Unit 6 Notebook: Creating Sampling Distributions -
Building Blocks for Inference -

Case Study 1: UIUC Course Enrollment Sampling Distribution of
Sample Means

» Create a sampling distribution of sample means of course enroliments. The samples should all be of size
n=10 and should be drawn with replacement from the artificial UIUC class population.

« Create a sampling distribution of sample means of course enroliments. The samples should all be of size
n=100 and should be drawn with replacement from the artificial UIUC class population.

» Create a sampling distribution of sample means of course enroliments. The samples should all be of size
n=400 and should be drawn with replacement from the artificial UIUC class population.

« What happens to the mean, spread, and shape of the sampling distribution of sample means as the
sizes of the samples (n) in the sampling distribution increases?

Case Study 2: Coin Flip Outcome Sampling Distribution of Sample
Proportions

« Create a sampling distribution of sample proportion of heads. The samples should all be of size n=10 and
should be drawn with replacement from the population of coin flip possibilities (ie. head or tail).

« Create a sampling distribution of proportion of heads. The samples should all be of size n=100 and should
be drawn with replacement from the population of coin flip possibilities (ie. head or tail)

« Create a sampling distribution of proportion of heads. The samples should all be of size n=400 and should
be drawn with replacement from the population of coin flip possibilities (ie. head or tail)

+ What happens to the mean, spread, and shape of the sampling distribution of sample proportion as
the sizes of the samples (n) in the sampling distribution increases?

Information

Flow control methods such as for loops allow us to automate repetitive operations. When running simulations
this allows us to repeatedly sample from data either to test out a sampling model or to construct resampling
based inferences such as the bootstrap, which will be discussed in later chapters.

We use Python functions constantly, and a valuable feature of Python and many programming languages is the
ability to build our own functions to perform frequent specialized tasks.

In this section we first introduce how for loops work, then develop a small function for Monte Carlo sampling from
a data frame. Then we use this to investigate the sample distributions of sample means and proportions for
random samples of varying sample sizes, when sampling with replacement.

Using Monte Carlo simulation we demonstrate the square root rule for the standard deviation of the mean and
the approximate normal distribution of the sample mean of a large sample. This latter approximation is consistent
with the Central Limit Theorem from probability theory.

1. Notation: Summary statistics for Population vs. Samples

See the Unit 6 slides (section 1).

2. Definition: Sampling Distribution

See the Unit 6 slides (section 2).

3. Type of Sampling Distribution: Sampling Distribution of Sample
Means - How to create one?

See the Unit 6 slides (section 3).

Optional Supplementary Information: The sample mean is common statistic used to summarize the central
tendancies of particular variables in the data. When the data are drawn from a larger population at random, the
sample mean provides an estimate of the mean for the whole population. In a sample survey the sample that we
get from the population is random, and woul be different if we were to repeat the sampling process. However, if
the sample is large enough then sample statistics will tend to be close to the correpsonding population
parameters, and the variation in the sample statistics is predictable.

Example: the proportion of voting age citizens who support a given policy in a population can be thought of as
the mean of all the 0/1 indicators for whether each citizen supports the policy. 1 means they support it; 0 means
they don't. The average of all these Os and 1s is the proportion supporting the policy. If we draw a random
sample from the population, the sample proportion is the sample mean of all the 0's and 1's selected for the
sample. How much variation is there in this sample proportion due to the random sampling? We investigate
questions like these through simulation. Later we will see that theory provides precise information about the
variation in the sample proportion.

Before specifically addressing the special case of the sample proportion, let's consider the case of sample
means for variables in data frames in general. We set up a Monte Carlo simulation scheme in which we
repeatedly draw random samples and see how the resulting sample means vary.

4. More about for loops

In order to do simulations we use Python's flow control to allow us to repeatedly draw samples. The for loop is
fundamental in many programming languages. Here's a simple version. Notice that for Python the colon (:) and
indentation are important. The indentation needs to be 4 characters wide! The notebook formats this
automatically.

4.1 For loops with a list

In [1]: for x in ["Fido", "Rex", "Mitzi", "Fluffy", "Mr. Lizard"]:
print("Here ", x, "I", sep="")

Here Fido!

Here Rex!

Here Mitzi!

Here Fluffy!
Here Mr. Lizard!

4.2 For loops with a range

Here's another example, with the same general principle that the for loop passes through all the values in the "in"
list.

In [2]: for i in range(5):
print("Hello Fidotron-R", i,

, welcome!", sep="")

Hello Fidotron-RO, welcome!
Hello Fidotron-R1l, welcome!
Hello Fidotron-R2, welcome!
Hello Fidotron-R3, welcome!
Hello Fidotron-R4, welcome!

The for loop allows us to do an operation repeatedly by stepping through a finite list. This is extremely useful for
performing computer simulations in which we repeatedly draw samples and study the the effects of random
variation on the statistics.

5. Case Study: Sampling Distribution of Sample Means - What
happened to the mean, standard deviation, and shape of the
sampling distribution of sample means as we increased the size of
the samples n?

5.1 Population and population mean

5.1.1 Creating the population

First let's create our artificial UIUC population again. In this case study we will be considering the population of
enrollments (ie. a population of numerical data).

In [3]: dimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

In [4]: # create a data frame for illustration and testing
courses = ['adv307', 'badm21@', 'badm210', 'badm210’,
'cs105', 'csl1e5', 'statle7', 'stat207']
sections = ['A", 'A', 'B', 'C', 'A', 'B', 'A', 'A"]
enrollments = [37, 215, 178, 197, 345, 201, 197, 53]
sectdf = pd.DataFrame({'course’': courses,
'section': sections,
"enrolled’': enrollments})

sectdf
Out[4]:

course section enrolled
0 adv307 A 37
1 badm210 A 215
2 badm210 B 178
3 badm210 C 197
4 cs105 A 345
5 cs105 B 201
6 stat107 A 197
7 stat207 A 53

5.1.2 What is the population mean enroliment?

+ The population mean is usually unknown, because the population is usually too large to collect.

e Thus, the population mean is usually a population parameter we are trying to make an inference, using a
sample drawn from this population.

» For now, we will assume we know the population mean so we can explore what happens to the sampling
distribution and how it related to the population mean.

In [5]: sectdf['enrolled'].mean()

Out[5]: 177.875
So we will say that y = 177.875.

5.1.3. What is the population standard deviation enroliment?

+ The population standard deviation is usually unknown, because the population is usually too large to collect.
» For now, we will assume we know the population standard deviation.

In [6]: sectdf['enrolled'].std()

Out[6]: 97.11177286287914
So we will say that o = 97.11.

5.1.4. What is the shape of the population distribution of enroliments?

In [7]: sectdf['enrolled'].hist(density=True)
plt.title('Population Distribution')
plt.xlabel('Class Enrollment Size')
plt.show()

Population Distribution
Qo6
Qo4
on12
Qo0
Q.0o0a

Qo0e

Q004

0.000
a0 100 150 200 250 00 30
Class Enrollment Size

5.2. Creating a sampling distribution of sample means with samples of size n=10.
What is the mean, standard deviation, and shape of the sample means in this
sampling distribution?

Let's generate 5 random samples form the data frame and calculate the corresponding sample means. This is a
very simple example of a Monte Carlo simulation.

We use a for loop where we initialize an empty array, SampleMeans, and then iterate a sepcified number of
times. To understand how each step works you might find it helpful to break out the individual steps and run them
with different values of the iteration variable i.

5.2.1 Step-by-step: Let's create a sampling distribution with M=5 sample means

In [8]: # iterate 5 times
x = 'enrolled'
SampleMeans = []
for i in range(5):
print('Trial Number:',i)
#1. Collect a random sample of size n=10 with replacement from the populat
ion of enrollments
rand_sample=sectdf[x].sample(10, replace=True)
print('Random Sample')
print(rand_sample)

#2. Take the mean of this random sample
rand_sample_mean=rand_sample.mean()
print('Random Sample Mean')
print(rand_sample_mean)

#3. Append this random sample mean to the SampleMeans List (which is our S
AMPLING DISTRIBUTION OF SAMPLE MEANS!)

SampleMeans.append(rand_sample_mean)

print('Current Sampling Distribution List")

print(SampleMeans

print('--------- ")

#4. print out 1in a dataframe
print('Sampling Distribution of Sample Means (samples of size n=10)"')
print(pd.DataFrame({x: SampleMeans}))

Trial Number: @

Random Sample

53
215

197
201

197
178
178

37
197
197

Name: enrolled, dtype: int64
Random Sample Mean

165.0
Current Sampling Distribution List
[165.0]

WA ONDNDWU WREN

Trial Number: 1
Random Sample
215
53
37
197
197
197
201
197
201
201
Name: enrolled, dtype: int64
Random Sample Mean
169.6
Current Sampling Distribution List
[165.0, 169.6]

Ululwul o ooy O N -

Trial Number: 2
Random Sample
178
178
201
345
197
197
215
197
197
37
Name: enrolled, dtype: int64
Random Sample Mean
194.2
Current Sampling Distribution List
[165.0, 169.6, 194.2]

OO WWhAUDNMNN

Trial Number: 3
Random Sample
197
201
201
53
197
178
345
37
197
178
Name: enrolled, dtype: int64
Random Sample Mean
178.4
Current Sampling Distribution List
[165.0, 169.6, 194.2, 178.4]

N WOOPRANWNU VIO

Trial Number: 4
Random Sample

197
345
345
345
37
178
215
215
345
215
Name: enrolled, dtype: int64
Random Sample Mean
243.7
Current Sampling Distribution List
[165.0, 169.6, 194.2, 178.4, 243.7]

PR ERLRNODMPMMMOO

Sampling Distribution of Sample Means (samples of size n=10)
enrolled

165.0

169.6

194.2

178.4

243.7

AP WDNERERO

5.2.2 More Consise Code: Let's rerun this same code, but write it in a more consise way.

Note: Remember, this will not give us the same sampling distribution as the code above, because we did not set
a random_state and the .sample() function returns random results.

In [9]: # iterate 5 times
X = 'enrolled'
SampleMeans = []
for i in range(5):
#1. Collect a random sample of size n=10 with replacement
#2. Take the mean of this random sample
#3. Append this random sample mean to the SampleMeans List (which 1is our S
AMPLING DISTRIBUTION OF SAMPLE MEANS!)
SampleMeans.append(sectdf[x].sample(10, replace=True).mean())

#4. print out 1in a dataframe
print('Sampling Distribution of Sample Means (samples of size n=10)")
print(pd.DataFrame({x: SampleMeans}))

Sampling Distribution of Sample Means (samples of size n=10)

enrolled
%] 212.4
1 167.6
2 184.1
3 140.2
4 122.1

5.2.3. Sampling Distribution with M=1000 Sample Means:

Using M=5 trials (ie. M=5 sample means) to create a sampling distribution is usually not enough to gain a good
representation of a sampling distribution's behavior. Let's run the code below using M=1000 trials (ie. M=1000
sample means).

In [10]:

Out[1@]:

In [11]:

Out[11]:

iterate 1000 times

parametrize the sample size. number of random samples,

and the variable name

X = 'enrolled’

n=10

M=1000

SampleMeans = []

for i in range(M):
#1. Collect a random sample of size n=10 with replacement
#2. Take the mean of this random sample
#3. Append this random sample mean to the SampleMeans List (which is our S

AMPLING DISTRIBUTION OF SAMPLE MEANS!)
SampleMeans.append(sectdf[x].sample(n, replace=True).mean())

#4. print out 1in a dataframe

print('Sampling Distribution of Sample Means (samples of size n=10)"')
MonteCarlo = pd.DataFrame({x: SampleMeans})

MonteCarlo

Sampling Distribution of Sample Means (samples of size n=10)

enrolled

0 179.9

1 229.0

2 199.5
3 192.7
4 195.0
995 210.1
996 170.0
997 167.1
998 148.5
999 182.1

1000 rows x 1 columns

MonteCarlo.shape

(1000, 1)

5.2.4 Making our own functions to Create a Sampling Distribution of Sample Means

If we want to try lots of different values for n and M it gets tedious to keep copying the code and changing the
parameters in multiple locations. Instead, we can make our own function to do this kind of task with varying
inputs. This saves a lot of redundant effort. It also makes it easier to understand and debug the code.

Here's a function to do the Monte carlo simulation of the sample mean for different sample sizes and numbers of
Monte Carlo samples. Notice that we input the data frame (or data series), variable name x as a text string,
sample size n, and number of Monte Carlo samples M. Here again, the colon (:) and indentation (4
characters) are important to indicate that the ensuing lines of code are included in the function.

