Unit 7 Notebook: Introduction to Random Variables -
Building Blocks for Inference

1. Goals of Unit 7

Probability rules that work for any type of event

What is a random variable?

What are some types of random variable and what are their properties?
How do we calculate probabilities involving a random variable?

2. General Probability Rules

See Unit 7 slides (section 2)

3. Random Variable Definitions and Main Types

See Unit 7 slides (section 3)

4. How to calculate the probability of events involving random
variables.

See Unit 7 slides (section 4)

5. How to identify if a random variable "fits the definition” of a
well-known random variable.

See Unit 7 slides (section 5)

6. Discrete Random Variables: Functions that Calculate Random
Variable Probabilities

Fitting_the Definition of a Random Variable: From the unit 7 slides (section 5), we determined that the random
variable X = number of times you flip a coin until you get a head "fits the definition" of being a geometric
random variable with p=0.5. Thus we say that X is a geometric random variable (ie. X ~ Geom(p = 0.5)).

Distribution Python Objects: Because geometric random variables are well-known and well-studied by the
statistics community, the scipy.stats package in Python has a geom object which contains a series of related
functions involving geometric random variables.

6.1. Probability Mass Functions

See Unit 7 slides (section 6.1)

pmf()_Functions: For instance, the .pmf() function which is associated with many distribution scipy objects
calculates the probability that the corresponding random variable is equal to a given value (ie. P(X = value)).

For instance, the code below calculates P(X = 1) = 0.5, wehere X is a geometric random variable with
parameter p = 0.5 (ie. X ~ Geom(p = 0.5)).

In [1]: from scipy.stats import geom

In [2]: type(geom)

Out[2]: scipy.stats. discrete_distns.geom_gen
In [3]: geom.pmf(1l,p=0.5)
Out[3]: @.5
P(X=2)=0.25
In [4]: geom.pmf(2,p=0.5)
Out[4]: @.25
P(X = 3) =0.125

In [5]: geom.pmf(3,p=0.5)

Out[5]: @.125

These probability values match what we calculated by hand in the Unit 7 slides (section 4).

6.2 Cumulative Distribution Functions

See Unit 7 slides (section 6.2)

.cdf() Functions: For instance, the .cdf() function which is associated with many distribution scipy objects (like
geom) calculates the probability that the corresponding random variable is less than or equal to a given value

(ie. P(X < value)).

For instance, the code below calculates P(X < 2) = 0.75, wehere X is a geometric random variable with
parameter p = 0.5 (ie. X ~ Geom(p = 0.5)).

In [6]: geom.cdf(2,p=0.5)

out[6]: @.75

This probability value matches what we calculated by hand in the Unit 7 slides (section 6.2).

7. Examples of how to randomly generate values for a random
variable

7.1. When we don't know if the random variable "fits the definition" of a well-
known random variable.

For now, we will pretend that we "don't know" that our random variable X is a geometric random
variable.

Experiment Keep flipping a coin until you get a head. Observe the total number of flips before stopping (including
the head).

Simulation of Experiment: Let's first design a simulation that will mimic this experiment ourselves ("from
scratch"). We will simulate the act of flipping a coin until we get a head. After we flip a head, we will define X to
be the total number of flips in the experiment.

Randomly Generating_a Value for a Random Variable: Thus we can think of this X as a randomly generated
value for the random variable X=number of times you flip a coin until you get a head from the slides.

7.1.1 Simulating Flipping a Coin
This is like sampling repeatedly from the following data frame until we get an "H".
In [7]: dimport pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

In [8]: coin = pd.DataFrame({'side': ['T', 'H']}, index=[0,1])
coin

Out[8]:
side

7.1.2 Using a "while loop" to keep "flipping" until we get a head.

Here is some code using a "while" loop to keep flipping our simulated coin until we get 'heads'. Rerun the cell to
see how the the count 'X' varies randomly.

The .item() function pulls the value from the generated 1 item Series, so we can check if it equals 'H' or not.

In [9]:

#This will be your randomly generate value for the random variable X
X =20

#Set flop to anything but 'H' so we can "enter" the while Loop
flip="T"

#Keep executing the code in this loop WHILE the 'flip' variable is not equal t
o 'H'
while flip != 'H':
#Draw a random sample (of size n=1) from the population of flip outcomes
flip = coin.sample(1l)['side'].item()
print('Flip:',flip)

#Update the random variable to be one more head

X=X+1
print('Current Value of X:',X)
print('-------c--c-c---- D)

print('Final Value of Randomly Generated Value for X:',X)

Flip: T
Current Value of X: 1
Flip: H
Current Value of X: 2

Final Value of Randomly Generated Value for X: 2

7.2. When we know the random variable "fits the definition" of a well-known
random variable.

Because we know that X is a geometric random variable, we can also use the .rvs() function to randomly
generate values for the random variable. In this case, the .rvs() also performs a simulation of conducting a series
of "independent trials" until we get a "success" (where the probability of success in any given trial is always p).

rvs()_Function: The .rvs() function randomly generates a series of values for a corresponding random variable.

Remember that for our coin flip random variable X, this p = 0.5 (where "success" is flipping a head).

One Randomly Generated Value for X

In [10]:

Oout[10]:

X=geom.rvs(p=0.5, size=1)
X

array([1])

Ten Randomly Generated Values for X

In [11]:

Out[11]:

X=geom.rvs(p=0.5, size=10)
X

array([1, 2, 3, 4, 1, 1, 3, 1, 3, 1])

8. Continuous Random Variables: Functions that Calculate

Random Variable Probabilities

8.1. Why do we not use probability mass functions (ie. P(Y=value)) for continuous
random variables?

See Unit 7 slides (section 8.1).

8.2. Cumulative Density Functions (cdf) and Probability Density Functions
(pdf)

See Unit 7 slides (section 8.2).

8.3. Properties of Cumulative Density Functions (cdf) and Probability Density
Functions (pdf)

See Unit 7 slides (section 8.3

8.4. Calculating the probabilities of events involving random variables using pdf
and cdf curves

See Unit 7 slides (section 8.4).

8.5 Calculating the probabilites of events involving well-known random variables
in Python.

Suppose that after collecting data on the Youtube watching habits on a large sample of adults, researchers
decided that the random variable X = the number of hours a randomly selected adult spends watching Youtube
each week closely “fits the definition” of another well-known random variable called a truncated normal random
variable.

A truncated normal random variable has four parameters that are associated with it:

» p =mean of the random variable (had it not been truncated)

» o = standard deviation of the random variable (had it not been truncated)
» a = lower bound of the random variable

e b = upper bound of the random variable

Suppose that the researchers specifically know the parameters associated with our X truncated random variable
are =0, 0=2, a=0, and b=20.

We can now import the truncnorm object from scipy.stats to use a series of functions related to truncated
normal random variables.

In [12]: from scipy.stats import truncnorm

Most functions involving a random variable object (like truncnorm, geom, and others) require us to specify the
corresponding random variable parameters inside of that function as well as potentially other information.

For a truncated normal random variable these parameters are:

loc = mean of the random variable (had it not been truncated)

scale = standard deviation of the random variable (had it not been truncated)
a = lower bound of the random variable

b = upper bound of the random variable

Thus we can use the .cdf() function for truncnorm below to calculate P(X < 2) = 0.683.

In [13]: a, b, loc, scale = 0.0, 20, 9, 2
truncnorm.cdf(2, a=a, b=b, loc=loc, scale=scale)

Out[13]: ©.6826894921370859

Because the .cdf() only calculates areas to going to the left (ie. P(X < value)), we need to use the
relationship of P(X > value) =1 — P(X < value).

P(X<2) =1-P(X<2)=1-0683=0.317.

In [14]: a, b, loc, scale = 0.0, 20, 9, 2
1-truncnorm.cdf(2, a=a, b=b, loc=loc, scale=scale)

Out[14]: ©.31731050786291415

9. Calculating Summary Statistics of a Random Variable

See Unit 7 slides (section 9).

9.1 Calculating a Summary Statistic of a Random Variable - "by hand"

See Unit 7 slides (section 9.1).

9.2 Calculating a Summary Statistic of a Random Variable - in Python

Example: X=number of flips until getting a head
Remember X ~ Geom(p = 0.5).

Using ScyPy functions, we compute the mean, the median, the standard deviation, and the proportion less than
2 hours for this population.

In [15]: params = ['mean', 'median', 'std', 'prop']
pop = [geom.mean(p=0.5),
geom.median(p=0.5),
geom.std(p=0.5),
geom.cdf(2, p=0.5)]
pd.DataFrame({'population': pop}, index=params)

Out[15]:
population

mean 2.000000
median 1.000000
std 1.414214

prop 0.750000

How does this compare with what we calculated by hand in the Unit 7 slides (section 9)?

10. Coding: while loops

See section 7.1 of this Jupyter notebook.

STAT 207, Victoria Ellison and Douglas Simpson, University of lllinois at Urbana-Champaign

In []:

