Unit 4: Descriptive Analytics for Numerical
Variables

Case Study: Fake and Real Instagram Accounts

» We will use descriptive analytics to compare the distributions of the number of posts made by fake and real
Instagram accounts. ¢ Is there an association between the number of posts made by fake and real Instagram
accounts in this dataset?

Information: Missing Values, Quantitative Variables and
Distributions

In this section we first consider how to clean missing values for preliminary analysis. Then we study a number of

ways to summarize and visualize quantitative information in the data. Key ideas are:

» Missing value codes non-standard missing value types in an external file can be specified as an option in
the pandas read_csv function. Checking for missing values is important, both because of they can casue
errors in computing, and because they can influence interpretation of results.

» Quantitative/numerical data - variables that contain specific numerical information for each indvidual
observation. In a pandas dta frame we expect an entire column to be either quantitative (numerical),
qualitative (categories, several possible text values, similar to "multiple choice" answers) or logical (special
type of categories: True or False).

» Histograms and density plots are useful for capturing the distribution of the data, showing modes, relative

frequencies and other features of the data in one graph.

« Summary statistics such as quantiles of the data, mean, median, mode, etc capture certain features that

are often of interest in their own right or for comparison across levels of another variable.

« Box plots and violin plots provide quick views of key percentiles of a sample distributionm and are
especially useful for comparing distributions of quantitative variables by levels of another categorical
variable.

» Packages: pandas, numpy, matplotlib.pyplot, seaborn

» Skills: define our own functions to perform common tasks

Imports

In the previous sections, we saw how to import Python packages that we need, and how to read an external data
file into a python data frame. We also looked at some methods to get a sense of what type of information is in the

data, and did simple frequency summaries and crosstabs for categorical variables in the data.

In this section we consider quantitative (ie. numerical) variables and consider some methods for investigating the

distributions of the variables as well as relations between them. before!**

In [1]: dimport pandas as pd # 'pd' 1s our nickname for 'pandas'
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

1. Missing Data Checking: How do we check for missing data
observations that have not yet been “detected” and “coded” as

NaN yet?

We consider the Instagram dataset again, and reimport them to make this section's notebook self contained.

However, now this dataset is contained in a new csv file: fake_insta_updated.csv'.

Be careful! This new csv may have more realistic "issues” with it than the "clean" fake_insta.csv file we

were using!

First let's read the csv into a dataframe like we would normally.

In [2]: #Read into a dataframe

df = pd.read_csv('fake_insta_updated.csv')

has_a_profile_pic number_of_words_in_name num_characters_in_bio

number_of _posts numb

df.head()

Oout[2]:
0 yes
1 yes
2 yes
3 yes
4 yes

Let's check the shape of the dataframe.

In [3]: df.shape

out[3]: (120, 7)

1

5
2

30
64
82
143

76

35
3
319
273

Again, we see that this dataset has 120 rows (ie. Instagram accounts) as the previous dataset from Unit 2 did.

How many "missing values" are our pandas function able to detect?

Note there may still be some missing values in the data that pandas function are not currently able to detect yet?

In [4]: df.isna().sum()

Out[4]: has_a_profile_pic
number_of_words_in_name
num_characters_in_bio
number_of_posts
number_of_followers
number_of_follows
account_type
dtype: inté64

Currently we are detecing no missing values in any of the columns.

OO OO0

Now's let's investigate the types of data contained in each column of the
dataframe df.

We can use the .dtype attribute to return this information.

In [5]: df.dtypes

Out[5]: has_a_profile_pic object
number_of_words_in_name int64
num_characters_in_bio inte4
number_of_posts int64
number_of_followers inte4
number_of_follows object
account_type object

dtype: object

What's unusual about this?

The number of follows that an instagram account has should be an integer. We can see that the other numerical
variables in this dataframe (ie. number_of_words_in_name, num_characters_in_bio, number_of posts,
number_of_followers) are comprised of "int64" (ie. integer) observations.

So why is 'number_of_follows' not listed as containing only integers?

Let's investigate every unique value of this column specifically.

We can use the .unique() function to do this.

