Unit 12 Notebook: Simple Linear Regression

Case Study Mother and Daughter Height Analysis

Is there an association between a mother's height and her daughter's height?

 In the sample?
« In the population?
» Can we use predict the height of a daughter given the height of her mother?

We will explore a dataset or randomly selected pairs of mother and daughter heights.

Primary modeling package: statsmodels

To install statsmodels from the anaconda command line:

conda install -c conda-forge statsmodels

In [1]: dimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()



1. Analyses for Association

See Unit 12 slides (section 1)

2. Association Analysis Summary
Explanatory: Numerical

Response: Numerical

See Unit 12 slides (section 2)

3. Basic Descriptive Analytics - Two Numerical Variables

3.1. Visualizations

In [2]: df = pd.read_csv('heights.txt', sep=" ")
df.head()

Out[2]:
Mheight Dheight

0 59.7 55.1

1 58.2 56.5
2 60.6 56.0
3 60.7 56.8
4 61.8 56.0

In [3]: df.shape

out[3]: (1375, 2)



In [4]: df.describe()

Out[4]:
Mheight Dheight

count 1375.000000 1375.000000
mean 62.452800 63.751055
std 2.355103 2.600053
min 55.400000 55.100000
25% 60.800000 62.000000
50% 62.400000 63.600000
75% 63.900000 65.600000
max 70.800000 73.100000

3.1.1 Individually Examining Each Numerical Variable
We can explore each of these numerical variables individually.
In [5]: df.hist()
plt.show()
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3.1.2 Scatterplots

However if we want to visually examine the relationship between the two categorical variables we can use a
scatterplot.



In [6]: df.plot.scatter(x="Mheight', y='Dheight', c="b")
plt.show()
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3.1.3 Describing the Relationship between two Numerical Variables

What can we say about this relationship?

When visualizing the relationship between two numerical varibles there are four things that we should be ready
to discuss.

1. What is the direction of the relationship?

» Forinstance, this relationship is going up and to the right, therefore it is a positive relationship.
2. What is the shape of the relationship?

» For instance, if we were to draw a "best fit" curve running through the points in this plot, it would be
linear. Therefore this is a linear relationship.
3. What is the strength of this relationship?

» For instance, the points in this relationship do not perfectly fall on this "best fit" curve that we would
have drawn, so it is not a STRONG relationship. However, we do see some pattern to the relationship.
So we can say that this is a moderate relationship.
4. Are there any outliers in the data?

« If there are any points that fall far away from the main cloud of data, then we could classify this as an
outlier. In this. However, this particular dataset does not seem to have any outliers.

3.1.4 Scatterplot with a Best Fit Line



In [7]:

sns.regplot(x="Mheight', y='Dheight’, data=df, ci=False)
plt.show()
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3.2. Summary Statistics

See Unit 12 slides (section 3.2)

How do we numerically quantify the relationship between these two numerical variables?

3.2.1 Covariance of Two Numerical Variables

Below is the covariance matrix of the two numerical variables.

The diagonal entries represent the covariance between the mother height and daughter height (3.005). The
covariance matrix also gives the variance for the mother heights (5.5465) and the variance for the daughter

heights (6.76).

Because the covariance is positive we can see that there is a positive relationship between the two numerical

variables.

In [8]:

out[8]:

In [9]:

Out[9]:

df.cov()

Mheight Dheight

Mheight 5.546511 3.004806

Dheight 3.004806 6.760274

cov=df.cov().iloc[0,1]
cov

3.0048059970887917



3.2.2 Correlation Coefficient (R)

Below is the correlation matrix of the two numerical variables.
The diagonal entries represent the correlation (R) between the mother height and daughter height (0.49).

Because the correlation is positive we can see that there is a positive relationship between the two numerical
variables.
In [10]: df.corr()

Out[10]:
Mheight Dheight

Mheight 1.000000 0.490709

Dheight 0.490709 1.000000
In [11]: rxy = df.corr().iloc[0,1]
rxy

Out[11]: ©.49070936145753397

Should we use the correlation coefficient above to quantify the strength and direction of the relationship
between mother and daughter heights?

If so, interpret this correlation coefficient.



4. Modeling: Ordinary Least Squares Regression - Simple Linear
Regression -> Just One Slope

4.1. Finding a Best Fit Line

See unit 12 slides (section 4.1)

4.1.1. Calculate the slope and intercept of a simple linear regression line "by hand."

In [12]: df.mean()

Out[12]: Mheight 62.452800
Dheight 63.751055
dtype: float64

In [13]: mean_x=df.mean().loc[ "Mheight']
print('Explanatory Variable Mean:',mean_x)

mean_y=df.mean().loc[ 'Dheight"]
print('Response Variable Mean:',mean_y)

Explanatory Variable Mean: 62.4528
Response Variable Mean: 63.75105454545446
In [14]: df.std()

Out[14]: Mheight 2.355103
Dheight 2.600053
dtype: float64

In [15]: std_x=df.std().loc[ 'Mheight']
print('Explanatory Variable Mean:',std_x)

std_y=df.std().loc[ 'Dheight']
print('Response Variable Mean:',std_y)

Explanatory Variable Mean: 2.355103276089619
Response Variable Mean: 2.6000526210817

In [16]: print('Correlation (R): ',rxy)

Correlation (R): ©.49070936145753397
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In [17]: slope=rxy*(std_y/std_x)
print('Slope:', slope)

Slope: 0.5417470114369786
In [18]: intercept=mean_y-slope*mean_x
print('Intercept:', intercept)

Intercept: 29.91743678958312

4.1.2. Finding the slope and intercept of a simple linear regression line with Python output.

Fitting a regression model and summarizing it

We import the formula api from the statsmodels library and then fit a simple linear regression model.

In [19]: import statsmodels.api as sm
import statsmodels.formula.api as smf

This step fits the model and creates an object containing the results.

In [20]: results = smf.ols('Dheight ~ Mheight', data=df).fit()

Using the .summary() function, we can display an organized summary of the fitted model. The summary includes
various quantitiative features of the model fit as well as a summary table for the model coefficient estimates,
standard errors and coefficient t tests.



In [21]: results.summary()

Out[21]: OLS Regression Results
Dep. Variable: Dheight R-squared: 0.241
Model: OoLS Adj. R-squared: 0.240
Method: Least Squares F-statistic: 435.5

Date: Thu, 25 Mar 2021 Prob (F-statistic): 3.22e-84

Time: 12:37:08 Log-Likelihood: -3075.0
No. Observations: 1375 AlC: 6154.
Df Residuals: 1373 BIC: 6164.
Df Model: 1
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]

Intercept 29.9174 1.622 18.439 0.000 26.735 33.100

Mheight 0.5417 0.026 20.868 0.000 0.491 0.593

Omnibus: 1.412 Durbin-Watson: 0.126
Prob(Omnibus): 0.494 Jarque-Bera (JB): 1.353
Skew: 0.002 Prob(JB): 0.508

Kurtosis: 3.154 Cond. No. 1.66e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.66e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

Extracting individual pieces information from the results

If we want individual tables from the results summary we can access them as follows:



In [22]: results.summary().tables[0]

Out[22]: OLS Regression Results
Dep. Variable: Dheight R-squared: 0.241
Model: OoLS Adj. R-squared: 0.240
Method: Least Squares F-statistic: 435.5

Date: Thu, 25 Mar 2021 Prob (F-statistic): 3.22e-84

Time: 12:37:08 Log-Likelihood: -3075.0
No. Observations: 1375 AlC: 6154.
Df Residuals: 1373 BIC: 6164.
Df Model: 1
Covariance Type: nonrobust

In [23]: results.summary().tables[1]

Out[23]: coef std err t P>t| [0.025 0.975]
Intercept 29.9174  1.622 18.439 0.000 26.735 33.100
Mheight 05417 0.026 20.868 0.000 0491 0.593

The following command gives a listing of all the the individual pieces of information we could extract from the ols
results object:



In [24]: dir(results)



Out[24]: ['HCe_se',
'HC1_se',
'HC2_se',
'"HC3_se',
' HCCM',

_class__ ',
' _delattr__ "',
' dict_ ',

__dir__",

__doc__",
_eq_",
__format__ "',

‘_ge_ ',
__getattribute_ ',
_gt_ ",
__hash__",
__init_ ',
__init_subclass__',
_le_ ",

At Y,
__module__ ',

' _ne_ ",

new

—_— )

__reduce__ ",
__reduce_ex__ ",
__repr__",
__setattr__ ',

__sizeof_ ',
' _str_ ',
__subclasshook__ ",
__weakref__ ',
_abat_diagonal',

' _cache’,

'_data_attr',

' _data_in_cache’,
_get_robustcov_results’,
' _is_nested’,

'_use_t',
_wexog_singular_values',
'aic',

'bic',

'bse’,

‘centered_tss',
'compare_f_test’,
"compare_1lm_test’,
'compare_lr_test',
'condition_number’,
'conf_int',
'conf_int_el’,

'cov_HCe',

'cov_HC1',

'cov_HC2',

'cov_HC3',

‘cov_kwds",

‘cov_params',

‘cov_type',

'df_model’,



'df_resid’,
‘diagn’,
'eigenvals’',
'el_test’,

'ess’,
'f_pvalue’,
'f_test’,
"fittedvalues',
'fvalue',
'get_influence’,
'get_prediction’,
'get_robustcov_results’,
'initialize’,
'k_constant',
117,

'load’,

"model’,
'mse_model",
'mse_resid"',
'mse_total’,
‘nobs"’,
'normalized_cov_params',
‘outlier_test’,
"params’,
'predict’,
'pvalues’,
"remove_data’',
'resid’,
'resid_pearson’,
'rsquared’,
'rsquared_adj’',
'save',

‘scale’,

'ssr',

'summary’,
'summary2',
't_test’,
't_test_pairwise’,
"tvalues’,
‘uncentered_tss',
'use_t',
'wald_test',
'wald_test_terms’,
‘wresid’]



In [25]: results.summary()

Out[25]: OLS Regression Results
Dep. Variable: Dheight R-squared: 0.241
Model: OoLS Adj. R-squared: 0.240
Method: Least Squares F-statistic: 435.5

Date: Thu, 25 Mar 2021 Prob (F-statistic): 3.22e-84

Time: 12:37:08 Log-Likelihood: -3075.0
No. Observations: 1375 AlC: 6154.
Df Residuals: 1373 BIC: 6164.
Df Model: 1
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]

Intercept 29.9174  1.622 18.439 0.000 26.735 33.100

Mheight 0.5417 0.026 20.868 0.000 0.491 0.593

Omnibus: 1.412 Durbin-Watson: 0.126
Prob(Omnibus): 0.494 Jarque-Bera (JB): 1.353
Skew: 0.002 Prob(JB): 0.508

Kurtosis: 3.154 Cond. No. 1.66e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.66e+03. This might indicate that there are

strong multicollinearity or other numerical problems.



Use the table above to find the slope and intercept of the best fit line. Then use these to formulate your
simple linear regression model.

4.2. Evaluating the Model Fit

See Unit 12 slides (section 4.2)

Ex: Use the model output to find the R? of the model.



In [26]: results.summary()

Out[26]: OLS Regression Results
Dep. Variable: Dheight R-squared: 0.241
Model: OoLS Adj. R-squared: 0.240
Method: Least Squares F-statistic: 435.5

Date: Thu, 25 Mar 2021 Prob (F-statistic): 3.22e-84

Time: 12:37:08 Log-Likelihood: -3075.0
No. Observations: 1375 AlC: 6154.
Df Residuals: 1373 BIC: 6164.
Df Model: 1
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]

Intercept 29.9174  1.622 18.439 0.000 26.735 33.100

Mheight 0.5417 0.026 20.868 0.000 0.491 0.593

Omnibus: 1.412 Durbin-Watson: 0.126
Prob(Omnibus): 0.494 Jarque-Bera (JB): 1.353
Skew: 0.002 Prob(JB): 0.508

Kurtosis: 3.154 Cond. No. 1.66e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.66e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

In [27]: results.rsquared

Out[27]: ©.24079567742206165



What percent of total variability of the daughter heights is explained by the model (or mother
heights)?

What percent of total variability of the daughter heights is NOT explained by the model (or mother
heights)?

5. Conducting Inference for the Population Slope(s) and
Population Intercept of a Simple Linear Regression Line for the
Population Data

See Unit 12 slides (section 5)

5.1. Properties of the Sampling Distribution of Sample Slopes

See Unit 12 slides (section 5.1)

5.2. Checking the Conditions for Population Slope/Coefficient Inference

See Unit 12 slides (section 5.2)

Ex: Check the conditions for conducting simple linear regression inference on the slope and intercept of our
model that predicts daughter height with mother height.

R 2 1 | inearitv Canditinn



Is a linear model a good fit for the data?

In order for multiple linear regression model to be a good fit of the data as well as for accurate inferences to be
made (using the methods we discussed above), the first condition that must be satisfied is that there must be a
linear relationship between the explanatory variables and the response variable.

How to check condition 1 by plotting residuals versus fitted values.

In the analysis of the heights data, the directory of component methods for the OLS results includes 'resid' and
'fittedvalues' among many others.

In [28]: results.fittedvalues

Out[28]: o 62.259733
1 61.447113
2 62.747306
3 62.801480
4 63.397402

1370 67.352155
1371 65.130993
1372 65.835264
1373 68.273125
1374 64.047499
Length: 1375, dtype: float64

In [29]: results.resid

Out[29]: o -7.159733
1 -4.947113
2 -6.747306
3 -6.001480
4 -7.397402
1370 2.747845
1371 6.469007
1372 5.564736
1373 2.726875

1374 9.052501
Length: 1375, dtype: float64d

Fitted Values vs. Residuals Plot



In [30]: plt.scatter(results.fittedvalues, results.resid)
plt.hlines(y=0, xmin=np.min(results.fittedvalues), xmax=np.max(results.fittedv
alues))
plt.ylabel('Residual')
plt.xlabel('Fitted Value')
plt.show()
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Result for our data: The points are roughly evenly distributed above and below the x-axis in the fitted values vs.
residuals plot (for all ranges along the x-axis). Thus the linearity condition is met.

5.2.2 Constant Variance of Residuals Condition

Needed for inference

In order for our multiple linear regression model to make accurate inferences (using the methods we discussed
above), the next condition that must be satisfied is that the variance of the residuals must remain constant (for all
fitted values.

To check this condition, we can use the same plot as the one used for checking the linearity condition.

Fitted Values vs. Residuals Plot



In [31]:

Interpreting:

plt.scatter(results.fittedvalues, results.resid)

plt.hlines(y=0, xmin=np.min(results.fittedvalues), xmax=np.max(results.fittedv
alues))

plt.ylabel('Residual')
plt.xlabel('Fitted Value')
plt.show()
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» The constant variance of the residuals condition is met if the y-axis ranges of the points remains constant as
you move from right to left in fitted values vs. residuals plot.

In [32]:

plt.scatter(results.fittedvalues, results.resid)

plt.hlines(y=0, xmin=np.min(results.fittedvalues), xmax=np.max(results.fittedv
alues))

plt.ylabel('Residual')
plt.xlabel('Fitted Value')
plt.show()
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Result for our data: For the most part (except for on the edges) the y-axis ranges of the points in our fitted
value vs. residuals plots stays around 10 (ie around [-5,5]). So the consant variance of residuals condition is
mostly met.

5.2.3 Residuals are Normal Distributed (with Mean of 0)

For inference

In order for our multiple linear regression model to make accurate inferences (using the methods we discussed
above), the next condition that must be satisfied is that the residuals must be normally distributed and must have
a mean of zero.

To check this condition, we can look at a histogram of the residuals.

In [33]: plt.hist(results.resid)
plt.xlabel('Residuals")

plt.show()
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How to check condition 3 by plotting the histogram of the residuals.

Plot the histogram of the residuals.

Interpreting:

» We can assume that this condition is met if the shape of the histogram is roughly symmetric and unimodal
and is centered at 0.

Result for our data: Our histogram of residuals is roughly symmetric, unimodal, and centered at 0. Therefore
the condition in which the residuals are normally distributed with a mean of 0 is met.



5.2.4. Independence of Residuals

At the very least, we verify that:

 the data is randomly sampled and
 the sample size n=1375<10% of all mother/daughter pairs.

Thus the condition for independence of residuals may not be violated in this particular way.

However, it may still be the case that these residuals are not independent (for other reasons that you will discuss
in later statistics classes).

5.3 Creating a (1 — «) - 100% Confidence Interval for a Population
Slope

See Unit 12 slides (section 5.3)

Ex: Use the simple linear regression output table from Python to create a 95% confidence interval for the
population slope.

In [34]: results.summary().tables[1]

Out[34]: coef std err t P>t| [0.025 0.975]
Intercept 29.9174 1.622 18.439 0.000 26.735 33.100

Mheight 0.5417 0.026 20.868 0.000 0.491 0.593



a.) What is the sample slope ﬁAl for the "Mheight" explanatory variable?

b.) What is the standard error SD(Bl) for the slopes of the "Mheight" explanatory variable?

C.) What is the critical value for a 95% confidence interval for one of these population slopes (or the
population intercept)?

In [35]: 1len(df)

Out[35]: 1375



In [36]: from scipy.stats import t
#t.ppf(1-alpha/2, df=n-p-1)
#n=number of observations
#ip=number of slopes in the regression equation (1 slope in this case... the on
e for MHeight)
critical_value=t.ppf(1-.05/2, df=1375-1-1)
print('Critical Value',critical_value)

Critical Value 1.9616932841053176
In [37]: point_estimate=0.5417
print('Point Estimate (sample slope):', point_estimate)

standard_error=0.026
print('Standard Error (of sample slopes):', standard_error)

lower_bound=point_estimate-critical_value*standard_error
upper_bound=point_estimate+critical_value*standard_error

print('95% Confidence Interval:', lower_bound, upper_bound)

Point Estimate (sample slope): 0.5417
Standard Error (of sample slopes): 0.026
95% Confidence Interval: 0.4906959746132617 ©.5927040253867382

d.) Create a 95% confidence interval for 3;, the POPULATION SLOPE of of the "Mheight" explanatory
variable?

(1 —ty , 1SE; ,B1+ 1, , 1SE;)

(B — t’fs75—1—1‘51E[§1 yB1 + t’16375—1—1SE[§1)

(0.5417 — 1.96(0.026), 0.5417 + 1.96(0.026))
(0.49,0.59)

e.) Interpret this confidence interval.



5.4. Conducting a Hypothesis Test for a Population Slope, Testing
the Claim H 4 : 3; # 0 with a p-value.

See Unit 12 (Section 5.4 slides)

Ex: We would like to test whether there is a linear relationship in the population of ALL mother and daughter
heights. Use the simple linear regression output table to answer the following questions.

1. Conduct Hypothesis Testing for 3;:
HO : /82 =0

HAIBZ#O

2. Make sure the conditions hold for this test.

We already checked the conditions for performing inference on 3; above, and we found that they all hold.

(ie. the linearity condition, the constant variance of residuals condition, the normality of residuals (with mean of 0)
condition, and we will assume that the condition for the independence of residuals condition is met as well).

3. use the table to find the p-value for this test.



In [38]: results.summary()

Out[38]: OLS Regression Results
Dep. Variable: Dheight R-squared: 0.241
Model: OoLS Adj. R-squared: 0.240
Method: Least Squares F-statistic: 435.5

Date: Thu, 25 Mar 2021 Prob (F-statistic): 3.22e-84

Time: 12:37:09 Log-Likelihood: -3075.0
No. Observations: 1375 AlC: 6154.
Df Residuals: 1373 BIC: 6164.
Df Model: 1
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]

Intercept 29.9174 1.622 18.439 0.000 26.735 33.100

Mheight 0.5417 0.026 20.868 0.000 0.491 0.593

Omnibus: 1.412 Durbin-Watson: 0.126
Prob(Omnibus): 0.494 Jarque-Bera (JB): 1.353
Skew: 0.002 Prob(JB): 0.508

Kurtosis: 3.154 Cond. No. 1.66e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.66e+03. This might indicate that there are

strong multicollinearity or other numerical problems.



4. Use the p-value to make a conclusion for these hypotheses.

5. What is the test statistic for this test?

6. Calculate thie test statistic by hand.



In [39]: test stat=(.5417-0)/.026
print('Test Statistic', test_stat)

Test Statistic 20.834615384615383

7. Calculate the p-value by hand (and using your t-distribution object in Python).

In [40]: from scipy.stats import t

#Sample size

n=1375

#Number of slopes in the regression (p=1 just mother height)
p=1

pvalue=2*(1-t.cdf(test_stat, df=n-p-1))
print('p-value:', pvalue)

p-value: 0.0

8. Use your 95% confidence interval from the previous section to make a conclusion about your
hypotheses.

6. Making a prediction with a simple linear regression



Ex: Use your simple linear regression equation to predict the height of a daughter whose mother is 66”.

6.1. First do this by hand.

We can extract the slope(s) and intercept of our regression equation by using the .params attribute.

In [41]: results.params # estimated regression coefficients

Out[41]: Intercept 29.917437
Mheight 0.541747
dtype: float64

What is the daughter's predicted height if her mother's height is 66 inches? Looking at the output we would

compute:

— 29.9174 + 0.5417  (Mheight)

:-&TLG’LU
Ynew = 29.9174 4 0.5417 % 66 = 65.6696

In [42]:  # manual calculation:
29.9174 + 0.5417*66
Out[42]: 65.6696
In [43]: # calculation by extracting parameter estimates:

sum(results.params * [1, 66])

Out[43]: 65.67273954442385

6.2 Make the prediction automatically in Python.

Statmodels has a method for performing this prediction and enhancing it with additionla information. We use the
.predict() function. The argument "exog=" requires a dictionary list of the exogenous (explanatory) variables and

their values.

In [44]: results.predict(exog=dict(Mheight=66))

Outf[44]: o 65.67274
dtype: float64

Verify the results that you got using both ways are the same.



6.3 We can also use this function make multiple predictions at the same time.

What are the heights of daughter's with mother's whose heights are: 60", 68", and 70" respectively?

In [45]: results.predict(exog=dict(Mheight=[60, 68, 70]))

0 62.422257
1 66.756234
2 67.839728
dtype: float64

out[45]:

STAT 207, Victoria Ellison and Douglas Simpson, University of lllinois at Urbana-Champaign



