<u>Unit 8 Slides</u>: Common Types of Random Variables and How to use Them – Building Blocks for Inference

Case Study: Heights

• Height tend can often be modeled as a normal random variable. How can we use this fact to calculate the probability a randomly selected person is a certain height?

Case Study: Coin Flips

• How can we model the outcomes of a sample of coin flip experiments (stop flipping when you get a head)?

Case Study: Sample of Instagram Users

 If we randomly sampled many, many adults, what would we expect the average, variance, and standard deviation number to use Instagram would be?

Purpose of this Lecture:

In this lecture we will cover the following topics.

1. <u>A Well-Known Type of Discrete Random Variable</u>: **Bernoulli Random Variable** 1.1.Definition of a Bernoulli random variable

- 1.2. Mean and Standard deviation of a Bernoulli random variable
- 2. <u>A Well-Known Type of Continuous Random Variable</u>: Normal Random Variable
 - 2.1. Definition
 - 2.2. Mean, Variance, and Standard Deviation
 - 2.3.Other Properties
 - 2.4. How do you KNOW when a distribution is approximately normal?
 - 2.5. Calculating probabilities involving normal random variables In Python
 - 2.6.Calculating percentiles involving normal random variables In Python
- 3. <u>Z-scores</u>
 - 3.1. Definitions
 - 3.2. Relationship between random variable and Z-score of random variable.
- 4. <u>A Well-Known Type of Continuous Random Variable</u>: Standard Normal Random Variable 4.1.Definition
 - 4.2. Relationship between the z-score of a NORMAL random variable and the standard normal random variable.
 - 4.3.Calculating probabilities involving standard normal random variables In Python
 - 4.4.Calculating percentiles involving standard normal random variables In Python
 - 4.5. Using <u>standard normal random variables</u> to help solve problems involving <u>normal</u> <u>random variables</u>. – In Python
- 5. <u>Representing a sample statistic</u> with multiple random variables
 - 5.1. Sample statistics in the coin flip experiment in Python

Additional resources:

Section 3.1-3.3 in Diez, Barr, and Cetinkaya-Rundel, (2015), *OpenIntro Statistics* https://www.openintro.org/download.php?file=os3&redirect=/stat/textbook/os3.php

1. <u>A well-known type of discrete random variable</u>: Bernoulli Random Variable

Bernoulli Random Variable:				
Definition : A bernoulli random variable X corresponds to a simple experiment in which				
there are only two outcomes (that we observe).				
Outcome 1: "Success" (ie. outcome that).				
• If the outcome is a success, then X =				
• The probability of a success is known to be p .				
Outcome 2: "Failure" (ie. outcome that).				
• If the outcome is a failure, then X =				
• The probability of a failure is known to be 1-p .				
Short-Hand:				
Probability Mass Function: Y is a Bernoulli random variable if and only if				
p(1) = P(X = 1) = p				
p(0) = P(X = 0) = 1 - p				

Ex: Suppose we know that 35% of adults use Instagram. We randomly select an adult and see if they use Instagram.

a. Set up a random variable, X, that models the outcome of this experiment. Is this random variable a Bernoulli random variable?

b. Calculate the expected value (ie. mean) of X, E[X].

c. Calculate the variance X, V[X].

d. Calculate the standard deviation of X, ie. SD[X].

e. What does *E*[*X*], *V*[*X*], and *SD*[*X*] represent in this case?

Experiment	Outcome	(
	randomly sampled adult uses	
Experiment 1	Insta	1
	randomly sampled adult	
Experiment 2	doesn't use Insta	0
	randomly sampled adult	
Experiment 3	doesn't use Insta	0
	randomly sampled adult uses	
Experiment 4	Insta	1
	randomly sampled adult	
Experiment 10,000	doesn't use Insta	0

Bernoulli Random Variable:

Mean, Variance, and Standard Deviation: If X is a Bernoulli random variable then

$$E[X] = p$$
$$V[X] = p(1 - p)$$
$$SD[X] = \sqrt{p(1 - p)}$$

2.1. Normal Random Variable: Definition

Normal Random Variable:

Definition: A continuous random variable is said to be a normal random variable if it has the

following probability density function (pdf).

Short-Hand: _____

Probability Density Function: X is a normal random variable if and only if

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-u)^2}{2\sigma^2}}, for - \infty < x < \infty$$

2.2. <u>Normal Random Variable</u>: Mean, Variance, and Standard Deviation

Normal Random Variable:

Mean, Variance, and Standard Deviation: If X is a normal random variable

 $E[X] = \mu$ $V[X] = \sigma^2$ $SD[X] = \sigma$

	Х
Experiment 1	
Randomly sample a	
woman from population	
(with replacement)	69"
Experiment 2	
Randomly sample a	
woman from population	
(with replacement)	62"
Experiment 3	
Randomly sample a	
woman from population	
(with replacement)	64"
Experiment 50,000	
Randomly sample a	
woman from population	
(with replacement)	70"

2.3. Normal Random Variable: Other Properties

<u>Ex</u>: The average height of a woman in the U.S. is about 64" with a standard deviation of 2.5". Assume that the heights of women in the U.S. has a normal distribution.

a. What percent of adult females in the U.S are taller than 69"?

b. Can we use the 68-95-99.7 rule to approximate percent of adult females in the U.S are taller than 70"? Why or why not?

2.4. <u>Normal Random Variable</u>: How do you KNOW when a distribution is approximately normal?

- <u>Some simpler ways to approximate.</u>
 - Common examples
 - 0 _____
 - Does the distribution have the following specifications?
 - 0 _____
 - 0 _____
 - 0 _____
- Theory (ie. prove it)!
 - Central Limit Theorem (later Unit) will prove to us that sampling distributions are

approximately normal when certain conditions are met.

- More advanced ways to approximate (out of scope)
 - o qq-plots
 - Chi-Squared Test for Normality

2.5. <u>Normal Random Variable</u>: Calculating <u>probabilities</u> involving normal random variables.

Cumulative Distribution Function (cdf) for Normal Random Variables

$$F(\mathbf{x}) = P(X \le \mathbf{x})$$

$$= \int_{-\infty}^{\mathbf{x}} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y-u)^2}{2\sigma^2}} dy$$

$$= \text{ area under the } f(y) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y-u)^2}{2\sigma^2}} \text{ curve to the left of } \mathbf{x}$$

This is impossible to calculate by hand, so we must use computer/calculator functions to approximate it as best we can.

Go to the unit 8 notebook (section 2.5) to learn how to use Python functions to help answer the following questions below.

<u>Ex</u>: The average height of a woman in the U.S. is about 64" with a standard deviation of 2.5". Assume that the heights of women in the U.S. has a normal distribution.

a. What percentage of women in the U.S. are **at most** 70"? What percentage of women in the U.S. are **shorter than** 70"? If we randomly selected a woman in the U.S. what is the probability that her height is less than 70"?

b. If we randomly selected a woman in the U.S. what is the probability her height is **at least** 70"?

c. If we randomly selected a woman in the U.S. what is the probability her height is **between** 60" and 70"?

2.6. <u>Normal Random Variable</u>: Calculating <u>percentiles</u> involving normal random variables.

Go to the unit 8 notebook (section 2.6) to learn how to use Python functions to help answer the following questions below.

<u>Ex</u>: The average height of a woman in the U.S. is about 64" with a standard deviation of 2.5". Assume that the heights of women in the U.S. has a normal distribution.

d. How tall does a woman in the U.S. have to be in order to be in the top 10% of women's heights?

3. <u>z-scores</u>

<u>Ex:</u>

<u>Population</u>: babies and teenagers <u>Distribution</u>: heights (in)

- Mean = 35"
- Standard deviation = 5"

Probability Density Function

Joe is taller than 75% of the population when measured in inches. If we converted *all* heights to centimeters, would Joe still be taller than 75% of the population?

Probability Density Function

Heights (cm)

3.1. z-score: Definitions

Z-score of an Observation

The **z-score** of an <u>observation x</u> from a population with a given mean and standard deviation is:

$$z - score \ of \ x = \frac{x - mean \ of \ population}{standard \ deviation \ of \ population}$$

<u>Ex:</u>

Suppose Joe is 50" tall. What is the z-score of his height?

Z-score of a Random Variable X

The **z-score** of a random variable X is:

$$z - score \ of \ X = Z = \frac{X - E[X]}{SD[X]}$$

3.2. <u>Z-score</u>: Relationship between a <u>Random Variable X</u> and the <u>z-</u> <u>score of X</u>

In general:

If X is a random variable and $Z = \frac{X - E[X]}{SD[X]}$, then

$$P(X \le x) = P(Z \le \frac{x - E[X]}{SD[X]})$$

Ex: Joe 50" tall and is a member of a population that has an average height of 35" and a standard deviation height of 5".

4. <u>A well-known type of continuous random variable</u>: Standard Normal Random Variable

4.1. Standard Normal Random Variable: Definition

Standard Normal Random Variable:

Definition: A normal random variable is said to be a standard normal random variable if it has:

- mean = _____
- standard deviation = _____

Short-Hand:

Probability Density Function: X is a **standard normal random variable** if and only if

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, for - \infty < x < \infty$$

4.2. Relationship between the <u>z-score of a normal random</u> <u>variables</u> and a <u>standard normal random variable</u>

<u>Ex</u>: Suppose X is a normal random variable and $Z = \frac{X - E[X]}{SD[X]}$.

a. What is E[Z]?

b. What is SD[Z]?

4.3. Calculating <u>probabilities</u> involving standard normal random variables – in Python.

Go to the unit 8 notebook (section 4.3) to learn how to use Python functions to help answer the following questions below.

Ex: What is the probability that a standard normal random variable is between -1.96 and 1.96?

4.4. Calculating <u>percentiles</u> involving standard normal random variables – in Python.

Go to the unit 8 notebook (section 4.4) to learn how to use Python functions to help answer the following questions below.

<u>Ex</u>: What is the value in the standard normal distribution that is greater than 20% of observations?

4.5 <u>Using standard normal random variables</u> to help solve problems involving <u>normal random variables</u> – in Python.

Go to the unit 8 notebook (section 4.5) to learn how to use Python functions to help answer the following questions below.

Ex: The average time it took for all seniors at a local high school to finish a race was 8 minutes. The finishing times followed a normal distribution.

You ran the race in 7 minutes and your time was in the top 20% (ie. your time was higher than 20% of the participants). What was the standard deviation of the finishing times?

5. <u>Representing a Sample Statistic</u> with Multiple Random Variables

Ex: Suppose we have defined the following experiment and random variable as follows.

Experiment: Randomly select an adult female from a population.

<u>A Random Variable for this Experiment</u>: X = height of the *single* randomly selected woman.

Now suppose we set up a new experiment.

<u>New Experiment</u>: Randomly selecting (with replacement) n=3 adult females from the population.

How could we define a random variable that represents the mean height of the three women in the sample?

- <u>Experiment 1:</u> Randomly select an adult female from a population.
 - <u>A Random Variable for this Experiment</u>: X_1 = height of the randomly selected woman.
- <u>Experiment 2</u>: Randomly select an adult female from a population.
 - <u>A Random Variable for this Experiment</u>: X_2 = height of the randomly selected woman.
- Experiment 3: Randomly select an adult female from a population.
 - <u>A Random Variable for this Experiment</u>: X_3 = height of the randomly selected woman.

A Random Variable for this New Experiment:

Sample Statistics

Mathematicatical notation using random variables

Remembering that X is a random variable representing one draw from the population distribution, we represent the sample data as a collection of n independent random draws from the population:

Sample: $X_1, X_2, X_3, ..., X_n$.

Using this notation the sample statistics analogous to the population parameters above can be described mathematically and operationally as follows. In each case the generic form of a pandas function call is given. Substitute the name of data frame for 'df and the name of target variable for 'x'.

Sample mean:

$$ar{X} = rac{1}{n}\sum_{i=1}^n X_i = rac{X_1 + X_2 + X_3 + \dots + X_n}{n}$$

Sample variance:

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2$$

Standard deviation:

$$S = \sqrt{S^2}$$

Proportion ≤ 2:

$$\hat{p} = rac{1}{n} \sum_{i=1}^n \mathbb{1} \{ X_i \leq 2 \} = rac{\# \{ X_i \leq 2 \}}{n}$$

- · Median: Split the sorted data in half
 - 1. Represent sorted data as $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$
 - Middle value if n is odd:

$$M = X_{(n+1)}$$

Average of two middle values if n is even:

$$M = \frac{X_{(\frac{n}{2})} + X_{(\frac{n}{2}+1)}}{2}$$

5.1. Sample Statistics of the Coin Flip Experiment in Python

Ex: Consider our coin toss experiment from Unit 7. This is where we keep flipping a coin until we get a head.

We let X = number of flips until stopping.

We also learned that $X \sim Geom(p = 0.5)$.

Suppose we decided to repeat this coin flip experiment multiple 20 times, we can represent

 X_i = number of flips in the ith experiment until stopping

Go to the unit 8 notebook (section 5.1) to generate a random value for each X_i . Use these values to generate a random values for:

- $\bar{X} = \frac{X_1 + X_2 + \dots + X_{20}}{20}$: the mean number of flips until stopping from the 20 experiments
- *M*: the median number of flips until stopping from the 20 experiments
- S: the standard deviation number of flips until stopping from the 20 experiments
- P_2 : the proportion of the 20 experiments in which the number of flips (until stopping) was at most 2.

Also use these values to generate a random sample distribution.