In [6]: df['number_of follows'].unique()

out[6]: array(['604', '6', '668', '7369', '356', '424', '254', '521', '143',
'358', '492', '436', '437', '622', '141', '337', '499', '6@5',
'199', '694', '276', "Don't know/Refused (VOL.)", '367', '157°',
'545', '138', '1395', '49e', '347', '5514', '552', '573', '963"',
'449', '562', '346', '151', '148', '3504', '185', '293', '549°',
'466', '993', '1111', '4@', '1055', '482', '47', '274', '223',
'363', '568', '535', '577', '474', '5e5', '2', '64', '30', '82',
'124', '25', '33', '34', '38', '18', '1', '15', '22', '353', '24',
'2287', '6153', '31', '25@', '6172', '2129', '324', '126', '350',
'764', '3239', '920', '105', '58', '55', '175', '202', '636', '72',
'7453', '162', '829', '776', '942', '1445', '4239', '1381', '669',
'235', '7', '270', '76', 's811', '164', '3572', '1695', '68'],

dtype=object)

So what went wrong here?

Oops, there are two problems here!

1. There is a type of missing value: the text entries, "Don't know/Refused (VOL.)". Our numerical functions
might choke on this;
2. Because of the text entries, the entire column was read as character data rather than numerical data.

Re-read the Dataframe and Indicate that "Don’'t know/Refused (VOL.)" should be
Converted to a NaN.

We can "clean" the data by adding "Don't know/Refused (VOL.)" to the list of missing values and re-read the
data. Here is the Python code and the results:

In [7]: #List of missing values that you know should be represented as NaN when the da
taframe is re-read.
missing values = ["Don't know/Refused (VOL.)"]

#Read the dataframe again, using an additional parameter.
df = pd.read_csv('fake_insta_updated.csv', na_values=missing values)

df.head()

number_of_words_in_name num_characters_in_bio number_of_posts

numb

Out[7]:
has_a_profile_pic
0 yes
1 yes
2 yes
3 yes
4 yes

1

5
2

30
64
82

143
76

Let's check out the unique values for number_of_follows again.

In [8]: df['number_of follows'].unique()

Out[8]: array([6.040e+02,
.540e+02,
.370e+02,
.990e+02,
.450e+02,
.520e+02,
.510e+02,
.660e+02,
.700e+01,
.770e+02,
.200e+01,
.800e+01,
.287e+03,
.240e+02,
.050e+02,
.200e+01,
.445e+03,
.700e+02,
.800e+01])

AONERPRNRPRWNERPROUPMPMMNRPRPUVVUEMADN

6.000e+00,
5.210e+02,
6.220e+02,
6.940e+02,
1.380e+02,
5.730e+02,
1.480e+02,
9.930e+02,
2.740e+02,
4,
1
1
6
1
5
7
4
7

740e+02,

.240e+02,
.000e+00,
.153e+03,
.260e+02,
.800e+01,
.453e+03,
.239e+03,
.600e+01,

ORrFRPUVITWWERNUNMRPWORNRERO

.680e+02,
.430e+02,
.410e+02,
.760e+02,
.395e+03,
.630e+02,
.504e+03,
.111e+03,
.230e+02,
.050e+02,
.500e+01,
.500e+01,
.100e+01,
.500e+02,
.500e+01,
.620e+02,
.381e+03,
.110e+02,

w w

R OOOR NNNMWNWRAERAND

.369e+03,
.580e+02,
.370e+02,

nan,

.900e+02,
.490e+02,
.850e+02,
.000e+01,
.630e+02,
.000e+00,
.300e+01,
.200e+01,
.500e+02,
.640e+02,
.750e+02,
.290e+02,
.690e+02,
.640e+02,

W INNDNMNWOWWOUIERE NV WWADPMW

.560e+02,
.920e+02,
.990e+02,
.670e+02,
.470e+02,
.620e+02,
.930e+02,
.055e+03,
.680e+02,
.400e+01,
.400e+01,
.530e+02,
.172e+03,
.239e+03,
.020e+02,
.760e+02,
.350e+02,
.572e+03,

R NVOOOUNNMNMNWWUOURMNUUWUOUEROODND

35
3
319
273

.240e+02,
.360e+02,
.050e+02,
.570e+02,
.514e+03,
.460e+02,
.490e+02,
.820e+02,
.350e+02,
.000e+01,
.800e+01,
.400e+01,
.129e+03,
.200e+02,
.360e+02,
.420e+02,
.000e+00,
.695e+03,

The missing value is now properly coded for our purposes, and, importantly, 'age’ is now a numerical variable
rather than a text variable (numbers like 6.04e+02 (aka 6.04 x 10 = 604), ... not character strings like '604',

)

How many NaN values are there now?

In [9]: df.isna().sum()

Out[9]: has_a_profile_pic

number_of_words_in_name
num_characters_in_bio

number_of_posts

number_of_followers

number_of_follows
account_type
dtype: int64

ONOOOOO®O

We now see that there were 2 missing values in the number_of_follows column.

Drop missing values.

In order to ensure that all of our functions will run appropriately, let's drop all of the rows that have missing values
from the dataframe df.

In [10]: df=df.dropna()

df.head()
out[1@0]:
has_a_profile_pic number_of_words_in_name num_characters_in_bio number_of posts numb
0 yes 1 30 35
1 yes 5 64 3
2 yes 2 82 319
3 yes 1 143 273
4 yes 1 76 6

Notice how df has 2 fewer rows than it did before.

In [11]: df.shape

Out[11]: (118, 7)

2. Visualizations for a Single Numerical Variable: What are three
plots that we can use to visualize the distribution of a single
numerical variable?

1. Histograms
2. Boxplots
3. Violin plots

3.Histograms: Types of histograms

3.1 Frequency Histogram

Let's plot a frequency histogram for number_of_follows using the matpotlib.pyplot hist() function.

In [12]: # pandas function for histograms
df['number_of_follows'].hist()
plt.xlabel("Number of Follows")
plt.ylabel("Frequency")
plt.title('Instagram Accounts')
plt.show()

Instagram Accounts

&

Frequency
&

, HEl__ _

0 000 2000 3000 4000 5DOO @000 TOOO
Number of Follows

In this graph the number of follows range is divided into equal width bins, and the height of the bar is the number
of observations with number of follows values in each bin. The total area under this curve should be the total
sample size. We can see the data a minimum around 0 and a maximum of around 7500.

3.2 Density Histogram

Often we will want the density histogram instead. In this plot the area of each bar represents the proportion of
the sample in that bin. In the current version of matplotlib we specify the option density=True to get the density
histogram.

In [13]: # option for density histrgram where area under the curve = 1
df['number_of_follows'].hist(density=True)
plt.xlabel("Age (Years)")
plt.ylabel("Density")
plt.show()

Qo010
Quooos

= (0008

Density

Qo004

oonz2

e I __

L] 000 2000 3000 4000 5000 &0OOD TOOO
Age (Years)

The shape of the density histrogram looks the same as the frequency histogram, but it has been normalize to
make the total area under the histogram equal 1.

3.3 Density Histogram Fitted with a Density Curve

An alterative graph, using seaborn, includes both the density histogram and a smooth fitted density curve
using the seaborn distplot() function. The smooth density curve is another way to represent the distribution of
the data, smoothing out some of the random jaggedness due to binning the data in the density histogram.

In [14]: # using seaborn function for histograms and density curves
sns.distplot(df['number_of follows'])
plt.ylabel('Density')
plt.xlabel("Number of Follows")
plt.show()

C:\Users\vellison\Miniconda3\1lib\site-packages\seaborn\distributions.py:2557:
FutureWarning: “distplot™ is a deprecated function and will be removed in a f
uture version. Please adapt your code to use either “displot’ (a figure-level
function with similar flexibility) or “histplot™ (an axes-level function for
histograms).

warnings.warn(msg, FutureWarning)

RO016
R0014
ooz
C.0010

(0008

Density

(0006
(0004

(0002

(0000 - -
—2000 0 2000 4000 6000 8000

Number of Follows

What determines the vertical scale for the density histogram and the superimposed smooth density curve?
Each of these graphs represents the relative frequency (i.e. the proportion) of values in different age ranges as
the area under the curve for those ranges. So, the total area for the whole range must =1.

4.Using Frequency Histograms: How to estimate the proportion of
observations that are within a given range?

If we wanted the proportion of ages in the sample between 0 and 400, we would take either do one of the
following.

« Way 1: the sum of the areas of the histogram bars for that range (area = base width * height).

» Way 2: If you have a density curve, some approximation to the area underneath of the curve between 0 and
400. (Note if the density curve is not a good approximation for the histogram, these estimations may be very
different!)

In other words, we need the area between the vertical lines and under the curve
in the figure below.

In [15]: sns.distplot(df['number_of_follows'])
plt.ylabel('Density")
plt.xlabel("Number of Follows")
plt.vlines(x=[0,400], ymin=0, ymax=0.0018, color='green')
plt.show()

C:\Users\vellison\Miniconda3\lib\site-packages\seaborn\distributions.py:2557:
FutureWarning: “distplot”™ is a deprecated function and will be removed in a f
uture version. Please adapt your code to use either “displot”™ (a figure-level
function with similar flexibility) or “histplot™ (an axes-level function for
histograms).

warnings.warn(msg, FutureWarning)

00175
Q00130

00125

(00100

Density

000075

(00030

Qo023

(00000 - -
=200 o 2000 4000 G000 go0no0

Mumber of Follows

5. Describing_ a Single Numerical Variable Distribution: What are
four things we should always be ready to describe about the
distribution of a numerical variable?

1. Shape
» modality
o skew
2. Measure of Center (Summary Statistics)
* mean
» median
3. Measure of Spread (Summary Statistics)
» standard deviation
* IQR
» range
4. Any outliers?

Calculating Summary Statistics for Pandas Data Frames

From the histogram we can estimate that minimum number of follows in the sample is around 0. To verify the
actual minimum number of follws in the sample we compute it using the min function.

In [16]: print("Minimum Number of Follows =", df['number_of follows'].min())

Minimum Number of Follows = 1.0

It looks like we were close with our estimations, however the actual minimum is 1.

What are some other summary statistics we might want to compute? Here are a
few.

Slow way to do this...

In [17]: print("Median =", df['number_of_ follows'].median())
print("Mean = ", df['number_of_follows"'].mean())
print("Standard Deviation = ", df['number_of follows'].std())
print("First quartile (Q1) =", df['number_of follows'].quantile(g=90.25))
print("Third quartile (Q3) =", df['number_of_follows'].quantile(gq=0.75))
print("Maximum =", df['number_of_ follows'].max())

Median = 354.5

Mean = 783.8898305084746

Standard Deviation = 1420.1630867217857
First quartile (Ql) = 109.75

Third quartile (Q3) = 660.0

Maximum = 7453.0

Less slow way to do this...

That took a lot of typing. We can simplify this by copying the variable of interest into a pandas Series, say 'X'.

In [18]: #First define a variable x to be the number_of follows column in df.
x = df["'number_of_follows"']

#Then use 'x' instead in the code below. (write 'x' takes less time than writi
ng 'df['number_of follows']").

print("Median =", x.median())

print("Mean = ", x.mean())

print("Standard Deviation = ", x.std())

print("First quartile (Q1) =", x.quantile(g=0.25))

print("Third quartile (Q3) =", x.quantile(g=0.75))

print("Maximum =", x.max())

Median = 354.5

Mean = 783.8898305084746

Standard Deviation = 1420.1630867217857
First quartile (Ql) = 109.75

Third quartile (Q3) = 660.0

Maximum = 7453.0

Much faster way to do this...

We will learn how to create and execute our own functions in Python to speed up tedious coding exercises like
above.

6. Coding: Create a Function in Python

What if we wanted to compute these summary statistics for a bunch of variables, or for differnt data sets? Python
allows us to create our own functions to do general tasks. The benfit is we don't have to recode every time. Just
reuse the function. Let's make a function to compute the summary statistics listed above. The structure is as
follows.

def function_name (arguments):
statements
return value

In python, the indentation of the statements and return lines must be 4 characters. Jupyter notebooks do this
indenting automatically as you compose.

In our case, let's have our function put the summary statistics into a data frame for display purposes.

In [19]: def mysummary(series):
index = ['min', 'Q1', 'med', 'Q3"', 'max', 'mean', 'std']
value = [series.min(),
series.quantile(g=0.25),
series.median(),
series.quantile(g=0.75),
series.max(),
series.mean(),
series.std()]
return pd.DataFrame({'value': value}, index=index)

7. Coding: Using a Function that we have Created in Python

Now that we've defined it we can use it for any quantitative variable.

In [20]: mysummary(df['number_of follows'])

Out[20]:
value

min 1.000000
Q1 109.750000
med 354.500000
Q3 660.000000
max 7453.000000
mean 783.889831
std 1420.163087

Combining Things We've Learned

What if we wanted the summary statistics for number_of_follows for fake and real Instagram accounts
separately?

In [21]: print('Number of Follows Summary Statistics for Fake Accounts')
mysummary (df['number_of_follows'][df['account_type']=="fake'])
Number of Follows Summary Statistics for Fake Accounts
out[21]:
value
min 1.000000
Q1 33.000000
med 163.000000
Q3 784.750000
max 7453.000000
mean 853.933333
std 1607.370923
In [22]: print('Number of Follows Summary Statistics for Real Accounts')
mysummary (df["number_of_follows'][df['account_type']=="real'])
Number of Follows Summary Statistics for Real Accounts
Out[22]:
value
min 6.000000
Q1 276.000000
med 470.000000
Q3 576.000000
max 7369.000000
mean 711.431034
std 1206.264905

8. Subsetting a Dataframe with Indices that have names (not
numbers).

Extracting a subset of the results

What if we wanted to extract Q1 from the summary? Using the .loc function, we can refer directly to the rown
name in the data frame of results. This differs from the .iloc function, which refers to the row and column
number. Specifying .value causes python to show only the value of the object, suppressing the display of the
object type.

In [23]: results = mysummary(df['number of follows'][df['account type']=="fake'])
results.loc['Q3'].value
Out[23]: 784.75

The interquartile range is a measure of spread defined as Q3 - Q1, i.e. the difference between the 75th
percentile and the 25th percentile. In other words, it is the range of the middle half of the data. Let's compute it
from our summary.

In [24]:

print('IQR = ', results.loc['Q3'].value - results.loc['Ql'].value)

IQR = 751.75

9. Boxplots for Numerical variables

Several of these types of summary statistics can be visualized using the boxplot, which typically includes the
median, Q1, Q3 and thresholds for extreme values.

In [25]: sns.boxplot(df['number_of follows'])
plt.show()

C:\Users\vellison\Miniconda3\lib\site-packages\seaborn_decorators.py:36: Fut
urelWarning: Pass the following variable as a keyword arg: x. From version 0.1
2, the only valid positional argument will be “data’, and passing other argum
ents without an explicit keyword will result in an error or misinterpretatio
n.

warnings.warn(

0 1000 2000 3000 4000 BOOD 60OD FDOO
rnumber_of_follows

Features of the Boxplot
Features of the box plot:

« The central line shows the median = 50th percentile (splits the data in half)

» The central box goes from Q1 = 25th percentile to Q3 = 75th percentile

» The width of the box is the interquartile range (IQR) = Q3 - Q1

» The low and high bars ("whiskers") are by default 1.5 * IQR below Q1 and above Q3, meant to be thresholds
for flagging possible outliers

¢ If the minimum is above Q1 - 1.5 * IQR the whisker = the minimum

¢ [f the maximum is bleow Q3 + 1.5 * IQR the whisker = the maximum

10. Violin Plots for a Numerical Variable

In [26]: sns.violinplot(df['number_of follows'])
plt.show()

C:\Users\vellison\Miniconda3\lib\site-packages\seaborn_decorators.py:36: Fut
urelWarning: Pass the following variable as a keyword arg: x. From version 0.1
2, the only valid positional argument will be “data’, and passing other argum
ents without an explicit keyword will result in an error or misinterpretatio
n.

warnings.warn(

L 2000 4000 G000 BOOO
mumber_of follows

11. Categorical and Numerical Variable: How to visualize the
relationship between a numerical and categorical variable.

Using Boxplots and/or Violin plots - to Compare Numerical Distributions of Two
Categories

A single boxplot like this tells us where the major percentiles are, and possibly flag outlier observations, but is not
as informative as the density plot. However, boxplots can be very useful for comparing different subgroups.

For example, let's compare the number of follows distributions for fake vs. real accounts.

In [27]: # contents of the 'sample' column of the data:
df["account_type'].value_counts()

Out[27]: fake 60
real 58
Name: account_type, dtype: int64

In [28]: # seaborn's boxplot function.
Specify which data frame using the 'data=' argument.
sns.boxplot(x="account_type', y='number_of_follows', data=df)
plt.xlabel("Account Type")
plt.ylabel("Number of Follows")

plt.show()
¥ L]

7000

000 ¢
® ¢
& 5000
3
= 4000 ¢
& U H
2 aooo
5
Z 2000

L
1000 $ |
0
rzal fake

Account Type

The violin plot is an alternative to the boxplot that includes representations of the data density within each
group, in addition to an embedded box plot. Because it conveys more information, it has gained in popularity in
recent year versus the boxplot.

In [29]: sns.violinplot(x='account_type', y='number_of_follows', data=df)
plt.xlabel("Account Type")
plt.ylabel("Number of Follows")
plt.show()

Number of Follows

rzal fake
Account Type

How does this compare with your intuition? This is an example of how to visualize the relationship between a
quantitative variable (age) and a qualitative variable (phone type).

12. Putting_it all together: Is there an association between number
of posts and fake and real Instagram accounts in the dataset?

1. Compare the distribution of follows for real and fake accounts in this
dataset.

2. Is there a strong association between fake vs. real accounts and the number of
follows in this dataset?

STAT 207, Victoria Ellison and Douglas Simpson, University of lllinois at Urbana-Champaign

In []:

