Astro ⁵⁰⁷ Lecture ⁹Feb. 10, ²⁰²⁰

Announcements:

• Preflight ² posted, due noon Friday

includes discussion question on the Anthropic Principle!

Last time: the mass-energy budget of the cosmos

Q: why do we want to know the total mass-energy budget today?

- Q: two what do we compare this?
- Q: result using pure theory? using galaxies?

 $\overline{}$

Density and Destiny

Enough generalities! What about our real Universe? Fate (and geometry) of U. depend oncurrent values of $\Omega_{i,0} = \rho_{i,0}/\rho_{\rm crit,0}$
and $\Omega_i = \sum \Omega_i$ where and $\Omega_0 = \sum \Omega_i$ where

$$
\rho_{\text{crit,0}} = \frac{3H_0^2}{8\pi G}
$$

= 1.9 × 10⁻²⁹ h² g/cm⁻³ ≈ 10⁻²⁹ g/cm⁻³
= 2.78 × 10¹¹ h² M_o Mpc⁻³ ≈ 1.4 × 10¹¹ M_o Mpc⁻³
≈ 6 H atoms m⁻³

Methods Of Estimating Cosmic Density

 \star Pure Theory $\Omega = 1$

 \overline{a}

- \star Galaxies $\Omega_{\text{stars+gas}} \simeq 0.0024 \pm 0.0012$, $\Omega_{\text{lum+halo}} \simeq 0.02$
- Q: implications? what if this is ^a fair sample?
- Q: why would/wouldn't it be?

cosmic mass/light sample: galaxy clusters

can find cluster M_{tot} from several methods e.g., www: cluster gravitational lens $^\sim$ Cluster \sim 300 $h\to\Omega_\mathrm{cluster}\sim 0.25h^{-1}$ 1 ~ 0.3

Note: since Υ_{cluster} > Υ_{halos} \rightarrow immediately conclude that *halos are not fair sample* \rightarrow i.e., halos miss extra dark matter on larger scales
bints for galaxy formation \rightarrow hints for galaxy formation...

…but clusters have $\delta\rho/\rho_{\sf{O}}\sim 1$

 \rightarrow largest bound objects

 \rightarrow should be fair sample:
 \rightarrow Q

 \Rightarrow Ω_{matter} \sim 0.3 (including DM!)

 ω

Cosmic Density Measurement Procedure II: Microwave background anisotropies

CMB temperature anisotropies sensitive to cosmic geometrywww: Planck ²⁰¹³ results ⁺ other observations (BAO)

$$
\Omega_{\kappa} \equiv 1 - \Omega_0 = 0.0005 \pm 0.0033
$$

$$
\Omega_0 = 1.0005 \pm 0.0033!
$$

 \Rightarrow $\Omega_0 = 1$ to \sim 0.3% level!!!

 \rightarrow

 \Rightarrow a flat universe! theory prejudice correct!

but: $\Omega_{\text{matter}}\approx 0.27$ (including DM!) $\rightarrow \Omega_{\text{other}} = 0.73$?!?

Who ordered that? What is the other, dominant component? Λ? "dark energy" ?!?

Beyond Newton

Thus far: Newtonian cosmology

- develops intuition
- correct over small scales $\ll d_H$

Shortcomings:

• some features "pulled of out ^a hat"

e.g., curvature scale R presence, coefficient of pressure

- Newtonian physics is incomplete (=wrong!)
- \Rightarrow the Universe is relativistic!

General Relativity

Relativity for the Impatient Cosmologist

For *General Relativity newcomers*, we will:

- sketch how GR generalizes special relativity
- sketch basic concepts of GR
- qualitatively discuss similarities, differences with special relativity, Newtonian Gravity
- No substitute for ^a real, rigorous, in-depth course: take General Relativity!

For General Relativity veterans, we will:

 \bullet sketch how Einstein equations \rightarrow Friedmann eqs

For *everyone*, we will:

 $\overline{}$

- show how the Cosmological Principlestrongly constrains possible cosmic spacetimes
- semi-derive the cosmic (FLRW) metric
- use this to probe lifestyles in an expanding universe

Spacetime

see S. Carroll, Spacetime and Geometry; R. Geroch, General Relativity from ^A to ^B

evolving view of space, time, and motion: Aristotle \rightarrow Galileo \rightarrow Einstein

Key basic concept: **event** occurrence localized in space and timee.g., firecracker, finger snapidealized \rightarrow no spatial extent, no duration in time

a goal (*the* goal?) of physics: describe relationships among events

 ∞

Q: consider collection of all possible events-what's included?

Spacetime Coordinates

Each event specifies ^a unique point inspacetime $=$ collection of all events

lay down coordinate system: ³ space coords, one time4-dimensional, but as yet time & space always "orthogonal"

```
example:a time t and Cartesian (x, y, z)specify event \rightarrow (t, x, y, z)
```
physics asks (and answers) what is the relationshipbetween two events, e.g., $\left(t_1,x_1,y_1,z_1\right)$ and $\left(t_2,x_2,y_2,z_2\right)$

Represent spacetime geometrically: spacetime diagram e.g., plot (x, t) coordinate plane Q: one event? one observer at rest? ^a jump shot? \overline{O}

Spacetime Diagram

objects (observers) at rest: same x, y, z always, t ticks forward geometrically, a line in spacetime: **"world line"** if at rest: world line vertical

 $constant$ speed: $x = vt$: diagonal line

Galilean Relativity

consider two identical laboratories (same apparatus, scientists, funding, vending machines) move at constant velocity wrt each other

Galileo:

11

no experiment either can do (without looking outside) will answer "which lab is moving"

 \rightarrow no absolute motion, only relative velocity

Newton: laws of mechanics invariant for observers moving at const ^v"inertial observers"

Implications for spacetimeno absolute motion → *no absolute space*
(but still no reason to abandon absolute (but still no reason to abandon absolute time)

Trouble for Galileo

Maxwell: equations govern light very successful, but:

- predicts unique (constant) light speed c -relative to whom?
- Maxwell eqs not Galilean invariant

Lorentz: Maxwell eqs invariant when

$$
t' = \gamma(t - vx/c^2) \tag{1}
$$

$$
x' = \gamma(x - vt) \tag{2}
$$

$$
y' = y \tag{3}
$$

$$
\frac{z'}{2} = z \tag{4}
$$

wheree $\gamma = 1/\sqrt{1-v^2/c^2} \geq 1$

Einstein:

12

Lorentz transformation not just ^a trick

 but correct relationship between inertial frames! \Rightarrow this is the way the world is

Einstein: Special Relativity

consider two events (t,x,y,z) and $(t+\Delta t,x+\Delta x,y+\Delta y,z+\Delta z)$

different inertial observers *disagree* about i.e., measure different values for: Δt and $\Delta \vec{r}$

but all *agree* on = calculate same value of the <mark>interval</mark>

$$
\Delta s^2 \equiv (c\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2 \tag{5}
$$

$$
= (c\Delta t)^2 - (\Delta \ell)^2 \tag{6}
$$

everyone agrees on value = Lorentz invariant
Neter interval san have A 2> 0 60 00 Note: interval can have $\Delta s^2>0, < 0, =0$ 13

Light pulse:

in rest frame of flash: photon positions $\Delta \ell = c \Delta t$

calculate interval: $\Delta s_\mathsf{light} = 0$ \rightarrow light moves at c in all frames! all observers measure same speed of light!

Q: light flash in spacetime diag?

Light Pulse in Spacetime

in spacetime: light pulse at origin $(t, x, y, z) = (0, 0, 0, 0)$ moves so that distance $r=$ geometrically: light cone $\sqrt{x^2}$ $^2 + y$ 2 $2 + z^2$ $\epsilon = ct$

Motion and time: Consider two events, at rest in one frame: $\Delta\vec{x}_{\sf rest} = 0$ in rest frame, so $\Delta s = c \Delta t_{\sf rest}$: $c \times$ elapsed time in rest frame

In another inertial frame, relative speed v : events separated in space by $\Delta x' = v \Delta t'$

$$
\Delta s = \sqrt{c^2 \Delta t'^2 - \Delta x'^2} = \sqrt{c^2 - v^2} \Delta t' = \frac{1}{\gamma} c \Delta t'
$$
 (7)

since Δs same: infer $\Delta t' = \gamma \Delta t_{\sf rest} > \Delta t_{\sf rest}$

⇒ moving clocks appear to run slow
(special) relativistic time dilation

(special) relativistic time dilation

 \Rightarrow no absolute time (and no absolute space)

16

Note: more on Special Relativity in Director's Cut Extras to today's notes

H. Minkowski:

"Henceforth, space by itself, and time by itself, are doomedto fade away into mere shadows, and only ^a kind of unionof the two will preserve an independent reality."

The Speed of Massive Particles

Special relativity general rule: $v=p/E$ where E is total energy (see Extras to notes) good for particles of any mass $m\geq 0$...and where we have and will set $c=1$ you can show that with explicit c factors, $v/c = cp/E$

but E and p also connected via invariant E^2-p $2=m^2$

$$
v = \frac{\sqrt{E^2 - m^2}}{E} = \sqrt{1 - \left(\frac{m}{E}\right)^2}
$$
(8)

 Q : implications? what if $m = 0$? $m \neq 0$? $\frac{1}{8}$

Director's Cut Extras: Special Relativity

Pre-Relativity: Aristotle

 x, y, z Cartesian (Euclidean geometry) spatial distance ℓ between events is:

$$
\ell^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 \tag{9}
$$

and is independent of timeelapsed time between events is: t_2-t_1 and is independent of space"absolute space" and "absolute time"

Is a particle at rest? \Leftrightarrow do (x, y, z) change? \rightarrow "absolute rest, absolute motion"

 β Diagram: Aristotelian spacetime unique "stacking" of "time slices"

Life According to Aristotle

Note: even in absolute space event location indep of coordinate description e.g., two observers choose coordinates different by ^a rotation: (x,y) and $(x',y') = (x\cos\theta - y\sin\theta, y\cos\theta + x\sin\theta)$ $ictanco from oriain: ω^2 =$ preserves distance from origin: $x^2 + y^2 = (x')^2 + ($ $^2 + y$ $2 = (x')^2 + (y')^2$

```
objects (observers) at rest:
same x,y,z always, t ticks forward
geometrically, a line in spacetime: "world line"
if at rest: world line vertical
constant speed: x = vt: diagonal line
```
21

```
light: moves at "speed of light" c\rightarrow well-defined, since motion absolute<br>in spacetime: light pulse at origin (t a
in spacetime: light pulse at origin (t, x, y, z) = (0, 0, 0, 0)moves so that distance \ell=geometrically: light cone
                                       \sqrt{x^2}^2 + y22 + z^2\epsilon = ct
```
Galilean Frames

each inertial obs has own personal frame: obs ("Angelina") at rest in own frame: (x, y, z) same for all t but to another obs ("Brad") in relative motion $\vec{v} = v\hat{x}$ ^B sees A's frame as time-dependent:

$$
x_{\text{A} \text{ as seen by B}} = x' = x - vt \tag{10}
$$

but still absolute time: $t'=t$ Newton's laws (and Gravity) hold in both frames can show: $d^2\vec{r}/dt^2 = \vec{F}(\vec{r}) \Rightarrow d^2\vec{r}'/dt'^2 = \vec{F}(\vec{r}')$
"Galilean invariance" "Galilean invariance"

Geometrically:

 $\frac{2}{2}$

different inertial frames → transformation of spacetime
slide the "space slices" at each time

slide the "space slices" at each time(picture "shear," or beveling ^a deck of cards)

Spacetime and Relativity

Pre-Relativity: space and time separate and independent but *rotations* mix *space* coords, e.g.,

$$
x' = x \cos \theta - y \sin \theta \quad ; \quad y' = y \cos \theta + x \sin \theta \tag{11}
$$

without changing underlying vector (rotation of coords only) transform rule holds not only for \vec{x} but all other physical directed quantities: e.g., $\vec{v}, \vec{a}, \vec{p}, \vec{g}, \vec{E}$

Lesson: express & guarantee underlying rotational invarianceby writing physical law in vector forme.g., $\vec{F}= m \vec{a}$ gives same physics for any coord rotation

 \sum

In special relativity: spatial rotations still allowed, but also...

"boosts" from one frame to another with relative speed $\vec{v} = v\hat{x}$

$$
t' = \gamma(t - vx/c^2) \tag{12}
$$

$$
x' = \gamma(x - vt) \tag{13}
$$

$$
y' = y \tag{14}
$$

$$
z' = z \tag{15}
$$

- truly mix space and time → spacetime
• look like retations, but 4 dimensional
- look like rotations, but 4-dimensional
- \rightarrow should express laws in terms of 4-D vectors:
"A vectors" t = components transform via Lor
- "4-vectors," t,x components transform via Lorentz

24

Velocity, Momentum, Energy

Velocity:

for events separated by $dx^{\mu} = (dt, \vec{dx})$, put

$$
u^{\mu} = \frac{dx^{\mu}}{ds} = \left(\frac{dt}{ds}, \frac{d\vec{x}}{ds}\right)
$$
 (16)

covariant: written this way, ^a 4-vector: transforms in boost ^a la Lorentzi.e., *components are different* in different frames but underlying physical entity frame-independent "like with space vectors and rotations"

norm ("length") of 4-velocity

$$
u \cdot u = \left(\frac{dt}{ds}\right)^2 - \left(\frac{d\vec{x}}{ds}\right)^2 = \frac{dt^2 - d\vec{x}^2}{ds^2} = \frac{ds^2}{ds^2} = 1
$$

 $\frac{2}{n}$

same number for all observers: invariant

Now want 4-momentum p^{μ} :
servider particle of (rest) x

consider particle of (rest) mass m where: rel. p^i should go to $m\vec{v}$ for small v try: $p^{\mu} = mcu^{\mu}$ space part: $\left| {\vec p} \right| = \gamma m \vec v \right|$ rel momentum time part:

$$
p^{0} = \gamma mc \approx \frac{1}{c} \left(mc^{2} + \frac{1}{2} mv^{2} \right) = \frac{1}{c} \left(mc^{2} + K \right)
$$
 (17)
can identify $E_{rel, tot} = cp^{0}$, but then
rest mass has energy $E_{rest} = mc^{2}$!

energy, momentum conservation $\rightarrow p^{\mu}$ cons
compact, unified treatment: compact, unified treatment:

 δ $(p^{\mu})_{init} = (p^{\mu})_{fin}$ (4 equations)

The Charms of 4-Momentum

Invariant norm (everyone agrees)

$$
p \cdot p = (p^0)^2 - (\vec{p})^2 = E^2 - \vec{p}^2 = m^2 \tag{18}
$$

• rel. (total) energy is $E(p) = \sqrt{(cp)^2 + (mc^2)}$ $^{2})^{2}$

- in rest frame: $\vec{p} = 0 \rightarrow E = mc^2$ "rest mass energy"
- In rest frame: $p = 0 \rightarrow E = mc^2$ rest r
• define rel kinetic energy: $K_{rel} = E mc$ can show: $K_{\sf rel}{\to}p^2/2m$ if $v\ll 1$ 2 $2/2m$ if $v \ll c$

Velocity

27

can show: $\vec{p}/E_{\text{tot}}=\vec{v}$

• non-rel: Q?

What if m What if $m=0$?
• $E^2 - \vec{v}^2 = 0$ – $\overline{1}$ − $-\vec{p}^2 = 0 \rightarrow E = cp$: E is "all kinetic" $\bullet \, v = p/E = 1 = c: \text{ moves at } c \text{ always!}$

World Lines and Dynamics

for any observer (i.e., any coordinate system): events along own worldline have

> $(\Delta s)^2 = (\text{observer's apparent elapsed time})^2$ (19)

Q: why?

28

observers' total elapsed time going from events $A{\rightarrow} B\colon\mathbf{\Delta} t = \int_a^b$ generically: in frame x' , elapsed time: $\Delta t = \int_a^b \sqrt{1-v^2} \, dt'$ \boldsymbol{a} $a^{\prime\prime}ds$ $\frac{dv}{da}\sqrt{1-v^2}\,dt'$

consider "race" from event A to event B accelerated vs non-accelerated ("free") observers Q: physical picture?

can show: everyone agrees that

non-accelerated observer measures longest Δt

Q: this is huge–why? what's special about such observers inSR?

 $non\text{-}accelerated observer \rightarrow no forces$ i.e,. ^a free body!

```
so in Special Relativity:
of all trajectories from events A \rightarrow Bfree bodies have max \int ds
```
but free body trajectory is natural motion!

```
Implications\Rightarrow free body follows extremum of \int dslaw of motion!
     i.e., variation \delta \int ds = 0 selects physical worldline!
29⇒\Rightarrow twin "paradox" is not Q: why?
```