Unit 8 Notebook: Common Types of Random Variables
and How to Use Them - Building Blocks for
Inference

1. A well-known type of discrete random variable: Bernoulli
Random Variable

See unit 8 slides (section 1).

2. A well-known type of continuous random variable: Normal
Random Variable

2.1. Normal Random Variable: Definition

See unit 8 slides (section 2.1).

2.2. Normal Random Variable: Mean, Variance, and, Standard Deviation

See unit 8 slides (section 2.2).

2.3. Normal Random Variable: Other Properties

See unit 8 slides (section 2.3).

2.4. Normal Random Variable: How do you KNOW when a distribution is
approximately normal?

See unit 8 slides (section 2.4).

2.5. Calculating probabilities involving normal random variables - in Python?

See unit 8 slides (section 2.5) for more explanations.

In [25]: dimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

norm distribution object

Like with other well-studied random variables we've looked at, you can import the norm object from the
scipy.stats package to perform various tasks related to normal random variables.

In [1]: from scipy.stats import norm

Parameters needed for functions involving the norm object.

Most random variables have one or more parameters associated with them, that dictate various aspects of the
shape and nature of the distribution. As we discussed, the normal distribution has two parameters:

« the mean parameter that dictates the "location of the normal distribution, and
» the standard deviation parameter that dictates the scale of the normal distribution.

In all Python functions involving a normal random varible, we need to provide:

¢ loc=mean
« scale=standard deviation.

Normal Distribution CDF:

If X is a random variable we can use the function
norm.cdf(x , loc = mean, scale = standard deviation)

to calculate

P(X<z)=PX<z).

Ex: If X is a normal random variable with mean 64 and standard deviation 2.5, what is the probability that a
randomly selected woman in the U.S. is at most 70"?

Answer:

P(X < 70) = P(X < 70) = 0.9918

In [2]: norm.cdf(70, loc=64, scale=2.5)

Out[2]: ©.9918024640754038

Ex: If X is a normal random variable with mean 64 and standard deviation 2.5, what is the probability that a
randomly selected woman in the U.S. is greater than 70"?

Answer:
We can also indirectly use this function to calculate:

P(X >70) =1— P(X >70) = 1 —0.9918 = 0.0082

In [4]: 1-norm.cdf(70, loc=64, scale=2.5)

Out[4]: ©.008197535924596155

Important Note: the .cdf() always finds areas/probabilies to the LEFT of the observation supplied. To find
areas to the right you need to use 1 - .cdf()!

Ex: If X is a normal random variable with mean 64 and standard deviation 2.5, what is the probability that a
randomly selected woman height is between 60" and 70"?

Answer: We can use our cdf properties (from Unit 7) to calculate:

P(60 < X < 70) = P(X < 70) — P(X < 60) = 0.9918 — 0.0548 = 0.9370

In [10]: norm.cdf(70, loc=64, scale=2.5) - norm.cdf(60, loc=64, scale=2.5)

Out[10]: ©.9370031723758458

2.6. Calculating percentiles involving normal random variables - in Python
See unit 8 slides (section 2.6) for more explanations.

Normal Percentile Function

If X is a random variable we can use the function
norm.ppf(p , loc = mean, scale = standard deviation)
to calculate the value of x in which

P(X <z)=P(X <z)=p.

Ex: The average height of a woman in the U.S. is about 64” with a standard deviation of 2.5”. Assume that the
heights of women in the U.S. has a normal distribution. So if we let X = height of a randomly selected woman in
the U.S., then we know that X is a normal random variable.

How tall does a woman in the U.S. have to be in order to be in the top 10% of women'’s heights?

Answer: This is equivalent to asking what is the value of x in which P(X < z) = 0.90?

In [6]: norm.ppf(0.90, loc=64, scale=2.5)

Out[6]: 67.2038789138615

Thus, a woman that is 67.2" will be taller than 90% of women in the U.S. and shorter than 10% of women in the
U.S.

Important Note: the .ppf() always finds x-axis values that correspond to the LEFT-TAIL AREA SUPPLIED.
To find the x-axis value that corresponds to a RIGHT-TAIL AREA, you should supply the LEFT-TAIL AREA
=1 - RIGHT TAIL AREA to the function.

3. z-scores

See unit 8 slides (section 3).

3.1. z-scores: Definitions

See unit 8 slides (section 3.1).

3.2. z-scores: Relationship between a Random Variable X and the z-score of
X

See unit 8 slides (section 3.2).

4. A well-known type of continous random variable: Standard
Normal Random Variable

4.1. Standard Normal Random Variable: Definitions

See unit 8 slides (section 4.1).

4.2 Relationship between the z-Score of a Normal Random Variable X and a
standard normal random variable

See unit 8 slides (section 3.2).

4.3 Calculating probabilities involving standard normal random variables - in
Python

See unit 8 slides (section 4.3) for more information.

Because the standard normal random variable is just a special kind of normal random variable, specifically
one in which the mean = 0 and the standard deviation = 1, we use the same norm object from scipy.stats and
the corresponding functions to perform any tasks related to standard normal random variables as well.

In each of these norm functions, we can either:

« setloc =0 (ie. explicitly set the mean to 0) and scale = 1 (ie. explicitly set the standard deviation to 1 OR
« NOT specify values for the loc and scale parameters. (The default values for the norm object are set to 0
and 1 automatically).

Ex: What is the probability that a standard normal random variable is between -1.96 and 1.967?
Answer:

P(~1.96 < Z < 1.96) = P(Z < 1.96) — P(Z < —1.96) = 0.975 — 0.025 = 0.95

In [14]: norm.cdf(1.96,loc=0,scale=1) - norm.cdf(-1.96,loc=0,scale=1)

Out[14]: ©.950004209703559

In [15]: norm.cdf(1.96) - norm.cdf(-1.96)

Out[15]: ©.950004209703559

4.4 Calculating percentiles involving standard normal random variables - in
Python

See unit 8 slides (section 4.4) for more information.

Ex: What is the value in the standard normal distribution that is greater than 20% of observations?
Answer:

The value of z in which

P(Z > 2)=0.20

is z = —0.8416.

In [17]: norm.ppf(0©.20, loc=0, scale=1)

Out[17]: -0.8416212335729142

In [18]: norm.ppf(0.20)

Out[18]: -0.8416212335729142

4.5 Using standard normal random variables to help solve problems involving
normal random variables.

See unit 8 slides (section 4.5) for more information.

Ex: The average time it took for all seniors at a local high school to finish a race was 8 minutes. The finishing
times followed a normal distribution.

You ran the race in 7 minutes and your time was in the top 20% (ie. your time was higher than 20% of the
participants). What was the standard deviation of the finishing times?

Answer :

Let X = finishing time of a randomly selected senior from the high school.

X-E[X] \ .
SDIX) is a standard normal random

Because X is a normal random variable, the z-score of X (Z =
variable.
Two things we know about the z-score of your finishing time (x=7).

7— _
1. The z-score of your finishing time of 7 minutes =TH = 7—08.

2. The z-score of your finishing time of 7 minutes is greater than 20% of other z-scores from the standard
normal distribution. Using the ppf function, we know that this value is z = —0.8416.
So we can set these two pieces of information equal to eachother to get:

The z-score of your finishing time of 7 minutes = —0.8416 = % and solve for o to get o = 1.188 minutes.

In [19]: norm.ppf(9.20)

Out[19]: -0.8416212335729142

5. Representing a Sample Statistic with Multiple Random
Variables

Go to unit 8 slides (section 5).

5.1. Sample Statistics of the Coin Flip Experiment in Python.

Ex: Consider our coin toss experiment from Unit 7. This is where we keep flipping a coin until we get a head. We
let X=number of flips until stopping. We also learned that X ~ geom(p = 0.5).

Suppose we decided to repeat this coin flip experiment multiple 20 times, we can represent X; =number of flips
in the ith experiment until stopping.

Generate a random value for each X;. Use these values to generate a random values for:

X = (X1 4+ Xo+ -+ Xo9)/20: the mean number of flips until stopping from the 20 experiments
M : the median number of flips until stopping from the 20 experiments

S': the standard deviation number of flips until stopping from the 20 experiments

P, : the proportion of the 20 experiments in which the number of flips (until stopping) was at most 2.

Also use these values to generate a random sample distribution.

5.1.1. First we randomly generate values for X, Xo, ..., Xo-

In [22]: from scipy.stats import geom
In [28]: sample = geom.rvs(p=0.5, size=20)
sample
out[28]: array([2, 2, 2, 1, 1, 2, 2, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2])
In [29]: | # convert the numpy array 1into a pandas series

sample = pd.Series(sample)
sample

Out[29]:

VCoOoONOOTUVTA,WNEREOO®

16
17
18
19
dtype: int32

=
(]
NNNRFPRPRPRPFPPNNWNMNNREPERNDNDNDN

5.1.2. Next, we use these randomly generated values to randomly generate values for the sample
statistics described above.

In [31]: params = ['mean', 'median', 'std', 'prop <= 2']
samp = [sample.mean(),
sample.median(),
sample.std(),
(sample<=2).mean()]
pd.DataFrame({'sample': samp}, index=params)

Out[31]:
sample

mean 1.650000
median 2.000000
std 0.587143

prop <=2 0.950000

5.1.3 Finally, we use these randomly generated values to create a randomly generated sample
distribution.

In [32]: sample.hist(density=True)
plt.show()
25
20
1.5
1.0

03

1.00 125 150 1¥5 200 225 250 2¥V5 300

oo

How do the sample statistics compare to the population parameters?

STAT 207, Victoria Ellison and Douglas Simpson, University of lllinois at Urbana-Champaign

In[]:

