Unit 12: Simple Linear Regression Modeling

Case Studies:

e Tointroduce the concept of simple linear regression model between
two numerical variables (where one is a response variable and one is
an explanatory variable) we will examine the relationship between
mother and daughter heights.

Purpose of this Lectures

Data Science
Pi pe I i ne & Coding, Ethics, m

—
and Communication

1. Analyses for Associations
2. Association Analyses Summary: Numerical Explanatory Variable-> Numerical Response Variable
3. Basic Descriptive Analytics for the Sample Data
3.1. Visualizations for the relationship between two numerical variables
3.2. Summary statistics for the relationship between two numerical variables
3.2.1. Covariance
3.2.2. Correlation Coefficient (R)
4. Modeling the Sample Data: Ordinary Least Squares Regression — Simple Linear Regression
4.1. Finding a Best Fit Line
4.2. Evaluating the Model Fit
5. Conducting Inference for the Population Slope(s) and Population Intercept of a Simple Linear
Regression Line for the Population Data
5.1. Properties of the Sampling Distribution of Sample Slopes
5.2. Checking the Conditions for Population Slope(s)/Coefficient Inference
5.3. Creating a Confidence Interval for a Population Slope
5.4. Conducting a Hypothesis Test for a Population Slope, Testing the Claim Hy: B; # 0 with a p-value
6. Making a Prediction with a Simple Linear Regression

Additional Resources

Chapter 7 in Diez, Barr, and Cetinkaya-Rundel, (2015), Openintro
Statistics https://www.openintro.org/download.php?file=os3&redirect=/stat/textbook/0s3.php



1. ANALYSES FOR ASSOCIATIONS

Questions to consider, when selecting an analysis to test an association.

Descrlptlve
Analytics

RS

1. Which variable is the response variable in this association?
a. Is it a categorical or numerical variable?
b. Ifit’s a categorical variable, how many levels does it
have?

2. Which variable(s) is the explanatory variable in this
association?
a. Is it a categorical or numerical variable?
b. Ifit’s a categorical variable, how many levels does it
have?

3. How would you quantify this association?
a. Difference between two summary statistics? What two
summary statistics?

b. With a model? What kind of model?

4. Are you interested in an association in a sample or a
population?

5. When is it appropriate to use this test for association?

6. Can you use this model/test to make predictions?
a. How would you quantify the performance of your
predictions?




2. ASSOCIATION ANALYSIS SUMMARY:

RESPONSE:

NUMERICAL

EXPLANATORY: NUMERICAL

Type of Explanatory Variable:
Variables Numerical Variable
Involved in
th_e _ Response Variable:
Association Numerical Variable
Test
Is there an association between |
mother height and daughter height? | %
Example F._ ,
& 'I
S
[ 4
Type of
Association Simple Linear Regression Model
(Way to Quantify (linear relationship between explanatory variable (x) and response variable (y))
Association)

Descriptive

How to Describe
an Association in

a Sample?

1. Covariance

2. Correlation

3. Simple Linear Regression Model:
o J=po+pix
e RZ%of the model

Analytics

When is this
analysis (for the
sample)
appropriate to
use?

Linearity condition is met

How to Infer an
Association for a

Conduct inference on the population parameter B;, where y = 84 + B1x is the
simple linear regression for the population.

Population?
When is this . . e
. 1. Linearity condition is met
analysis (for the . . e
opulation) 2. Constant variance of residuals condition is met.
ap fo riate to 3. Residuals are normal (and centered at 0).
pprop 4. Residuals are independent.
use?
Making Use your simple linear regression line to make predictions 9 = B, + B1x
Predictions
How to quantify
the performance e Individual Data Point: residual
of your e All Data: root mean square error (RMSE)

prediction(s)?




3. BASIC DESCRIPTIVE ANALYTICS FOR SAMPLE DATA — TWO NUMERICAL

VARIABLES

3.1. VISUALIZATIONS

We can use a scatterplot to visualize the association between two numerical variables.

e The explanatory variable usually goes on the x-axis.
e The response variable usually goes on the y-axis.

Mheight

There are four things we should always be prepared to describe about the relationship
between two numerical variables in a dataset.

Ex: Describe the relationship between the
1. The direction of the relationship. mother heights and daughter heights using

the scatterplot above.

2. The shape of the relationship.

3. The strength of the relationship.

4. Are there any outliers in the data.



3.2. SUMMARY STATISTICS

Ex: What is the strength of the linear relationship of mother and daughter heights by looking at the
scatterplot above?

a. No association.

Weak association.

Moderate association.

Moderately strong association

Strong association.

®ao o

Q: How can we guantify the association of a linear relationship such that this qualitative assessment is less

contested?

A: Use the covariance or the correlation (R) of the linear relationship.

Covariance between two numerical variables (in a sample)

If we have a set of numerical variables values (x;, x,, ..., x,) and another set of numerical variable
values (y4, V3, ..., ¥n) The sample covariance between them is defined as:

X = ) — 7)

Sxy =

n—1

Ex: Will (x; —X)(y; —¥) and (x, —X)(y, —¥) be positive or negative (use the image shown
below)? Will we expect the covariance to be positive or negative?

Mhesght

How to interpret:




Ex: If we were to convert the heights to centimeters, would we expect the covariance to increase, decrease, or
stay the same?

Would we expect the relationship to get stronger, get weaker, or stay the same?

Because want a standardized way to measure the strength of a linear relationship between two numerical
variables, we introduce the correlation coefficient (R).

Covariance between two nhumerical variables (in a sample)

If 5 is the standard deviation of the numerical variable values (xy, x,,...,x,,) and s, is the standard
deviation of the numerical variable values (4,5, ..., ¥»), then we can define the correlation between
these two numerical variables as:

Range:

How to interpret:

When to use:



Ex: Use Python to calculate the covariance and correlation coefficient of the relationship between the mother
and daughter heights. Are we allowed to use this correlation coefficient to quantify the strength of direction
of the relationship between the daughter and mother heights?



4. MODELING THE SAMPLE DATA: ORDINARY LEAST SQUARES REGRESSION —

SIMPLE LINEAR REGRESSION —> JUST ONE SLOPE

4.1. FINDING A BEST FIT LINE

9 =By + Pr1x

Q: What is one way to create a “best fit line” for this sample data?

725 o Fitted Values Data

Mheight Dheight

62.259733

2 w0 0 597 551
g o 61.447113 1 58.2 56.5
. 62.747306 2 606 560
. 62.801480 3 607 568
63.397402 4 61.8 56.0

Mheight

A: We can fit an Ordinary Least Squares Regression line to this data.

Goal for Finding the Ordinary Least Squares Regression Line: Find an intercept value f, and a slope $;

for the equation value § = f, + f,x that minimizes

Zn:(yi -9 = Zn:(yl' — (Bo + B1x))?
i=1 i=1

= 1 — (Bo + B1x1))?* + (V2 — (Bo + Br1x2))? + -+ — (Bo + Prxn))?

General Idea: How do we find these optimal values of intercept value $, and a slope 3;that minimize
this equation?



Just for Simple Linear Regression:

When we are dealing with a simple linear regression, the optimal values of Bo and ,[?1 that minimize
(i — 9% = X1 (vi — (Bo + B1x:))? end up being the following:

5 — R
« B =R2

e Bo=y—pi %

Where:

e y:mean of the response variable

e X: mean of the explanatory variable

e sy:standard deviation of the response variable

e s,:standard deviation of the explanatory variable

Ex: Go to the notebook to first calculate the slope and intercept of the ordinary least squares best fit line “by
hand”. Then use this to formulate your line.



Definition: We call (y; — (B, + B1x;) the residual of a given sample data point (x;,¥;).

Definition: After finding the optimal values of our intercept value BO and a slope Bl, we can define the
residual sum of squares (or the sum squared error) as

SSE = Xia(vi = 9)* = Zini i — (Bo + Prx))?.

A simple linear regression line is an ordinary least squares best fit line that has slope.

9 = Po + Prx

Ex: Use the Python code (given in the notebook) to formulate the best fit simple linear regression line
for mother heights and daughter heights.

OLS Regression Results

Dep. Variable: Dheight R-squared: 0.241
Model: OoLS Adj. R-squared: 0.240
Method: Least Squares F-statistic: 4355

Date: Tue, 13 Oct 2020 Prob (F-statistic): 3.22e-84

Time: 00:26:58 Log-Likelihood: -3075.0
No. Observations: 1375 AlC: 6154.
Df Residuals: 1373 BIC: 6164.
Df Model: 1
Covariance Type: nonrobust
coef stderr t P>|t| [0.025 0.975]

Intercept 29.9174  1.622 18.439 0.000 26.735 33.100
Mheight  0.5417 0.026 20.868 0.000 0.491 0.593

Omnibus: 1.412 Durbin-Watson: 0.126

Prob(Omnibus): 0.494 Jarque-Bera (JB): 1.353

Skew: 0.002 Prob(JB): 0.508

Kurtosis: 3.154 Cond. No. 1.66e+03
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.66e+03. This might indicate that there are
strong multicollinearity or other numerical problems.

Notes on Notation for your regression lines:




4.2. EVALUATING THE MODEL FIT

Definition: We can use R? of a given linear regression model to quantify what percent of the

variability of the response variable was explained by the model.

SST-SSE SSE
——— =1 ——, where

Equation: We can calculate R? =
SST SST

® SST=3L,(yi-¥)?*=

® SSE=31,(y; —9?=X1i — Bo + B1x))? =

® SSR =SST —SSE =

Special Case ONLY for Simple Linear Regression:

If your model is a simple linear regression model (one slope and hence one explanatory variable),
then the R? equivalently quantifies how much of the variability of the response variable was
explained by the model.

You can also calculate the correlation coefficient of the model as:

RZ — (R)Z

THIS ONLY WORKS FOR SIMPLE LINEAR REGRESSION!



Ex: Find the R? in the model output for your simple linear regression (that models mother and daughter
heights). Use the R for these two numerical variables to also calculate this R?.

OLS Regression Results

Dep. Variable: Dheight R-squared: 0.241
Model: OLS  Adj. R-squared: 0.240
Method: Least Squares F-statistic: 435.5

Date: Tue, 13 Oct 2020 Prob (F-statistic): 3.22e-84

Time: 00:26:58 Log-Likelihood: -3075.0
No. Observations: 1375 AlC: 6154.
Df Residuals: 1373 BIC: 6164.
Df Model: 1
Covariance Type: nonrobust
coef stderr t P>|t| [0.025 0.975]

Intercept 29.9174 1.622 18.439 0.000 26.735 33.100
Mheight  0.5417 0.026 20.868 0.000 0.491 0.593

Omnibus: 1.412 Durbin-Watson: 0.126

Prob(Omnibus): 0.494 Jarque-Bera (JB): 1.353

Skew: 0.002 Prob(JB): 0.508

Kurtosis: 3.154 Cond. No. 1.66e+03
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.66e+03. This might indicate that there are
strong multicollinearity or other numerical problems.

What percent of the total variability of daughter heights does this model explain?

What percent of total variability of daughter heights does this model NOT explain?



5. CONDUCTING INFERENCE FOR THE POPULATION SLOPE(S) AND POPULATION

INTERCEPT OF A SIMPLE LINEAR REGRESSION LINE FOR THE POPULATION DATA

We can fit a simple linear regression line for a sample of data or a population of data, however
the notation is slightly different.

y=Bo+ P1x y =PBo+B1x
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Much like when conducting inference on other population parameters, we can use Bi asa

point estimate (or a sample statistic) to conduct inference on the population parameter ﬁi-

Similarly, we can do this by:

e Creating a confidence interval for [8; to attain a plausible range of values for 8;.

e Conducting a hypothesis test for f3; to test the claim (for instance) B; # 0 where we
can make a decision about this claim by using either a:
o Confidence interval or
o a p-value.



5.1. Properties of the Sampling Distribution of Sample Slopes

Population of
Numerical

AllU.S. Counties

- Best Fit Ordinary Least
0000 .f':- = F:
P -y Squares Regression Line
e for Population:
W e, ol y e ﬁo —|— ﬁlx
Sample of
Numerical
Data
- Best Fit Ordinary Least
§ o Squares Regression Line
g for Sample (of size n):
T e i wm e e j} — ﬁ(,l e ﬁ l_x‘
Collect Many e Sandom Sanpleof 30U Coutes Candom Sampie 6 50 . Countes Random Sample of 50 US Countes
Random Samples 0000 o
(all of size same §m g oo 5 & 3 ::
size n) drawn with ;;m e e TO
replacement. £ A Ko
Sampling

Distribution of
Sample Slopes

Distribution of Sample Slopes

040 045 050 055
Sample Slopes

Need to know the following to make an inference about
Sample Slopes )
0.40 - Unknown Population Slope §;:
0.40 __ Mean of Sampling Distribution = E[ﬁ,-] =
0.31 ol Standard deviation of Sampling Distribution = ?D[ﬁ,] =
Shape of Sampling Distribution is when:

* The linearity conditions holds.

* The constantresiduals condition holds.
¢ The residuals are normal.

* The residuals are independent.

* The explanatory variables (if a multiple linear regression is used)
are not collinear.



5.2. CHECKING THE CONDITIONS FOR POPULATION SLOPE/COEFFICIENT INFERENCE

In order for our linear regression model to make accurate inferences (using the methods we will discuss in the
next section), the following conditions must be satisfied.

1. Linearity Condition

Is a linear regression model a good fit for our data? Or in other words is there a linear relationship between
the explanatory variables and the response variable?

When we only have one explanatory variable, a linear relationship between the explanatory variable and the
response variable is easy to see with a simple scatterplot of the two variables.

67.5

£ 65.0

B

5 a5
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57.5

5.0
Mheight

But what does it mean (and how can we detect) when multiple explanatory variables have a linear relationship
with the response variable? If there is a linear relationship, we would expect the residuals of all the sample
data fitted to the model to be equally distributed above and below 0. If not, it may suggest that a nonlinear
regression model may be a better fit.

Rule of Thumb: If the “y-axis spread” of the points in this plot are roughly evenly distributed above and below
the line as you move from left to right in this plot, then you can assume that this condition is met.

3% y = 29.9174 + 0.5417(Mheight)
2 00
14
-25
. Residuals Fitted Values Data
-5
€0 &2 6 % 68 Mheight Dheight
Fitted Value 62 . 259733 0 59.7 55.1
-7.159733
2 oari1s 61.447113 1 58.2 56.5
-6.747306 62.747306 2 606 560
-6.001480 62.801480
7. 367403 3 60.7 56.8
63.397402 B P -



Example of when this condition is not met.

2. Constant Variance of Residuals Condition

The next condition that must be satisfied is that the variance of the residuals must remain constant (for all

fitted values. To check this condition, we can use the same plot as the one used for checking the linearity
condition.

Rule of Thumb: If the “spread” (ie. y-axis) range of the points in this plot remain constant as you move from
left to right in this plot, then you can assume that this condition is met.

Residual
=)
o

Fitted Value

Example of when this condition is not met.



3. Residuals are Normal (with Mean of 0).

The next condition that must be satisfied is that the residuals must be normally distributed and must have a
mean of zero.

To check this condition, we can look at a histogram of the residuals.
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Example of when this condition is not met.

4. Residuals are independent.

There are many ways in which residuals may NOT be independent. You will discuss more of these ways (and
other conditions to check) in later statistics classes. For now, we can say that the observations (at least) in the
data must be independent in order for the residuals to be independent.

Thus the observations in the sample must be:

e randomly sampled and
e n<10% of the population size.



5.3. CREATING A (1 — a) - 100% CONFIDENCE INTERVAL FOR A POPULATION

SLOPE

1. Check the conditions for conducting inference on a population slope/intercept.

a. The linearity condition holds.

b. The constant residuals condition holds.
c. Theresiduals are normal.

d. The residuals are independent.

e. The explanatory variables (if a multiple linear regression is used) are not collinear.

2. The confidence interval for .Bi is calculated by:

(point estimate) + (critical value)(standard error)
El a tgn—p—l}SEﬁi

Notation:



Ex: Use the simple linear regression output table from Python to create a 95% confidence
interval for the population slope.

Dep. Variable: Dheight R-squared: 0.241
Model: OLS Adj. R-squared: 0.240
Method: Least Squares F-statistic: 435.5

Date: Wed, 24 Mar 2021 Prob (F-statistic): 3.22e-84

Time: 22:01:44 Log-Likelihood: -3075.0
No. Observations: 1375 AlC: 6154.
Df Residuals: 1373 BIC: 6164.
Df Model: 1
Covariance Type: nonrobust
coef stderr t P>t [0.025 0.975]

Intercept 29.9174 1.622 18.439 0.000 26.735 33.100
Mheight 0.5417 0.026 20.868 0.000 0.491 0.593

Omnibus: 1.412 Durbin-Watson: 0.126
Prob(Omnibus): 0.494 Jarque-Bera (JB): 1.3563
Skew: 0.002 Prob(JB): 0.508

Kurtosis: 3.154 Cond. No. 1.66e+03



5.4. CONDUCTING A HYPOTHESIS TEST FOR A POPULATION SLOPE, TESTING THE

CLAIM H 4: B; # 0 — WITH A P-VALUE

1. Set up the hypotheses
HO: Bl = 0
HA: Bi * 0

2. Check the conditions for conducting inference on a population slope/intercept.

a. The linearity condition holds.

b. The constant residuals condition holds.
c. The residuals are normal.

d. The residuals are independent.

e. The explanatory variables (if a multiple linear regression is used) are not collinear.

3. Calculate the point estimate (observed sample statistic)

B

4. Calculate the p-value

B,—0
SEg

p —value = 2P(T,_,_1 = |

)

5. Make a Decision
a. If p —value < a, then we “reject the null hypothesis.” And we say that “there IS sufficient
evidence to suggest the alternative hypothesis.”
b. If p—value > «, then we “fail to reject the null hypothesis.” And we say that “there IS NOT
sufficient evidence to suggest the alternative hypothesis.”




Intuition behind p-value

sample statistic that is at least
p —value = P| as suspicious (in favor of the alternative | Null hypothesis is True
hypotheis) as the observed sample statistic

that is at least
=P <as suspicious (in favor of the alternative| Null hypothesis is True)
hypotheis) as

= P( > OR

IA
—/

= P( > )+ P( < )

Assuming that Ho: 3, =

Il

*
o
~
v
p—




Ex: We would like to test whether there is a linear relationship in the population of ALL mother
and daughter heights. (See notebook for these questions and code).

Use the simple linear regression output table to answer the following questions.

Dep. Variable: Dheight R-squared: 0.241
Model: OLS Adj. R-squared: 0.240
Method: Least Squares F-statistic: 435.5

Date: Wed, 24 Mar 2021 Prob (F-statistic): 3.22e-84

Time: 22:01:44 Log-Likelihood: -3075.0
No. Observations: 1375 AlC: 6154.
Df Residuals: 1373 BIC: 6164.
Df Model: 1
Covariance Type: nonrobust
coef stderr t P>t [0.025 0.975]

Intercept 29.9174 1.622 18.439 0.000 26.735 33.100
Mheight 0.5417 0.026 20.868 0.000 0.491 0.593

Omnibus: 1.412 Durbin-Watson: 0.126
Prob(Omnibus): 0.494 Jarque-Bera (JB): 1.353
Skew: 0.002 Prob(JB): 0.508

Kurtosis: 3.154 Cond. No. 1.66e+03

1. Set up the hypotheses for this test.

2. Make sure the conditions for this test hold.



3. Use the table to find the p-value for this test.

4. Use this p-value to make a conclusion for these hypotheses using a significance level of

5. What is the test statistic for this test?

6. Calculate this test statistic by hand.

7. Calculate the p-value by hand (and using your t-distribution object in Python).



8. Use your 95% confidence interval from the previous section to make a conclusion about
your hypotheses.



6. MAKING A PREDICTION WITH A SIMPLE LINEAR REGRESSION

Ex: Use your simple linear regression equation to predict the height of a daughter whose
mother is 66”. Go to the notebook for how to answer these questions by hand and by code.

Ex: If this mother’s daughter was actually 68”, calculate the residual of this observation.



