Unit 3: Introduction to the Dataframe Manipulation and Data
Cleaning

Case Study: Artificial UIUC Course Catalog Dataset
Exploration
o We will build an ‘artificial’ dataframe of UIUC class
information. We will explore different way to
represent, manipulate, and ‘clean’ this dataframe.

Case Study: Melanoma Mortality Rate Dataset
e Use the skills that we have learned so far to answer: is
there an association between states in the U.S. and
melanoma mortality rate?

Purpose of this Lecture:

Data Science

Pi p e I i n e & Coding, Ethics, m
and Communication

Analyties

In this lecture we will cover the following topics.
Case Study: Artificial UIUC Course Catalog Dataset Exploration

1. Common types of Python objects.
2. How to create a dataframe “from scratch”?

5. How to write a dataframe to a csv file?



13. What is a missing value (ie. NaN) in Python?

Case Study: Is there an association between states in the U.S. and melanoma mortality

rates?
16. Use the skills that we have learned so far in this class to answer this question.

Additional resources:

e Chapter 3 in J.VanderPlas (2016) Python Data Science
Handbook, https://jakevdp.github.io/PythonDataScienceHandbook/




Unit 3: Introduction to Dataframe Manipulation and Data
Cleaning

Review

We have seen that pandas data frames have a spreadsheet like structure with the following characteristics:

» columns correspond to different variables and have a single type, either numerical (integer, floating point,
complex) or categorical (character strings or boolean).

» rows are labeled by an index that identifies individual elements, which may be subjects, different time
points, subject visits at different time points, products, or any other basic unit under study.

This basic spreadsheet structure is made abundently clear by how we can use the pandas .read_csv function to
read an Excel-style comma separated file directly into a pandas data frame.

We have also seen that there are other functions that operate on data frames either to extract their attributes
(e.g. the pandas .head() function) or perform other operations like summing, averaging or graphing.

In this section we delve further into the data frame structure, investigating:

» How to build up data frames from simpler objects;

» How to import and export data files;

+ How to extract subsets of the data and refer to individual elements in a data frame;
+ How to add new data;

« How to combine data from multiple sources;

» How to sort data by specific variables in the data frame.

+ How missing data are represented, and how we can process them.

Preliminaries: Importing pandas functions for dataframe
manipulation.

The functions contained in the pandas package are the primary way that we go about manipulating
dataframes (remember that a dataframe is a pandas object) as well as cleaning dataframes.

Let's import ALL of the functions from pandas below.

In [1]: dimport pandas as pd

Case Study: Artificial UIUC Course Catalog Dataset
Exploration

1. Common types of Python objects.

1a. Creating Lists

Let's first create two list objects below.



In [2]: courses = ['cs1l@5', 'statle7', 'stat207', 'adv307', 'hist407']
courses

Out[2]: ['csle5', 'statle7', 'stat207', 'adv3e7', 'hist4e7']

In [3]: type(courses)

Out[3]: 1ist

In [4]: enrollment = [345, 197, 53, 38, 26]
enrollment

Out[4]: [345, 197, 53, 38, 26]

In [5]: type(enrollment)

Out[5]: 1list

By using the type() function we verified that these are both lists. Let's check what kind of objects are contained in
these two lists.

A list can contain any combination of objects and is always enclosed in brackets when we create one.
Remember to use commas to separate the entries in the list.

1b. Subsets of Lists

Let's individually extract and print the first three entries in the courses list below. Notice that in Python:

« the first entry is represented with an index of 0,
» the second entry is represented with an index of 1,
« the third entry is represented with an index of 2, ...

In [6]: courses[@]
Out[6]: 'csi@e5"'

In [7]: courses[1]

Out[7]: 'statie7'

In [8]: courses[2]

Out[8]: 'stat207'

1c. Strings

We can see that the entries in the courses enrollments are listed as string objects.

In [9]: type(courses[@])

Out[9]: str

1d. Integers

We can see that the entries in the enroliment list are integer objects.

In [10]: type(enrollment[4])

Oout[1@]: int



1e. Creating Dictionaries

Now let's create a dictionary object below.

In [11]: course_dictionary={'course': courses, 'enrolled': enrollment}

course_dictionary

Out[11]: {'course': ['csl@5', 'statle7', 'stat207', 'adv3e7', 'hist407'],

‘enrolled': [345, 197, 53, 38, 26]}

In [12]: type(course_dictionary)

Out[12]: dict

A dictionary is a set of ordered pairs of keys and values. For instance,

» the 'course' key in course_dictionary corresponds to the courses value and
« the 'enrolled' key in course_dictionary corresponds to the enroliment value.

The structure for creating a dictionary is:

{'’key1": value1, 'key2": value2, 'key3: value3, ...}

1f More about Python functions
Pay close attention to the different types of brackets.

» '( )" enclose function arguments
e '[] enclose elements in a list or array
« {} enclose elements in a dictionary {'key1": value1, 'key2". value2, ...}

2. Create a new dataframe "from scratch".

Let's use these objects we just created to create a new dataframe "from scratch” (ie. rather than reading one in

from a data file like a csv).

We can use the pandas Dataframe() function to create a dataframe from a dictionary.

Notice how each of the keys become a column name and each of the values become a column of data.

In [13]: #Both of these lines of code below do the same thing.
littledf = pd.DataFrame(course_dictionary)

littledf = pd.DataFrame({'course': courses, 'enrolled':
littledf
out[13]:
course enrolled
0 c¢s105 345
1 stat107 197
2 stat207 53
3 adv307 38
4 hist407 26

enrollment})



3. Select a single column from a dataframe.

Remember we can select an already existing column from a dataframe by using brackets and the name of the
column we want.

dataframe_name['column_name']

In [14]: littledf['enrolled']

out[14]: 345

0

1 197

2 53

3 38

4 26

Name: enrolled, dtype: int64

4. Add a column to a dataframe.

We can create an new column from a dataframe by using brackets and the name of the column we want to
create on the left, and then an object with the new data that we want to have in this new column on the right.

dataframe_name['column_name']= new data

In [15]: littledf['college'] = ['ENGR', 'LAS', 'LAS', 'MEDIA', 'LAS']

littledf
Out[15]:

course enrolled college
0 cs105 345 ENGR
1 stat107 197 LAS
2 stat207 53 LAS
3 adv307 38 MEDIA
4 hist407 26 LAS

5. How to write a dataframe to a csv file.

The reverse operation is to write an internal data frame to an external file, perhaps after some data processing to
merge data from multiple sources. Here we export the 'littledf' data to an external csv file using the
pandas.DataFrame.to_csv function.

In [16]: 1littledf.to_csv('courses.csv')

Go the folder that this Jupyter notebook is saved in, and you will see that a new csv file was created called
‘courses.csv' containing the data that was in littledf.

6. How to create a subset of rows and/or columns of a
dataframe?

(Given that you know the indices of the rows and columns that you're looking
for.)

Using the .iloc (index location) attribute, we can refer to specific elements or "slices" of elements in the data
frame.

Here, again, is our sample data frame in full:



In [17]: 1littledf

Out[17]:
course enrolled college
0 cs105 345 ENGR
1 stat107 197 LAS
2 stat207 53 LAS
3 adv307 38 MEDIA
4 hist407 26 LAS

6a. Selecting a single entry (using the indices).

In this 5 x 3 array the rows are numbered 0, 1, ..., 4 and the columns are numbered 0,1,2. We can extract the
upper left element using .iloc:

In [18]: 1littledf.iloc[0,0]
Out[18]: 'cs1@5"'

We extract the element in row 3, column 2 as:
In [19]: 1littledf.iloc[3,2]

Out[19]: 'MEDIA'

Another way is to extract the column (using the name) first, and then select the index of the entry in the column
you want.

In [20]: littledf['college'][3]

Out[20]: 'MEDIA'

In [21]: littledf['college']

Out[21]: o ENGR
1 LAS
2 LAS
3 MEDIA
4 LAS

Name: college, dtype: object

6b. Selecting a subset of dataframe entries (using a range of row indices and/or
columns).

We can extract a slice of more than one element using the sequence notation i:j:k to refer to indices running from
i to j-k using step-size k. If we leave out the step it is assumed k=1. If we leave out the range elements the
sequence covers the whole range.

Here's an example where we can extract the middle three rows of the data frame. Note that "1:4" results in the
inclusion of rows 1, 2 and 3 but not 4!



In [22]: 1littledf.iloc[1:4,:]

Out[22]:
course enrolled college
1 stat107 197 LAS
2 stat207 53 LAS
3 adv307 38 MEDIA

If we wanted to include rows 0-3 we can use the sequence ":4", which includes all rows before the row with
index=4.

In [23]: 1littledf.iloc[:4,:]

Out[23]:
course enrolled college
0 cs105 345 ENGR
1 stat107 197 LAS
2 stat207 53 LAS
3 adv307 38 MEDIA

If, on the other hand, we wished to include all rows after rows 0 and 1 the sequence "2:" will do this.

In [24]: littledf.iloc[2:,:]

Out[24]:
course enrolled college
2 stat207 53 LAS
3 adv307 38 MEDIA
4 hist407 26 LAS

6¢c. Selecting a subset of dataframe entries (using a list of row and/or column
entries that we want).

We can also specify lists of row and/or column indicies that we want to select.

In [25]: littledf.iloc[[1,2,4],:]

Out[25]:
course enrolled college
1 stat107 197 LAS
2 stat207 53 LAS
4 hist407 26 LAS

In [26]: littledf

Out[26]:
course enrolled college
0 cs105 345 ENGR
1 stat107 197 LAS
2 stat207 53 LAS
3 adv307 38 MEDIA
4 hist407 26 LAS



In [27]: 1littledf.iloc[:,[0,2]]

Oout[27]:
course college

0 cs105 ENGR
1 stat107 LAS
stat207 LAS

adv307 MEDIA

A WO DN

hist407 LAS

In [28]: littledf.iloc[[9,3],[2]]

Out[28]:
college

0 ENGR
3 MEDIA

7. How to filter rows of a dataframe based on column entry
conditions?

In the first line of code, below (6¢), we selected only the rows in the dataframe that corresponded to LAS
courses. How can select just these rows without tediously having to look up the row indices that correspond to
the rows that we want (ie. row 0, 2, and 4).?

In [29]: #Remember what this 1is

littledf
Out[29]:

course enrolled college
0 cs105 345 ENGR
1 stat107 197 LAS
2 stat207 53 LAS
3 adv307 38 MEDIA
4 hist407 26 LAS

In [3@]:  #Remember what this does
littledf['college']

Out[30]: o ENGR
1 LAS
2 LAS
3 MEDIA
4 LAS

Name: college, dtype: object

7a. Creating a series that 'checks' whether a given condition is true.
First, observe how we can check each course for whether or not it is an LAS course with an array operation:
In [31]: #This 1is a condition that we check on the entries of the college column in Lit

tle df. Is the entry = 'LAS'?
littledf['college']=="LAS"'

Out[31]: o False
1 True
2 True
3 False
4 True

Name: college, dtype: bool



In [32]: type(littledf['college']=="LAS")

Out[32]: pandas.core.series.Series

7b. Filtering rows in a dataframe based on a column condition.
dataframe_name[column entry condition]

The data frame can take this boolean series. as a condition for selecting rows:

In [33]: littledf[littledf['college']=="LAS']

Out[33]:
course enrolled college
1 stat107 197 LAS
2 stat207 53 LAS
4 hist407 26 LAS

7c. Combining row filtering (based on a condition) AND THEN selecting a column
from the filtered dataframe.

What if we only want the enrollments of the LAS courses?

One way.... do these steps one at a time...

In [34]: smallerdf=littledf[littledf['college’]=="LAS"]

smallerdf
Out[34]:
course enrolled college
1 stat107 197 LAS
2 stat207 53 LAS
4 hist407 26 LAS

In [35]: smallerdf['enrolled']

Out[35]: 1 197
2 53
4 26
Name: enrolled, dtype: int64

Or... do it all at once...

In [36]: littledf[littledf['college']=="LAS']['enrolled']

out[36]: 1 197
2 53
4 26
Name: enrolled, dtype: int64



Why does this work? Extracting the three row data frame for LAS courses only gives us a shorter three-column
data frame. We can refer to the 'enrolled’ column of this short data frame in the same way as for the taller
original.

7d. Selecting a column from the original dataframe AND THEN row filtering
(based on a condition).

By similar logic, we could have gotten to the same result by a different path as follows.

In [37]: enrolled_column=littledf['enrolled’]
enrolled_column

Out[37]: o 345
1 197
2 53
3 38
4 26

Name: enrolled, dtype: int64

In [38]: enrolled_column[littledf['college']=="LAS"]

out[38]: 1 197
2 53
4 26
Name: enrolled, dtype: int64

Another way... do it all at once...

In [39]: littledf['enrolled'][littledf['college’']=="LAS"']

Out[39]: 1 197
2 53
4 26
Name: enrolled, dtype: int64

7e. Syntax for setting up conditions.

Notice that when we wanted to test if an entry in the 'college’ column was equal to a 'LAS', we used '==' rather
than '=". Here is the distinction between the two:

» Generally, we use '==" when we are setting up a condition in Python.
« We use '="' when we are defining a variable or parameter in Python.

Here are some other operators we would use to set up other types of conditions.

+ equal to: ==

» greater than or equal to: >=
» less than or equal to: <=

» greater: >

e less than: <

How about a different type of condition, like extracting all the courses with enroliments of at least 507

In [40]: littledf[littledf['enrolled’']>=50]

Out[40]:
course enrolled college
0 cs105 345 ENGR
1 stat107 197 LAS

2 stat207 53 LAS



Or extracting the courses with enroliments less than 507

In [41]: littledf[littledf['enrolled']<50]

Out[41]:
course enrolled college
3 adv307 38 MEDIA
4 hist407 26 LAS

We can extract the record corresponding to a particular course:

In [42]: 1littledf[littledf['course']=="adv307']

Out[42]:
course enrolled college

3 adv307 38 MEDIA

8. How to summarize (or aggregate) columns of dataframes?

In [43]: 1littledf

Out[43]:
course enrolled college
0 cs105 345 ENGR
1 stat107 197 LAS
2 stat207 53 LAS
3 adv307 38 MEDIA
4 hist407 26 LAS

8a. Aggregating a Column

Suppose, first, we want the total enroliment in all classes in our dataframe. Below is one way to get it, using the
.sum() function.

In [44]: 1littledf['enrolled'].sum()

Out[44]: 659

There are many other column aggregation functions like the following:

e _min()
e .max()

(we'll learn more function in a later unit).

In [45]: 1littledf['enrolled'].max()

Out[45]: 345

In [46]: 1littledf['enrolled’'].min()

out[46]: 26



8b. Aggregating a filtered dataframe.

Now suppose we want to find the total enroliment of JUST LAS classes. We can do this all at once in the
following order:

1. First create a dataframe that is just filtered for 'LAS' classes.
2. Then extract just the 'enrolled' column from this filtered dataframe.
3. Then take the sum of this column you extracted.

In [47]: print('Total LAS Enrollment')
littledf[littledf['college’']=="LAS'][ 'enrolled'].sum()

Total LAS Enrollment

out[47]: 276

In [48]:  #1. WHAT WE DID, STEP-BY-STEP: Just the filtered dataframe below
littledf[littledf['college']=="LAS"]

Out[48]:
course enrolled college
1 stat107 197 LAS
2 stat207 53 LAS
4 hist407 26 LAS

In [49]: #2. WHAT WE DID, STEP-BY-STEP: Just the enrolled column from the filtered data
frame shown directly above.
littledf[littledf['college’']=="LAS']['enrolled"]

Out[49]: 1 197
2 53
4 26
Name: enrolled, dtype: int64

In [50]:  #3. WHAT WE DID, STEP-BY-STEP: The sum of the the enrolled column shown direct
Ly above.
littledf[littledf['college’']=="LAS"'][ 'enrolled"'].sum()

out[50]: 276

8c. Using the value that you found from an aggregated dataframe in a
condition.

Suppose now we wanted to extract the row from littledf that has the maximum enrollment. We can first find this

largest enroliment size.

In [51]: print("Maximum Enrollment™)
littledf['enrolled'].max()

Maximum Enrollment

Oout[51]: 345
We can use this number directly, in a condition that we filter littledf on....
In [52]: littledf[littledf['enrolled']==345]

Out[52]:
course enrolled college

0 cs105 345 ENGR



But, because littledf['enrolled'].max()=345, we can use this 'littledf{'enrolled].max()' value directly in the condition
and get the same result. Doing it this way is more efficient from a coding perspective.

In [53]: littledf[littledf['enrolled']==1ittledf[ " 'enrolled’'].max()]

Out[53]:
course enrolled college

0 cs105 345 ENGR

9. How to concatenate (ie. “stack”) two dataframes on top of
eachother?

In [54]: littledf

Out[54]:
course enrolled college
0 cs105 345 ENGR
1 stat107 197 LAS
2 stat207 53 LAS
3 adv307 38 MEDIA
4 hist407 26 LAS

Suppose we had more enrollment data to add to the data frame, for additional courses. We can use the pandas
concat() funtion to combine the original data frame with a new data frame containing the additional records.
Here we create a new data frame with the hypothetical new data.

In [55]:  #Creating a second dataframe that contains two more courses.
moredf = pd.DataFrame({'course': ['math277', 'is417'],
'enrolled': [41, 43],
'college': ['LAS', 'IS']})

moredf
Out[55]:
course enrolled college
0 math277 41 LAS
1 is417 43 IS

Here are the original data frame and the data we wish to add:

In [56]: display(littledf, moredf)

course enrolled college

0 cs105 345 ENGR
1 stat107 197 LAS
2 stat207 53 LAS
3 adv307 38 MEDIA
4 hist407 26 LAS

course enrolled college

0 math277 41 LAS

1 is417 43 IS



9a. Vertically stacking two dataframes (reseting the index of the new
dataframe).

Next we combine them, and specify to ignore the original index values and create a new index for the combined
data.

In [57]: fulldf = pd.concat([littledf, moredf], ignore_index=True)

fulldf
Out[57]:

course enrolled college
0 cs105 345 ENGR
1 stat107 197 LAS
2 stat207 53 LAS
3  adv307 38 MEDIA
4  hist407 26 LAS
5 math277 41 LAS
6 is417 43 IS

9b. Vertically stacking two dataframes (NOT reseting the index of the new
dataframe).

In [58]: pd.concat([littledf, moredf])

Out[58]:

course enrolled college
0 cs105 345 ENGR
1 stat107 197 LAS
2 stat207 53 LAS
3  adv307 38 MEDIA
4  hist407 26 LAS
0 math277 41 LAS
1 is417 43 IS

9c. A quick way to add new rows to a dataframe.

A quick way to add new records is using the append() function.

In [59]: fulldf

Out[59]:

course enrolled college
0 cs105 345 ENGR
1 stat107 197 LAS
2 stat207 53 LAS
3 adv307 38 MEDIA
4  hist407 26 LAS
5 math277 41 LAS
6 is417 43 IS



In [60]: newdf = pd.DataFrame({'course’': ['badm21@'],
"enrolled': [215],
"college': ['BUSN']})
newdf

Out[60]:
course enrolled college

0 badm210 215 BUSN

In [61]: updateddf = fulldf.append(newdf, ignore_index=True)

updateddf
Out[61]:

course enrolled college
0 cs105 345 ENGR
1 stat107 197 LAS
2 stat207 53 LAS
3 adv307 38 MEDIA
4 hist407 26 LAS
5 math277 41 LAS
6 is417 43 IS
7 badm210 215 BUSN

10. How to merge (ie. “join”) two dataframes

Another common scenario is to have more than one source of data on different variables, and we wish to
combine data sets for further analysis. As an example, suppose in the previous course list example we had
another source with the credit hours for each class. We'd like to add this information.

In [62]: updateddf

out[62]:

course enrolled college
0 cs105 345 ENGR
1 stat107 197 LAS
2 stat207 53 LAS
3 adv307 38 MEDIA
4 hist407 26 LAS
5 math277 41 LAS
6 is417 43 IS
7 badm210 215 BUSN



In [63]:

Out[63]:

creditdf = pd.DataFrame({'course': ['adv3@7', 'csl@5', 'statle7', 'stat207',
'hist407', 'math277', 'is417', 'badm210'],
‘credit': [3.0, 3.0, 4.0, 3.0, 4.0, 5.0, 3.0, 3.0]})
creditdf

course credit

0 adv307 3.0

1 cs105 3.0

stat107 4.0
stat207 3.0
hist407 4.0

math277 5.0

is417 3.0

N 6o g b~ 0N

badm210 3.0

In this case, we can do a one-to-one join between the two data frames using the pandas merge() function.
Notice that the order of the courses does not need to be the same; the records are matched based on the shared

course name.

In [64]:

out[64]:

fullerdf = pd.merge(updateddf, creditdf)
fullerdf

course enrolled college credit

0 cs105 345 ENGR 3.0
1 stat107 197 LAS 4.0
2 stat207 53 LAS 3.0
3 adv307 38 MEDIA 3.0
4 hist407 26 LAS 4.0
5 math277 41 LAS 5.0
6 is417 43 IS 3.0
7 badm210 215 BUSN 3.0

Often the two data sources will not be in one-to-one correspondence between their records. Then we might need
to perform and "many-to-one" merge.

Example: In one data source we have courses and section enrollments. In the other data source we have
courses and credit hours. Let's combine them. First we'll create a data frame with the section information.

In [65]:

Out[65]:

courses = ['csl1l@5', 'cs105', 'statle7', 'badm21@’', 'badm210']
sections = ['A"', 'B', 'A', 'A', 'B']
enrollments = [345, 201, 197, 215, 197]
sectdf = pd.DataFrame({'course’': courses,
'section': sections,
"enrolled’': enrollments})
sectdf

course section enrolled

0 cs105 A 345
1 cs105 B 201
2 stat107 A 197
3 badm210 A 215
4 badm210 B 197



We'd like to merge this with the credit information:

In [66]: creditdf

Out[66]:
course credit

0 adv307 3.0
1 cs105 3.0
stat107 4.0

stat207 3.0

math277 5.0

2

3

4 hist407 4.0
5

6 is417 3.0
7

badm210 3.0

We can try a "default" merge and see what we get:

In [67]: pd.merge(sectdf, creditdf)

out[67]:
course section enrolled credit
0 cs105 A 345 3.0
1 cs105 B 201 3.0
2 stat107 A 197 4.0
3 badm210 A 215 3.0
4 badm210 B 197 3.0

Did it work? Yes, in the sense that all course sections in the first data frame have now been assigned credit
hours. Any course that appears in both data sources gets matched. The courses missing from one or the other
we not included.

In some cases we need to specify which variable to use as the matching key using the on= option:

In [68]: pd.merge(sectdf, creditdf, on='course')

out[68]:
course section enrolled credit
0 cs105 A 345 3.0
1 cs105 B 201 3.0
2 stat107 A 197 4.0
3 badm210 A 215 3.0
4 badm210 B 197 3.0

11. How to sort a dataframe by a specified column?

In the examples we've been considering, the course names are in no particular order. What if we want the
courses to be in alphanumeric order? pandas has a function for that: .sort_values. For the syntax see:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sort_values.html
(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sort_values.html)

To select a specific column on which to sort we use the by= option as in the following example:



In [69]: creditdf

Out[69]:
course credit

0 adv307 3.0
1 cs105 3.0

stat107 4.0
stat207 3.0
hist407 4.0

math277 5.0

is417 3.0

N~ o a A~ W N

badm210 3.0

11a. Sort by by descending order

In [70]: creditdf.sort_values(by='course")

Out[70]:
course credit

0 adv307 3.0

~

badm210 3.0
1 cs105 3.0
4 hist407 4.0
6 is417 3.0
5 math277 5.0
2 stat107 4.0

3 stat207 3.0

Notice how this did not permanently sort the creditdf dataframe.

In [71]: creditdf

Out[71]:
course credit

0 adv307 3.0

1 cs105 3.0

stat107 4.0
stat207 3.0
hist407 4.0

math277 5.0

is417 3.0

N~ o a A~ W N

badm210 3.0



Remarks:

1. We can specify more than one variable for sorting, and we can also select various other options such as
"ascending=False" (default is "ascending=True"), where to put NaNs in the ordering ("na_position='last’),
and whether to sort in-place (overwriting the original object).

1. This operation did not replace the original data with sorted data, it merely displayed the sorted data. If we

wanted to save this we assign to a new pandas object, or we can sort "in place" as illustrated below.

11b. How to sort the dataframe (and have it remain sorted).

Here we see the effect of in-place sorting.
One way to do this...

In [72]: creditdf.sort_values(by='course', inplace=True) # sorting in place and replac
ing original
In [73]: creditdf # now the original is in sorted order

Out[73]:
course credit

0 adv307 3.0
7 badm210 3.0
1 cs105 3.0
4 hist407 4.0
6 is417 3.0
5 math277 5.0
2 stat107 4.0

3 stat207 3.0

Another way to do this... (overwrite the dataframe with the changed dataframe.
In [74]: creditdf=creditdf.sort _values(by="course')
creditdf

Out[74]:
course credit

0 adv307 3.0
7 badm210 3.0
1 cs105 3.0
4 hist407 4.0
6 is417 3.0
5 math277 5.0
2 stat107 4.0

3 stat207 3.0

11c. Sort by ascending order

As a different application, here we sort class sections by enroliment, from lowest to highest.



In [75]: sectdf.sort_values(by='enrolled', ascending=True)

Out[75]:
course section enrolled
2 stat107 A 197
4 badm210 B 197
1 cs105 B 201
3 badm210 A 215
0 cs105 A 345

12. How can we overwrite a single entry in a dataframe?

Let's pretend that we are now unsure about the enrollment of section B of badm210. We could overwrite the
enroliment entry below by replacing 197 with the string 'unknown.' However, we see below that by adding a
string to a column comprised of numbers, this gives us an error when we try to apply a function (like .sum()) that
only applies to numbers.

In [76]: tmp = sectdf.copy() # copy of data frame

tmp
out[76]:

course section enrolled
0 cs105 A 345
1 cs105 B 201
2 stat107 A 197
3 badm210 A 215
4 badm210 B 197

In [77]: tmp['enrolled'][4] # Access the enrollment for badm216 section B

out[77]: 197

In [78]: tmp.iloc[4,2] # another way to access

out[78]: 197

In [79]: tmp.iloc[4,2] = 'unknown' # coding this element as something else
tmp
Out[79]:
course section enrolled
0 cs105 A 345
1 cs105 B 201
2 stat107 A 197
3 badm210 A 215
4 badm210 B unknown



In [80]:

In [81]:

out[81]:

tmp[ ‘enrolled"'].sum()

TypeError Traceback (most recent call last)
<ipython-input-80-25fb9c9d6193> in <module>
----> 1 tmp['enrolled’].sum()

~\Miniconda3\lib\site-packages\pandas\core\generic.py in stat_func(self, axi
s, skipna, level, numeric_only, min_count, **kwargs)

11408 name, axis=axis, level=level, skipna=skipna, min_coun
t=min_count

11409 )
> 11410 return self._reduce(

11411 func,

11412 name=name,

~\Miniconda3\1lib\site-packages\pandas\core\series.py in _reduce(self, op, nam
e, axis, skipna, numeric_only, filter_type, **kwds)

4234 )
4235 with np.errstate(all="ignore"):
-> 4236 return op(delegate, skipna=skipna, **kwds)
4237
4238 def _reindex_indexer(self, new_index, indexer, copy):

~\Miniconda3\lib\site-packages\pandas\core\nanops.py in _f(*args, **kwargs)

69 try:

70 with np.errstate(invalid="ignore"):
---> 71 return f(*args, **kwargs)

72 except ValueError as e:

73 # we want to transform an object array

~\Miniconda3\1lib\site-packages\pandas\core\nanops.py in nansum(values, axis,
skipna, min_count, mask)

507 elif is_timedelta64_dtype(dtype):

508 dtype_sum = np.float64
--> 509 the_sum = values.sum(axis, dtype=dtype_sum)

510 the_sum = _maybe_null_out(the_sum, axis, mask, values.shape, min_
count=min_count)

511

~\Miniconda3\1lib\site-packages\numpy\core\_methods.py in _sum(a, axis, dtype,
out, keepdims, initial, where)
45 def _sum(a, axis=None, dtype=None, out=None, keepdims=False,

46 initial=_NoValue, where=True):
--=> 47 return umr_sum(a, axis, dtype, out, keepdims, initial, where)
48

49 def _prod(a, axis=None, dtype=None, out=None, keepdims=False,

' [

TypeError: unsupported operand type(s) for +: 'int' and 'str

13. What is a NaN object?

So what is a better way to indicate to Python that we do not know the enroliment for section B of badm210 that
will not give us errors? Let's overwrite the enrollment for this class using another type of filler for unknown or
missing values..

tmp = sectdf.copy() # copy of data frame

tmp

course section enrolled
0 cs105 A 345
1 cs105 B 201
2  stat107 A 197
3 badm210 A 215
4 badm210 B 197



In [82]: tmp.iloc[4,2] = None # coding this element as NaN

tmp
out[82]:

course section enrolled
0 cs105 A 345.0
1 cs105 B 201.0
2 stat107 A 197.0
3 badm210 A 215.0
4 badm210 B NaN

In [83]: tmp.iloc[4,2]

Out[83]: nan

Missing data are very common in real data applications. How can we handle them at a basic level? To illustrate,
consider the hypothetical section enrollment data. We'll make one element go missing.

We see that the missing value is encoded as NaN (not a number).

What if we wanted to sort by enroliment? We need to specify whether missing values go first or last on the list.

In [84]: tmp.sort_values(by='enrolled', na_position="first")

Out[84]:
course section enrolled
4 badm210 B NaN
2 stat107 A 197.0
1 cs105 B 201.0
3 badm210 A 215.0
0 cs105 A 345.0

By default, many functions will skip data with missing values. Often this makes sense, but not always!

Now when we try to take the same summation of the enrollment, the NaN value tells us enrolled column to skip
this value and just sum the remaining values.

In [85]: tmp['enrolled'].sum()

out[85]: 958.0

14. How do we find missing values in a dataframe (basic)?

The 'DataFrame.isna’ function can scan a data frame for missing values. 'DataFrame.notna' scans for non-
missing values.



In [86]: tmp.isna()

Out[86]:
course section enrolled
0 False False False
1 False False False
2 False False False
3 False False False
4 False False True

We can take the sum of each column above. When we sum a column of boolean values, Python automatically
translates a True to a 1 and a False to a 0.

Therefore, the .sum() function counted 1 True (ie. a missing value) in the enrolled column and O Trues (ie.
missing values) in the other columns.

In [87]: tmp.isna().sum()

Out[87]: course 7]
section 7]
enrolled 1
dtype: int64

15. How do we drop all rows with missing values from a
dataframe?

If we want to analyze only the data with complete information the 'DataFrame.dropna’ function can extract the
complete data for us.

In [88]: tmp.dropna()

Out[88]:
course section enrolled
0 cs105 A 345.0
1 cs105 B 201.0
2 stat107 A 197.0
3 badm210 A 215.0

Case Study: Melanoma Mortality Rate Dataset

Use the skills that we have learned so far to answer:

Is there an association between states in the U.S. and melanoma
mortality rate?

Read the melanoma csv into a dataframe df

In [89]: df=pd.read_csv('USmelanoma.csv')



In [90]: df.head()

Out[90]:
state mortality latitude longitude ocean
0 Alabama 219 33.0 -87.0 1
1 Arizona 160 34.5 -112.0 0
2 Arkansas 170 35.0 -92.5 0
3 California 182 37.5 -119.5 1
4 Colorado 149 39.0 -105.5 0

Let's first plot mortality rates across different states, in alphabetical order.
In [91]: dimport matplotlib.pyplot as plt

In [92]: df.plot.bar(x="state', y="mortality')

plt.show()
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It will be easier to interpret and compare if we sort by mortality rates.

In [93]: dfsorted = df.sort_values(by='mortality', ascending=False)
dfsorted.head()

Out[93]:
state mortality latitude longitude ocean
41 Texas 229 31.5 -98.0 1
0  Alabama 219 33.0 -87.0 1
9 Georgia 214 33.0 -83.5 1
22 Mississippi 207 32.8 -90.0 1

6 Delaware 200 39.0 -75.5 1



="mortality')

‘state’, y

dfsorted.plot.bar(x

plt.show()

In [94]:
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Is there an association between states in the U.S. and melanoma
mortality rate?

Further analysis: What additional insights can you describe about
the relationship between states and melanoma mortality rate?

If you worked for a US health organization, how might these
insights be useful?

STAT 207, Victoria Ellison and Douglas Simpson, University of lllinois at Urbana-Champaign
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