Unit 11 Notebook: Inference for 11; — 1o and
P1 — P2

Case Study Lead Poisoning and Childhood 1Q Analysis

Is there an association between childhood lead exposure and I1Q?

Case Study Political Affiliation and Approval of the Direction the
Country is Going in Analysis

Is there an association between political party and approval for the direction the country is going in (in 2017)?

In [1]: dimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt



1. Two main types of inference for unknown population
parameters.

See Unit 11 slides (section 1)

2. How to better account for the additional uncertainty introduced
p); having?to estimate additional parameters in probability and
inference?

2.1. Issues with plugging in s for o

See Unit 11 slides (section 2.1)

2.2 .t-score of a sample mean

See Unit 11 slides (section 2.2)

2.3 .distribution of t-scores (under certain conditions)
See Unit 11 slides (section 2.3)

2.4 t-distribution

See Unit 11 slides (section 2.4)

Ex: Calculate the probability that a t-score (that is an observation from the t-distribution with 20 degrees of
freedom) is greater than 1.96.

P(Ty > 1.96) = 0.032

In [2]: from scipy.stats import t
1-t.cdf(1.96, df=20)

Out[2]: ©.83203912650178853



Ex: Calculate the t-score that creates a right tail area of 0.025 under the t-distribution with 20 degrees of
freedom.

What is the value of ¢ in which P(T5 > t) = 0.025?

Answer: t = 2.086.

In [3]: t.ppf(0.975, df=20)

Out[3]: 2.0859634472658364



Ex: Suppose we know that the average GPA of ALL UIUC students is 3.3. We then randomly select 20 UIUC
students and find that they have a sample mean GPA of 3.5 and a standard deviation of 0.3. Suppose that the
distribution of all UIUC student GPAs is approximately normal. Calculate the probability (the most accurate one)
of randomly selecting a sample mean that is greater than or equal to the sample mean that we collected.

Givens:
e =233
e n—=20
e =235
e s=20.3

« X ~ N(mean = p = 3.3, std = 0 =7)

Shape of the Sampling Distribution: We know that the sampling distrbution (of sample means) is normal

X ~ N(mean = p = 3.3, std = Lﬁ =7) because the Central Limit Theorem conditions (for sample

v

means) below hold:

1. the sample is randomly collected
2.n = 20 < 10% of all UIUC population
3. A=26>36 OR the population distribution (equivalently the sample distribution) is normal.

Finding_the Probability:

Because X is normal, then the following holds:

P(X > 3.5) ~ P(T,, > 222 = P(Tyy > 32333) = P(Tyy > 2.98) = 0.0038
v VI

In [4]: tscore=(3.5-3.3)/(9.3/np.sqrt(20))
tscore

Out[4]: 2.9814239699997227

In [5]: 1-t.cdf(2.98, df=19)

Out[5]: ©.003847401121239824



3. Properties of the Sampling Distribution of Sample Mean
Differences

See Unit 11 slides (section 3)
3.1 Mean

See Unit 11 slides (section 3.1)
3.2 Standard Deviation

See Unit 11 slides (section 3.2)

3.3. When is it normal?

See Unit 11 slides (section 3.3)

4. (23)onducting Inference on a Population Mean Difference (u_1-
H_

4.1. Creating a confidence interval for y_1-u_2

See Unit 11 slides (section 4.1)

Case Study Lead Poisoning and Childhood 1Q Analysis

Is there an association between childhood lead exposure and 1Q in all children?

What is a plausible range of values for y;, — p;, the difference in the average 1Q

score of children with low lead level exposure and the average I1Q score of
children with high lead level exposure?

4.1.1. First let's read in a random sample that was collected comprised of children that were exposed to a
'low' amount of lead and children that were exposed to a 'high' amount of lead.

In [6]: df = pd.read_csv('lead.csv')[['group', 'fulliq']]

In [7]: df.head()

Out[7]:
group fulliq

0 lead <40 70
1 lead <40 85
lead < 40 86

lead < 40 76

A OWODN

lead <40 84

4.1.2 Next, let's create two subsets of this dataframe to create our two separate low and high exposure
level samples.

In [8]:  # Extract the two subgroups from the data
low = df['fulliq'][df['group']=="1lead < 40']
high = df['fulliq'][df['group']=="lead >= 40']



In [9]: low.head()

out[9]: @ 70
1 85
2 86
3 76
4 84

Name: fulliq, dtype: int64

In [10]: high.head()

out[18]: 63 82

64 93
65 85
66 75
67 85

Name: fulliq, dtype: int64

4.1.3 Next, lets collect the sample means, sample standard deviations, and sample sizes.

In [11]: n_lo=len(low)
mean_lo=low.mean()
std _lo=low.std()

print('Sample Size of Low Exposure Children:', n_lo)
print('Sample Mean of Low Exposure Children:', mean_lo)
print('Sample Standard Deviation of Low Exposure Children:', std_lo)

Sample Size of Low Exposure Children: 78
Sample Mean of Low Exposure Children: 92.88461538461539
Sample Standard Deviation of Low Exposure Children: 15.34451191644902

In [12]: n_hi=len(high)
mean_hi=high.mean()
std _hi=high.std()

print('Sample Size of High Exposure Children:', n_hi)
print('Sample Mean of High Exposure Children:', mean_hi)
print('Sample Standard Deviation of High Exposure Children:', std_hi)

Sample Size of High Exposure Children: 46
Sample Mean of High Exposure Children: 88.02173913043478
Sample Standard Deviation of High Exposure Children: 12.206535827507023

In [13]: high.hist(color="orange")
plt.title('High Exposure Sample')
plt.xlabel('IQ score')
plt.ylabel('Relative Frequency')
plt.show()
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This sample distribution is not normal (not unimodal and symmetric).



In [14]: 1low.hist(color='orange")
plt.title('Low Exposure Sample')
plt.xlabel('IQ score')
plt.ylabel('Relative Frequency')
plt.show()
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This sample distribution is also not normal (not unimodal and symmetric).

4.1.4 Next, let's check the Central Limit Theorem conditions (for sample mean differences) to see if we
can make valid interpretations and inferences with our confidence interval

1. Sample with low lead exposures children is randomly sampled.

2. ny, = 78 < 10% of all children who have had low levels of lead exposure.

3. Sample with high lead exposures children is randomly sampled.

4. np; = 46 < 10% of all children who have had high levels of lead exposure.

5 ny,; = 78 > 30 OR the-poputation{orsample)distribution-efHewleadevele
approximately-normat

6. ny, = 46 > 30 OR

approximately-rormatk:

7. We can assume that there is no pairwise relationship between the children in both groups in this sample.

All of the conditions are met, so we can proceed with creating a confidence interval.



4.1.5. Let's make a 95% confidence interval for p;, — py;.
We don't know o, and o},;, so we will use the the t-distribution to create our critical value in this case.

Specifically we will use a t-score from the t-distribution with
df = min{n, — L,ny — 1} = min{78 — 1,46 — 1} = 45.

We want this to be the positive t-score t}; in this distribution that creates an area of 0.95 between —t7. and ¢};.

In [15]: critical_value=t.ppf(0.975, df=45)
print('Critical Value: ',critical_value)

Critical Value: 2.0141033848332923
In [16]: point_estimate=mean_lo-mean_hi
print('Point Estimate: ', point_estimate)
Point Estimate: 4.862876254180605
In [17]: standard_error=np.sqrt((std_lo**2)/n_lo + (std_hi**2)/n_hi)
print('Standard Error: ', standard_error)

Standard Error: 2.5015518278825826

In [18]: 1lower_bound=point_estimate-critical_value*standard_error
upper_bound=point_estimate+critical value*standard_error

print('95% Confidence Interval:', lower_bound,upper_bound)

95% Confidence Interval: -0.1755077496936135 9.901260258054824

4.1.6 Let's interpret this confidence interval.

We are 95% confident that p;, — pp; is between -0.1755 and 9.901.



4.2. Conducting a hypothesis test to test the claim 1y — p2 # 0
See Unit 11 slides (section 4.2)

4.3. Conducting a hypothesis test to test the claim p; — uo # 0- with a p-value (if
you know o1 and o9

See Unit 11 slides (section 4.3)

4.4. Conducting a hypothesis test to test the claim 1 — p2 # 0 - with a p-value
(if you DON'T know o7 and o2

See Unit 11 slides (section 4.4)

4.5. Conducting a hypothesis test to test the claim p; — 2 7 0 - with confidence
intervals

See Unit 11 slides (section 4.5)

We would now like to test that claim that there is an association between lead exposure and childhood I1Q
score, which can be represented as the claim 1y, — up; 7 0.

4.5.1. Formulate null and alternative hypotheses.

To test this claim we can first formulate our null and alternative hypotheses.
Hy: po = ppi = 0
Hy :pyo — pps 70

4.5.2. Next, we should check our Central Limit Theorem conditions (for sample mean differences) to
make sure that the decisions that we make with our hypothesis testing procedure are valid.

1. Sample with low lead exposures children is randomly sampled.

2. ny, = 78 < 10% of all children who have had low levels of lead exposure.

3. Sample with high lead exposures children is randomly sampled.

4. np; = 46 < 10% of all children who have had high levels of lead exposure.

5. ny;, = 78 > 30 OR thepopulatisntorsample)distribution-oflow
approximately-normat:

6. n;,, = 46 > 30 OR
approximately-nrormat:

7. We can assume that there is no pairwise relationship between the children in both groups in this sample.

All of the conditions are met, so we can proceed with conducting this hypothesis test.

4.5.3. Next we can calculate the p-value.

We don't know o, and o};, so we will calculate the t-score of our point estimate (x;, — xj;) and use the t-
distribution df = min{n;, — 1,ny; — 1} = min{78 — 1,46 — 1} = 45 to calculate our p-value
probability.

92.88—88.02)—(0)

p — value = 2P(T}; > |(£lo_jhi1_(mz_uhi) ) =2P(Tys > |M|) = 2P(Ty; > |1
Slo . Shi S0 Shi 15.342 +124212

o | Mg W, | T 8 46




In [19]: test_stat=(point_estimate-0)/standard_error
print('Test statistic (ie. t-score of the point estimate):',test_stat)

Test statistic (ie. t-score of the point estimate): 1.9439438351740033

In [20]: pvalue=2*(1-t.cdf(np.abs(test stat), df=45))

print('p-value: ',pvalue)

p-value: ©0.05817070511445488

4.5.4 Finally, let's make a conclusion with our p-value, using a significance level of o = 0.05.

Because p — value = 0.058 > a = 0.05, we fail to reject the null hypothesis. Thus, we do not have sufficient
evidence to suggest that t;, — pp; 7 0 (or that there is an association between lead exposure and childhood
I1Q score).

4.5.5. Let's also use our 95% confidence interval from section 4.1 to make a conclusion as well about
these hypotheses.

Because the null value (0) in our hypotheses is inside our 95% confidence interval (-0.176,9.901), we fail to
reject the null hypothesis. Thus, we do not have sufficient evidence to suggest that tt;, — pp; 7 0 (or that there
is an association between lead exposure and childhood 1Q score).



5. Properties of the Sampling Distribution of Sample Proportion
Differences

See Unit 11 slides (section 5)
5.1 Mean

See Unit 11 slides (section 5.1)
5.2 Standard Deviation
See Unit 11 slides (section 5.2)
5.3. When is it normal?

See Unit 11 slides (section 5.3)

6 Conducting Inference on a Population Proportion Difference (
p1 — p2)

6.1. Creating a confidence interval for p; — p2

See Unit 11 slides (section 6.1)

6.2. Conducting a hypothesis test to test the claim p; — ps # 0
See Unit 11 slides (section 6.2)

6.3. Conducting a hypothesis test to test the claim p; — ps # 0- with a p-
value

See Unit 11 slides (section 6.3)

6.4. Conducting a hypothesis test to test the claim p; — ps # 0 - with confidence
intervals

See Unit 11 slides (section 6.4)

Case Study Political Affiliation and Approval of the Direction the Country is
Going In

We would like to know if there is an association between political affiliation and opinion on the direction that the
country is going in for all adults living in the U.S.?

Another way of asking this would be to test the claim pge,, — Drep = 0 in which:

* Ddem = proportion of all democrats living in the U.S. that approve of the direction the country is going in
* Prep = proportion of all republicans living in the U.S. that approve of the direction the country is going in

6.4.1 First let's read in the 2017 Pew dataset which contains a random sample of democrats and their
opinions on this question and a random sample of republicans and their opinion on this question.



In [21]: missing_values = ["NaN", "nan", "Don't know/Refused (VOL.)"]

dfpew = pd.read_csv('Febl7public.csv', na_values=missing_values)
dfpew[['q2', 'party']].head(10)

Out[21]:
q2 party

0 Dissatisfied Independent

1 Dissatisfied Democrat
2 Dissatisfied Independent
3 Satisfied  Republican
4 Dissatisfied Democrat
5 Dissatisfied Democrat
6 Satisfied Independent

~

Dissatisfied = Republican
8 Satisfied Independent
9 Dissatisfied Independent

Here is how the results breakdown by party affiliation:

In [22]: pd.crosstab(dfpew[ 'party'], dfpew['qg2'])

out[22]:

q2 Dissatisfied Satisfied

party
Democrat 444 68
Independent 360 153
No preference (VOL.) 21 14
Other party (VOL.) 4 1
Republican 157 192

6.4.2 Next, let's calculate the sample proportions and the sample sizes.

We don't need fancy statistics to see that there was an enormous difference between Democrats and
Republicans on this issue. Their respective rates of satisfaction of the way things are going in 2017 were:

In [23]:  # Extract ql responses for democrats and republicans
dem = dfpew['qg2’'][dfpew[ 'party']=="Democrat’]
rep = dfpew['q2'][dfpew[ 'party']=="Republican']

In [24]:  # calculate approval proportions
p_dem = sum(dem=='Satisfied')/dem.shape[0]
p_rep = sum(rep=="'Satisfied')/rep.shape[0]

In [25]: # display results
print('Democrats: approval rate =', round(p_dem, 3))
print('Republicans: approval rate ="', round(p_rep, 3))

Democrats: approval rate = 0.128
Republicans: approval rate = 0.516

In [26]: n_dem=dem.shape[0]
n_rep=rep.shape[9]



In [27]: print('Democrats: sample size =", n_dem)
print('Republicans: sample size ="', n_rep)

Democrats: sample size = 530
Republicans: sample size = 372

6.4.3 Next, let's check the Central Limit Theorem conditions (for sample proportion differences).

Note: Because we do not know p; and ps we will plug in the corresponding sample proprotions in instead (131
and p,) in these conditions.

1. myp; =~ nyp; = 530(.128) => 10 and ny(1 — p;) =~ ny(1 —p;) = 530(1 — .128) => 10

2. naPy & NPy = 372(.516) => 10 and ny(1 — py) = ny(1 — py) = 372(1 — .516) => 10

3. Sample of democrats is randomly selected and n 4., = 530 < 10% of all democrats living in the U.S.
4. Sample of republicans is randomly selected and n,., = 372 < 10% of all republicans living in the U.S.
5. Sample of democrats is independent of sample of republicans.

All of the conditions hold, so we can proceed with conducting hypothesis testing and creating a confidence
interval for Pgem — Prep-

6.4.4. Let's calculate the p-value for this test.

Note: Because we do not know p; and ps we will plug in the corresponding sample proprotions in instead (161
and p,) JUST IN THE STANDARD ERROR.

_ Ua,lue — 2P (pdem prep) (pdem prep)
Pdem (1-Pdem ) Prep(L—Prep)
Tdem nrep

— 2P(Z Z ‘ (ﬁdem_ﬁrep)_(o)

\/ I; dem(lfls dem) I; 'rep(lfl; rep)

dem Trep

(.128—.516)—(0
| )—(0) )

—2P(Z >
\/.128(1—.128) N 516(1—.516)

530 372
= 2P(Z > 13.056)
~ 0.
In [28]: point_estimate=p_dem-p_rep
print('Point Estimate:', point_estimate)
Point Estimate: -0.3878271454656117
In [29]: standard_error = np.sqrt(p_dem*(1-p _dem)/n_dem + p_rep*(1l-p_rep)/n_rep)
print('Standard Error:', standard_error)

Standard Error: 0.029704604517991694

In [30]: test_statistic=(point_estimate-0)/standard_error
print('Test Statistic (ie. the z-score of the point estimate):', test statisti

<)

Test Statistic (ie. the z-score of the point estimate): -13.056128898491473

In [31]: from scipy.stats import norm
pvalue=2*(1-norm.cdf(np.abs(test_statistic)))

print('p-value:', pvalue)

p-value: 0.0



6.4.5. Make a conclusion with your p-value using a significance level of o = 0.10.

Because p — value ~ 0 < a = 0.10, we reject the null hypothesis. Thus we do have sufficient evidence to
suggest that pgen, — Drep = 0 (or in other words there is an association between political party and approval for
the direction that the country is going in in 2017 for all adults living in the U.S.)

6.4.6 Make a 90% confidence interval for pi.,, — Dyep-

First we need to check the Central Limit theorem conditions (for sample proportion differences).

Note: Because we do not know p; and ps we will plug in the corresponding sample proprotions in instead (131
and p,) in these conditions as well as the standard error.

1. npp = nyp; = 530(.128) => 10 and ny(1 — p;) =~ ny(1 — p;) = 530(1 — .128) => 10

2. naPy X NPy = 372(.516) => 10 and ny(1 — py) ~ ny(1l — py) = 372(1 — .516) => 10

3. Sample of democrats is randomly selected and 14, = 530 < 10% of all democrats living in the U.S.
4. Sample of republicans is randomly selected and n,.., = 372 < 10% of all republicans living in the U.S.
5. Sample of democrats is independent of sample of republicans.

All of the conditions hold, so we can proceed with conducting hypothesis testing and creating a confidence
interval for Pgem — Prep -

The critical value for this 90% confidence interval is the positive z-score z* that creates an area of 0.90 between
—z* and z* under the standard normal distribution.

In [32]: critical_value=norm.ppf(0.95)
print('Critical Value:', critical_value)

Critical Value: 1.6448536269514722
In [33]: point_estimate=p_dem-p rep
print('Point Estimate:', point_estimate)
Point Estimate: -0.3878271454656117
In [34]: standard_error = np.sqrt(p_dem*(1-p_dem)/n_dem + p_rep*(1l-p_rep)/n_rep)
print('Standard Error:', standard_error)

Standard Error: 0.029704604517991694



In [35]: lower_bound=point_estimate-critical value*standard_error
upper_bound=point_estimate+critical value*standard_error

print('90% Confidence Interval:', lower_bound,upper_bound)

90% Confidence Interval: -0.4366868719441894 -0.338967418987034

6.4.7 Use this 90% confidence interval to make a conclusion about your null and alternative
hypotheses.

Because the null value (0) for these hypothesis is not in the confidence interval range, we reject the null
hypothesis. Thus we do have sufficient evidence to suggest that pge, — Drep # 0 (or in other words there is an
association between political party and approval for the direction that the country is going in in 2017 for all adults
living in the U.S.)

STAT 207, Victoria Ellison and Douglas Simpson, University of lllinois at Urbana-Champaign

In [ ]:



