambda} + (1 - \Omega_{tot})a^{-2}\right]$$

Q: limiting cases?

Limiting cases: one term \gg all others (PS1) component *i* dominates when

$$\rho_{\rm tot} \approx \rho_i \gg \rho_{\rm other}$$
(1)

- radiation-dominated:
- matter-dominated:

$$a_{
m md} \sim t^{2/3}$$

 $a_{
m rd} \sim t^{1/2}$

- curvature-dominated $\kappa = -1$; *Q*: why? $a_{cd} \propto t^1$
- Λ -dominated: $a_{\lambda d} \propto e^{+H_{\Lambda}t}$
- 4

Q: which component most important at early times? late times?

The Cosmic Past

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \left(\rho_{r} + \rho_{m} + \rho_{\Lambda}\right) - \frac{\kappa c^{2}}{R^{2}}a^{-2}$$
$$= \frac{8\pi G}{3} \left(\rho_{r,0}a^{-4} + \rho_{m,0}a^{-3} + \rho_{\Lambda}\right) - \frac{\kappa c^{2}}{R^{2}}a^{-2}$$

Curves for specific choices of parameters ($\rho_{m,0}, \rho_{r,0}, R, \Lambda$) *Q: change if these have different values?*

СЛ

log a

Mix-n-match: Q: evolution if only matter & rad? Ω ? Q: ... if matter, rad, and curv(\pm)? Ω ? Q: ... if matter, rad, and Λ ? Ω ? Q: ... if matter, rad, curv, and Λ ? Ω ?

Menu at Al Friedmann's Cosmo Café

Possible Histories of the Universe

Matter + Radiation only: $(\Omega = 1)$ rad-dom \rightarrow matter-dom; expand forever

Matter + Radiation + Curvature(-): $(\Omega < 1)$ RD \rightarrow MD \rightarrow CD; expand forever Matter + Radiation + Curvature(+): $(\Omega > 1)$ RD \rightarrow MD \rightarrow CD \rightarrow reverse; recollapse

Matter + Radiation + A: $(\Omega = 1)$ RD \rightarrow MD \rightarrow AD: expand forever *exponentially*!

[¬] Matter + Radiation + Λ + curv: (Ω ≠ 1) many possibilities! fate depends on detailed composition

Radiation and the Early Universe

note: radiation always wins out at early times
⇒ Early U is radiation-dominated
Q: why?

later evolution (which components dominate) depends on cosmic ingredients and their relative amounts

Density and Destiny

Enough generalities! What about *our* real Universe? Fate (and geometry) of U. depend on current values of $\Omega_{i,0} = \rho_{i,0}/\rho_{crit,0}$ and $\Omega_0 = \sum \Omega_i$ where

$$\begin{split} \rho_{\text{crit},0} &= \frac{3H_0^2}{8\pi G} \\ &= 1.9 \times 10^{-29} \ h^2 \ \text{g/cm}^{-3} \approx 10^{-29} \ \text{g/cm}^{-3} \\ &= 2.78 \times 10^{11} \ h^2 \ M_{\odot} \ \text{Mpc}^{-3} \approx 1.4 \times 10^{11} \ M_{\odot} \ \text{Mpc}^{-3} \\ &\approx 6 \ \text{H} \text{ atoms m}^{-3} \end{split}$$

Empirical question:

- • is $\rho_{tot,0}$ bigger or smaller than this number?
 - *density is destiny!* weight is fate!

Cosmic Geometry and Evolution

Consider a universe with $\Omega \neq 1$

Friedmann says

$$\Omega(t) - 1 = \frac{\kappa c^2}{R^2 a^2 H^2} = \frac{\kappa c^2}{R^2 \dot{a}^2} \propto \frac{1}{\dot{a}^2}$$

(2)

i.e., Ω changes with time

- *Q:* is $|\Omega 1|$ increasing or decreasing?
- Q: limiting values of Ω at large t?
- Q: physical interpretation of these limits?
- Q: timescale for Ω to change?
- $\exists Q: implications for \Omega_0?$

The Evolution of Ω

Time change of $|\Omega-1| \propto 1/\dot{a}^2$ is

11

$$\frac{1}{|\Omega-1|} \frac{d}{dt} |\Omega-1| = \dot{a}^2 \frac{d}{dt} \frac{1}{\dot{a}^2}$$
(3)

$$= -2 \frac{\ddot{a}/a}{H^2} H = 2 q H$$
 (4)

where acceleration parameter $q = -(\ddot{a}/a)/H^2$ Q: why sign choice in q definition?

- generally, $|q| \sim 0.1 10$, so $|\Omega 1|$ changes on timescale $1/2|q|H \sim 1/H = t_H \sim t$
- if ä < 0: ordinary attractive gravity, decelerating U then |Ω − 1| increasing with time → Ω driven increasingly away from 1 Q: unless...?

What is Ω_0 ?

Procedure 0: Pure Theory

 $\Omega = \rho / \rho_{\rm crit} \sim \rho(t) / H^2(t)$ evolves

- if ever $\Omega = 1$, stays 1 always
- otherwise: $\Omega {
 ightarrow} 0$ or ∞
- physically: expand forever or recollapse occurs on cosmic timescale *t*: current age

 $\Omega = 1$ is the only stable value

do the experiment: look around room

 $\Omega \neq 0, \infty \rightarrow \Omega = 1$!

 $\stackrel{_{\scriptstyle \bigtriangledown}}{_{\scriptstyle \sim}}$ else conspiracy: we live just when $\Omega\sim 1$ ''Dicke coincidence''

What is Ω_0 ? Procedure I: Galaxy Surveys

Goal: measure $\rho_0 \rightarrow \text{infer } \Omega_0$

- *Q: What is* $\Omega_{\text{this room}}$?
- *Q:* Why can't we use $\rho_{\text{this room}}$?
- Q: What is needed?
- Q: What do galaxy surveys actually measure?
- Q: How can we bridge the gap?

Cosmic Density Measurement Procedure I: Mass-to-Light Ratios

Seems simple...

- 1. find fair sample of U., with some volume V
- 2. if measure total mass M, $\rightarrow \rho = M/V$

...but telescopes don't measure mass, rather: *luminosity L*

- 1. find cosmic luminosity density $\mathcal{L} = L/V$
- 2. then find cosmic ratio of mass to luminosity: mass-to-light ratio $M/L \equiv \Upsilon$
- 3. solve for mass density $\rho = \Upsilon \mathcal{L}$

Galaxy surveys: $\mathcal{L}_{obs}\sim 2\times 10^8~h~L_\odot~Mpc^{-3}$...which you will \sim verify in PS1!

```
Need "fair sample" of mass-to-light ratio \Upsilon
```

Q: how to measure this?

cosmic mass/light sample: galaxies including dark halos

flat rotation curves $v(r) \sim const$

www: rotation curve

Newtonian gravity, dynamics apply: circular motion: $v^2/r \sim g \sim GM_{\text{enclosed}}(r)/r^2$ Q: expected behavior for r > visible matter?

Instead: find $v \approx const$ well beyond visible matter "flat rotation curves" $\Rightarrow M(r) \sim v^2 r/G \sim r$ for $r \gg r_{\text{vis}}!$ dark halo! typically $M_{\text{halo}} \sim 5 - 10 M_{\text{vis}}$ summing observed light, total dynamical mass:

 $\Upsilon_{halo} \lesssim 25 h M_{\odot}/L_{\odot} \rightarrow \Omega_{halo} \lesssim 0.02 \ll 1$

 $\overline{5}$ Q: implications? what if this is a fair sample? Q: why would/wouldn't it be?