In [12]: def MCmeans(df, x='', replace=True, n=1, M=1):

#INPUT :

df is a data frame

x 1s a text-valued name for a variable in the data frame

replace = True or False depending on whether

draws are with or without replacement

n = number of draws per sample

M = number of samples to draw

MCstats = []

for i in range(M):
#1. Collect a random sample of size n=10 with replacement
#2. Take the mean of this random sample
#3. Append this random sample mean to the SampleMeans List (which 1is o

ur SAMPLING DISTRIBUTION OF SAMPLE MEANS!)

MCstats.append(df[x].sample(n, replace=replace).mean())

#4. returns the sampling distribution in a dataframe format

return pd.DataFrame({x: MCstats})

In [13]: MonteCarlo = MCmeans(df=sectdf, x="enrolled", n=10, M=10000)

MonteCarlo
Out[13]:

enrolled
0 176.8
1 223.3
2 227.3
3 163.5
4 2254
9995 141.2
9996 211.2
9997 215.0
9998 209.5
9999 162.3

10000 rows x 1 columns

5.2.5 What is the mean, standard deviation, and shape of this sampling distribution of sample means
when the size of the samples is n=10?

Mean of the Sampling Distribution Means

In [14]: MonteCarlo['enrolled'].mean()

Out[14]: 178.11037

Standard Deviation of the Sampling Distribution Means

In [15]: MonteCarlo['enrolled'].std()

Out[15]: 28.70181636916711

In [16]: MonteCarlo['enrolled'].hist(density=True)
plt.title('Sampling Distribution (n=10)")
plt.xlabel('Sample Mean Enrollment of Samples (of size n=10) \n Drawn from sec
tdf Population with Replacement')

plt.show()
Sampling Distnbution (n=10)

0.0%6

0014

0012

0010

0.008

0.006

0.004

0002 I

ooy — — -

100 150 200 250 300

Sample Mean Enrollment of Samples {(of size n=10)
Drrawn from sectdf Population with Replacement

5.3. Creating a sampling distribution of sample means with samples of size
n=100. What is the mean, standard deviation, and shape of the sample means in
this sampling distribution?

In [17]: MonteCarlo = MCmeans(df=sectdf, x="enrolled", n=100, M=10000)

MonteCarlo
Out[17]:

enrolled

0 167.68

1 163.65

2 174.75

3 184.11

4 178.84
9995 158.56
9996 175.84
9997 185.53
9998 163.86
9999 188.51

10000 rows x 1 columns

In [18]: print('Sampling Distribution Mean (Samples of Size n=100):',MonteCarlo['enroll
ed'].mean())
print('Sampling Distribution Standard Deviation (Samples of size n=100):',Mont
eCarlo['enrolled'].std())

Sampling Distribution Mean (Samples of Size n=100): 177.859012
Sampling Distribution Standard Deviation (Samples of size n=100): 9.038486359
309436

In [19]: MonteCarlo['enrolled'].hist(density=True)
plt.title('Sampling Distribution (n=100)")
plt.xlabel('Sample Mean Enrollment of Samples (of size n=100) \n Drawn from se
ctdf Population with Replacement')
plt.show()

Sampling Distnibution (n=100)

Q040
0035
Q030
0u0za
Quoz0
0015

0010

Q00s

200 210

160 170 180 180

Sample Mean Enrollment of Samples (of size n=100)
Drrawn from sectdf Population with Replacement

0.000 =
150

5.4. Creating a sampling distribution of sample means with samples of size
n=400. What is the mean, standard deviation, and shape of the sample means in
this sampling distribution?

In [20]: MonteCarlo = MCmeans(df=sectdf, x="enrolled", n=400, M=10000)
MonteCarlo

Out[20]:
enrolled

0 175.2025
1 176.8450
184.4900
171.1325

A O DN

171.7225

9995 179.1975
9996 183.8800
9997 171.6350
9998 182.2200

9999 184.0800

10000 rows x 1 columns

In [21]: print('Sampling Distribution Mean (Samples of Size n=400):',MonteCarlo[' 'enroll
ed'].mean())
print('Sampling Distribution Standard Deviation (Samples of size n=400):',Mont
eCarlo['enrolled'].std())

Sampling Distribution Mean (Samples of Size n=400): 177.836558
Sampling Distribution Standard Deviation (Samples of size n=400): 4.569345136
929803

In [22]: MonteCarlo['enrolled'].hist(density=True)
plt.title('Sampling Distribution (n=400)")
plt.xlabel('Sample Mean Enrollment of Samples (of size n=400) \n Drawn from se
ctdf Population with Replacement')

plt.show()
Sampling Distnbution (n=400)

0os

007

006

005

0.04

0.03

0oz

o1 . l

0.00 — L B

160 185 170 175 180 185 190 195

Sample Mean Enrollment of Samples (of size n=400)
Crrawn from sectdf Populabion with Replacement

6. Type of Sampling Distribution: Sampling Distribution of Sample
Proportions - How to create one?

See the Unit 6 slides (section 6).

If we make one draw, i.e., toss the coin once, then the uniform probability principle tells us the probability of a 1
is p = 1/2. What if we draw (flip) 10 times randomly and without replacement? What proportion p of "heads" do
we expect? How much is it likely to vary from this expectation? What if we toss 100 times, or 4007

Let's consider a series of sample sizes and study how the sampling distribution is affected. We'll compute mean
and standard deviation of the Monte Carlo values, and look at the histrogram as well to get a picture fo the
sample distributions for different sample sizes.

7. Case Study: Sampling Distribution of Sample Proportions -
What happened to the mean, standard deviation, and shape of the
sampling distribution of sample proportions as we increased the
size of the samples n?

7.1 Population and population proportion of heads.

7.1.1 Creating the population

With our function available we can simulate all kinds of things. Here is a "data frame" of the possible outcomes
when flipping a coin.

In [23]: df = pd.DataFrame({'toss':['heads','tails'], ‘'value': [1, ©]})

df
Out[23]:
toss value
0 heads 1
1 tails 0

7.1.2 Population Proportion of Heads

In [24]: df['toss'].value_counts(normalize=True)

Out[24]: heads 0.5
tails 0.5
Name: toss, dtype: float64

The population proportion of heads is p = 0.5.

7.2. Creating a sampling distribution of sample proportions with samples of size
n=10. What is the mean, standard deviation, and shape of the sample means in
this sampling distribution?

7.2.1.Step-by-step Let's create a sampling distribution with M=5 sample proportions.

In [25]:

iterate 5 times

X =

'value'

SampleProportions = []

for

ion

ues

i in range(5):

print('Trial Number:',i)

#1. Collect a random sample of size n=10 with replacement from the populat
of enrollments

rand_sample=df[x].sample(10, replace=True)

print('Random Sample')

print(rand_sample)

#2. Find the sample proportion of heads

proportion of observations that are equal to 1 (ie. heads) = mean of val
in this sample

rand_sample_proportion=rand_sample.mean()

print('Random Sample Proportion')

print(rand_sample_proportion)

#3. Append this random sample proportions to the SampleProportions List (w

hich is our SAMPLING DISTRIBUTION OF SAMPLE PROPORTIONS!)

#4.

SampleProportions.append(rand_sample_proportion)
print('Current Sampling Distribution List")
print(SampleProportions)

print('--------- ")

print out in a dataframe

print('Sampling Distribution of Sample Proportions (samples of size n=10)")
print(pd.DataFrame({x: SampleProportions}))

Trial Number: ©
Random Sample

0 1
1 (4]
1 (4]
0 1
0 1
1 0
1 (4]
1 0
0 1
0 1

Name: value, dtype: int64

Random Sample Proportion

0.5

Current Sampling Distribution List
[0.5]

Trial Number: 1

Random Sample

0 1
0 1
0 1
1 0
0 1
0 1
1 0
0 1
1 (4]
0 1

Name: value, dtype: int64

Random Sample Proportion

0.7

Current Sampling Distribution List
[0.5, 0.7]

Trial Number: 2

Random Sample

1 0
0 1
1 0
0 1
1 0
1 0
0 1
0 1
1 %]
1 0

Name: value, dtype: int64

Random Sample Proportion

0.4

Current Sampling Distribution List
[0.5, 0.7, 0.4]

Trial Number: 3

Random Sample

1 0
1 Q
0 1
0 1
1 (4]
0 1
1 0
1 (4]
1 (4]
0 1

Name: value, dtype: int64

Random Sample Proportion

0.4

Current Sampling Distribution List
[0.5, 0.7, 0.4, 0.4]

Trial Number: 4

Random Sample

OO RFRPFRPROFROOLR
P RPOOOFROFRLREFRPO®

Name: value, dtype: inté64

Random Sample Proportion

0.5

Current Sampling Distribution List
[0.5, 0.7, 0.4, 0.4, 0.5]

Sampling Distribution of Sample Proportions (samples of size n=10)

value
0 0.5
1 0.7
2 0.4
3 0.4
4 0.5

7.2.2 Using_the Function:

Because the sample proportion of "1™'s in a column of 0/1 values = sample mean of the column of 0/1 values,
we can create a our sampling distribution of sample proportions the same way (and with the same function) that
we used to quickly create a sampling distribution of sample means.

In [26]: MonteCarlo = MCmeans(df=df, x="value", n=10, M=10000)

MonteCarlo
Out[26]:

value

0 0.2

1 0.6

2 0.5

3 0.7

4 0.5

9995 0.4

9996 0.3

9997 0.4

9998 0.3

9999 0.7

10000 rows x 1 columns

7.2.3 What is the mean, standard deviation, and shape of the sampling distribution of sample
proportions?

In [27]: print('Sample size = ', 10)
print('Mean value for sample proportion =",
np.round(MonteCarlo.mean().value, 5))
print('Standard Deviation for sample proportion =",
np.round(MonteCarlo.std().value, 5))

Sample size = 10
Mean value for sample proportion = 0.49942
Standard Deviation for sample proportion = 0.15771

In [28]: MonteCarlo['value'].hist(density=True)
plt.title('Sampling Distribution (n=10)")
plt.xlabel('Sample Proportion of Heads (of size n=10) \n Drawn from df Populat
ion with Replacement')
plt.show()

Sampling Distribution (n=10)

00 02 04 06 08 1.0

Sample Proportion of Heads (of zize n=10)
Drrawn from df Population with Replacement

=

%]

—_

7.3. Creating a sampling distribution of sample proportions with samples of size
n=100. What is the mean, standard deviation, and shape of the sample means in
this sampling distribution?

In [29]: MonteCarlo = MCmeans(df=df, x="value", n=100, M=10000)

MonteCarlo
Out[29]:

value

0 052

1 049

2 052

3 051

4 0.52

9995 0.55

9996 0.51

9997 0.55

9998 0.51

9999 0.50

10000 rows x 1 columns

In [30]: print('Sample size = ', 100)
print('Mean value for sample proportion ="',
np.round(MonteCarlo.mean().value, 5))
print('Standard Deviation for sample proportion =",
np.round(MonteCarlo.std().value, 5))

Sample size = 100
Mean value for sample proportion = 0.49947
Standard Deviation for sample proportion = 0.04968

In [31]:

MonteCarlo['value'].hist(density=True, bins=15)

plt.title('Sampling Distribution (n=100)")

plt.xlabel('Sample Proportion of Heads (of size n=100) \n Drawn from df Popula
tion with Replacement')

plt.show()

Sampling Distnbution (n=100)

035 040 045 00 055 060 065 OF0 OFD

Sample Proportion of Heads (of size n=100)
Drawn from df Population with Replacement

]

e

Pa

7.4. Creating a sampling distribution of sample proportions with samples of size
n=400. What is the mean, standard deviation, and shape of the sample means in
this sampling distribution?

In [32]:

Out[32]:

In [33]:

MonteCarlo = MCmeans(df=df, x="value", n=400, M=10000)
MonteCarlo

value
0 0.4950
1 0.5625
0.5075
0.5175

A WO DN

0.4600

9995 0.4675
9996 0.5150
9997 0.5225
9998 0.4650

9999 0.4475

10000 rows x 1 columns

print('Sample size = ', 400)

print('Mean value for sample proportion =",
np.round(MonteCarlo.mean().value, 5))

print('Standard Deviation for sample proportion =",
np.round(MonteCarlo.std().value, 5))

Sample size = 400
Mean value for sample proportion = 0.49989
Standard Deviation for sample proportion = 0.02495

In [34]: MonteCarlo['value'].hist(density=True, bins=20)
plt.title('Sampling Distribution (n=400)")
plt.xlabel('Sample Proportion of Heads (of size n=400) \n Drawn from df Popula
tion with Replacement')
plt.show()

Sampling Distnbution (n=400}

0400 0425 0450 0475 0500 0525 0550 0573 G600

Sample Proportion of Heads {of size n=400)
Dirawn from df Population with Replacement

16

14

12

1

=

=]

h

'S

=

=]

STAT 207, Victoria Ellison and Douglas Simpson, University of lllinois at Urbana-Champaign

In []:

