Unit 13 Notebook: Multiple Linear Regression

Case Study Weight Distribution Changes over Time for Males and
Females

Sample Analysis

» Question 1: Is there a linear association between height and weight in a random sample of healthy
adults?

» Question 2: Is the linear relationship between height and weight different for males and females of
different age groups in a random sample of healthy adults?

In this analysis we will examine the height and weight of a random sample of 487 healthy males and females of
three different age groups:

e under 30
+ 30-39
e 40 and over

Population Analysis

We would also like to explore whether these findings hold in a larger population of ALL healthy adults. So, IF we
were to fit a multiple linear regression model, predicting the weight of a healthy adult (from the whole population)
given height, sex, and age group, we would further like to answer the following questions.

» Question 3: Is there sufficient evidence to suggest that the population slope for height is non-zero in
this model?

+ Question 4: Is there sufficient evidence to suggest that the population slope for sex is non-zero in
this model?

» Question 5: Is there sufficient evidence to suggest that the population slope for age_group is non-
zero in this model?

Make sure you install first: statsmodel

To install statsmodels from the anaconda command line:

conda install -c conda-forge statsmodels

Imports



In [1]: dimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

1. Analyses for Association

See Unit 13 slides (section 1)
2. Association Analysis Summary
Explanatory: Numerical and/or Categorical

Response: Numerical

See Unit 13 slides (section 2)
3. Basic Descriptive Analytics - Two Numerical Variables

3.1. Visualizations
See Unit 13 slides (section 3)

Let's first read our bdims.csv dataset.

(There are no missing values represented in this dataset).

In [2]: df _full = pd.read csv('bdims.csv', sep=",")
df_full.head()

ouelzls biacromial_diameter pelvic_breadth bitrochanteric_diameter chest_depth chest_diameter elb¢
0 42.9 26.0 315 17.7 28.0
1 43.7 28.5 33.5 16.9 30.8
2 40.1 28.2 33.3 20.9 317
3 443 29.9 34.0 18.4 28.2
4 42.5 29.9 34.0 21.5 294

5 rows x 26 columns



In [3]: df_full.shape

Out[3]: (487, 26)

In [4]: df_full.columns

Out[4]: Index(['biacromial_diameter', 'pelvic_breadth', 'bitrochanteric_diameter"',
‘chest_depth', 'chest_diameter', 'elbow_diameter', 'wrist_diameter',
'knee_diameter', 'ankle_diameter', 'shoulder_girth', 'chest_girth',
'waist_girth', 'navel_girth', 'hip_girth', 'thigh_girth', 'bicep_girt

h',
"forearm_girth', 'knee_diameter.l', 'calf_girth', 'ankle_girth’,
'wrist_girth', 'age', 'weight', 'height', 'sex', "age_group'],
dtype='object')

We only plan to use a few variables from this dataframe, so let's create a smaller dataframe to enable
faster/easier processing.

Specifically, we will only be examining the following attributes:

» the weights,

« the heights,

o the sex,

» the age group,

» the waist girth, and
» the elbow diameter.

In [5]: df=df_full[['weight', 'height', 'sex', 'age_group', 'waist_girth', 'elbow_diam
eter']]

Let's first examine the pairwise relationships of each pair of numerical variables in the dataframe as well
as the histogram of each numerical variable.



In [6]: sns.pairplot(df)
plt.show()
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We can see that all pairs of numerical variables have linear relationships with each other. Therefore, we can use
the correlation coefficient R to evaluate the strength and direction of each of these pairs of numerical variables.

In [7]: df.corr()

Out[7]:
weight height waist_girth elbow_diameter
weight 1.000000 0.719449 0.905462 0.803470
height 0.719449 1.000000 0.558367 0.735508
waist_girth 0.905462 0.558367 1.000000 0.703589

elbow_diameter 0.803470 0.735508 0.703589 1.000000



Out of all pairs of numerical variables, it looks like weight and waist girth (correlation coefficient of 0.905) have
the strongest association and height and waist girth have the weakest relationship (correlation coefficient of
0.558).

We can also examine a series of summary statistics about each of the numerical variables
individually.

In [8]: df.describe()

Out[8]:
weight height waist_girth elbow_diameter
count 487.000000 487.000000 487.000000 487.000000
mean 68.947023 170.913963  76.896099 13.341273
std  13.455621 9.451632 11.151494 1.350339
min  42.000000 147.200000 57.900000 9.900000
25% 58.200000 163.350000 67.900000 12.400000
50% 67.900000 170.200000  75.700000 13.200000
75%  78.700000 177.800000 84.500000 14.300000
max 116.400000 198.100000 113.200000 16.700000

We can also examine each of the categorical variables individually.

In [9]: df['sex'].value_counts()

Out[9]: Female 260
Male 227
Name: sex, dtype: int64

In [10]: df['age_group'].value_counts()

Out[10]: under_3e 277
30-39 118
40 and above 92

Name: age_group, dtype: inté64

In [11]: pd.crosstab(df['sex'], df["age_group'])

Out[11]:
age_group 30-39 40 and above under_30
sex
Female 61 37 162

Male 57 55 115



It looks the most represented age group is those that are under 30.

These basic analyses about the whole dataset are useful to get a sense as to the nature of the data that we are
working with. However, in this specific analysis, we suspect that the weight of healthy adults is influenced by
height. Thus we consider weight to be the response variable and height to be an explanatory varaible.

In addition, we would like to see how/if this relationship changes based on sex and age_group. Thus we will
consider sex and age_group to also be explanatory variables.

Because we have a specific set of questions in mind that we would like to answer about the sample, we should

be thoughtful about which visualizations and summary statistics will best help us answer these questions.

3.1 Relationships between the response variable and each explanatory variable
individually.

First, let's examine the relatioship between weight (the response varaible) and each of our explanatory variables
individually.

3.1.1. Describe the relationship between weight in height.

In [12]: sns.scatterplot(x="height",y="weight', data=df)
plt.title('Relationship between Height and Weight')

plt.show()
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By looking at the scatterplot above, the association between height and weight in the sample is positive, linear,
moderately strong, and there does not seem to be any obvious outliers.

Because the relationship is linear, we can use the correlation coefficient to quantify the strength and direction of
the relationship.



In [13]: df[['height', 'weight']].corr()
out[13]:
height weight

1.000000 0.719449
weight 0.719449

height

1.000000

Thus, a relatively high correlation coefficient R=0.719, further validates that there is a moderately strong linear
relationship between height and weight in the sample.

3.1.2 Describe the relationship between sex and weight.
In [14]:

sns.violinplot(x="sex", y="weight', data=df)
plt.title('Relationship between Sex and Weight')
plt.show()
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In [15]: sns.boxplot(x="sex", y='weight', data=df)
plt.title('Relationship between Sex and Weight')

plt.show()
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Remember, there are always four things that we should be ready to compare when discussing the association
between a categorical variable (sex) and a numerical variable (weight).

1. Compare Measures of Center: We can see that the median male weight is higher than the median female
weight.

2. Compare Measures of Spread: The IQR and range of male and females weight is about the same.

3. Compare Distribution Shapes: The male weight distribution looks slightly bimodal, and is slightly right
skewed. The female weight distribution is unimodal, and more skewed to the right.

4. Compare Outliers: Both distributions have high outliers. The female distribution has a few more outliers than
the male distribution.

3.1.3 Describe the relationship between age_group and weight.



In [16]: sns.violinplot(x="age_group"”, y="'weight', data=df)

plt.title('Relationship between Age Group and Weight')
plt.show()
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In [17]: sns.boxplot(x="age_group"”, y='weight', data=df)
plt.title('Relationship between Age Group and Weight')

plt.show()
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1. Compare Measures of Center: The median weight increase as the age group increases.

2. Compare Measures of Spread: The IQR and range of of the age groups is about the same.

3. Compare Distribution Shapes: Weight distributions look mostly unimodal. The under 30 and 30-39 age
groups are slightly right skewed and the 40 and over age group is slightly left skewed.

4. Compare Qutliers: Only the under 30 age group has outliers. These outliers are high.




3.2 Relationships between the response variable and two explanatory
variables.

3.2.1. Describe the relationship betweeen height and weight for males and females.

We can use the sns.scatterplot() function to plot the relationship between two numerical variables (using the x
and y parameters), and then we can color-code the points based on another variable (using the hue
parameter).

In [18]: sns.scatterplot(x="height",y="weight', hue="sex', data=df)
plt.title('Relationship between Height, Sex, and Weight')
plt.legend(bbox_ to anchor=(1,1))

plt.show()
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If we want to draw a best fit line, for each of the levels represented by the hue parameter then we can use the
sns.Implot() function.



In [19]: sns.lmplot(x="height",y="weight', hue="sex', data=df)
plt.title('Relationship between Height, Sex, and Weight')
plt.legend(bbox_to_anchor=(1,1))

plt.show()
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« Intercept Comparison: It looks like the intercept of the male best fit line is higher than the intercept for the
female best fit line.

» Slope Comparison: It looks like the slope of the male best fit line is slightly higher than the slope for the
female best fit line.

If we would like to directly calculate a summary statistic on a subset of observations (where each subset
corresponds to each level of a given categorical variable), then we can use the .groupby() function.

For instance, the code below calculates the correlation between weight and height for each level of the sex
variable.

In [20]: df[['sex', 'height', 'weight']].groupby(['sex"']).corr()

Out[20]:
height weight

sex

Female height 1.000000 0.431059
weight 0.431059 1.000000
Male height 1.000000 0.536599

weight 0.536599 1.000000



» Compare Correlations: Thus, the strength of the linear relationship of height and weight for males (0.537) is
higher than the strength of the relationship of height and weight for females (0.431).

3.2.2. Describe the relationship betweeen height and weight for the different age groups.

In [21]: sns.scatterplot(x="height",y="weight', hue='age_group', data=df)
plt.title('Relationship between Height, Age Group, and Weight')
plt.legend(bbox_to_anchor=(1,1))

plt.show()
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In [22]: sns.lmplot(x="height",y="weight', hue='age_group', data=df, ci=False)
plt.title('Relationship between Height, Weight, and Age Group')
plt.show()
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» Slope Comparison: It looks like the slopes of the under 30 age group and 40 and above age groups are
almost parallel, whereas the 30-39 age group slope is slightly smaller.

In [23]: df.groupby(['age_group']).corr()

Out[23]:

weight height waist_girth elbow_diameter

age_group
30-39 weight 1.000000 0.649175 0.916938 0.733133
height 0.649175 1.000000 0.497285 0.719191
waist_girth 0.916938 0.497285 1.000000 0.638171
elbow_diameter 0.733133 0.719191 0.638171 1.000000
40 and above weight 1.000000 0.699453 0.904493 0.776830
height 0.699453 1.000000 0.581820 0.757793
waist_girth 0.904493 0.581820 1.000000 0.671320
elbow_diameter 0.776830 0.757793 0.671320 1.000000
under_30 weight 1.000000 0.768051 0.921540 0.825232
height 0.768051 1.000000 0.632940 0.750642
waist_girth 0.921540 0.632940 1.000000 0.739523
elbow_diameter 0.825232 0.750642 0.739523 1.000000

» Compare Correlations: The strength of the linear relationship between height and weight is highest for those
under 30 (0.768) and is lowest for those that are 30-39.

3.2.3. Describe the relationship betweeen weight and sex the different age groups.



In [24]: sns.violinplot(x="age_group", y="weight', hue="sex', data=df)

plt.title('Relationship between Age Group and Weight')

plt.show()
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In [25]: sns.boxplot(x="age_group"”, y='weight', hue='sex', data=df)
plt.title('Relationship between Age Group and Weight')

plt.show()
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Comparing Measure of Center Changes for Different Sexes:

» The difference in male and female median weight is about the same for all three age groups.

Comparing Measure of Spread Changes for Different Sexes:

» Under 30 males have a higher IQR than under 30 females.
e 40 and over males have a smaller IQR than 40 and over females.

Comparing Shape Changes for Different Sexes:

» The skew for under 30 males is more right skewed than the skew for under 30 females. All distributions are
unimodal.

o The skew for 30-39 and 40 and over males is less right skewed than skew for 30-39 and 40 and over
females. All distributions are unimodal.

Comparing Outliers Changes for Different Sexes:

» For all three age groups, the females have more outliers.

In [26]: sns.violinplot(x="sex", y='weight', hue='age_group', data=df)

plt.title('Relationship between Age Group and Weight')
plt.show()
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In [27]: sns.boxplot(x="sex", y="weight', hue="'age_group', data=df)
plt.title('Relationship between Age Group and Weight')

plt.show()
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Comparing Measure of Center Changes as Age Increases:

« The weight median for males increase as the age group increases.
« The weight median for females increases as the age group increases.

Comparing_ Measure of Spread Changes as Age Increases:

» The weight spread for males decreases as the age group increases.
» The weight spread for females increases as the age group increases.

Comparing_Shape Changes as Age Increases:

« The skew for males becomes less right skewed as the age increases. All distributions are unimodal.
« The skew for females becomes more right skewed as the age increases. All distributions are unimodal.

Comparing Outliers Changes as Age Increases:

« Only males under 30 have weight outliers.
» Only females under 30 have weight outliers.

3.3 Relationships between the response variable and three explanatory
variables.

We can also use the sns.scatterplot() function to plot the relationship between two numerical variables (using
the x and y parameters), and then we can:

» color-code the points based on another variable (using the hue parameter), and
» code the marker size by another variable (using the size parameter).



In [28]: sns.scatterplot(x="height",y="weight', hue="age_group', size='sex', data=df)
plt.title('Relationship between Height, Age Group, and Weight')
plt.legend(bbox_to_anchor=(1,1))
plt.show()
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We can also use the sns.scatterplot() function to plot the relationship between two numerical variables (using
the x and y parameters), and then we can:

 color-code the points based on another variable (using the hue parameter), and
» code the marker style by another variable (using the style parameter).

In [29]: sns.scatterplot(x="height",y="weight', hue='age group', style='sex', data=df)
plt.title('Relationship between Height, Age Group, and Weight')
plt.legend(bbox_to_anchor=(1,1))

plt.show()
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If we want to draw a best fit line (breaking the data down by two or more categorical variables), we can use the
sns.Implot() and specify variables names for the:

» col parameter and,
e row parameter.

In [30]: sns.lmplot(x="height",y="weight', hue='age_group', col="'sex', data=df)
plt.legend(bbox_to_anchor=(1,1))

plt.show()
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In [31]: sns.lmplot(x="height",y="weight', hue="age_group', row='sex', data=df)
plt.legend(bbox_to_anchor=(1,1))
plt.show()
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In [32]: sns.lmplot(x="height",y="weight', hue="sex', col="age_group', data=df)
plt.legend(bbox_to_anchor=(1,1))
plt.show()
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In [33]: df.groupby(['sex', " "age_group']).corr()

Out[33]:

weight height waist_girth elbow_diameter

sex age_group
Female 30-39 weight 1.000000 0.182259 0.884331 0.408199
height 0.182259 1.000000 0.005927 0.350111
waist_girth 0.884331 0.005927 1.000000 0.277085
elbow_diameter 0.408199 0.350111 0.277085 1.000000
40 and above weight 1.000000 0.326263 0.860214 0.695378
height 0.326263 1.000000 0.000972 0.389143
waist_girth 0.860214 0.000972 1.000000 0.487145
elbow_diameter 0.695378 0.389143 0.487145 1.000000
under_30 weight 1.000000 0.613888 0.848198 0.680492
height 0.613888 1.000000 0.322365 0.499629
waist_girth 0.848198 0.322365 1.000000 0.468677
elbow_diameter 0.680492 0.499629 0.468677 1.000000
Male 30-39 weight 1.000000 0.569800 0.814738 0.509941
height 0.569800 1.000000 0.208744 0.507973
waist_girth 0.814738 0.208744 1.000000 0.197176
elbow_diameter 0.509941 0.507973 0.197176 1.000000
40 and above weight 1.000000 0.521314 0.798862 0.524962
height 0.521314 1.000000 0.209410 0.536937
waist_girth 0.798862 0.209410 1.000000 0.239805
elbow_diameter 0.524962 0.536937 0.239805 1.000000
under_30 weight 1.000000 0.553887 0.865876 0.648278
height 0.553887 1.000000 0.296707 0.468378
waist_girth 0.865876 0.296707 1.000000 0.421885
elbow_diameter 0.648278 0.468378 0.421885 1.000000



» Comparing_Correlations:
= 30-39 females have the weakest relationship of height and weight (R=0.182)
= 30-39 males have the strongest relationship of height and weight (R=0.570)
+ Comparing_Slopes:
= 30-39 females have the smallest best fit line slope modeling the relationship of height and weight
= the slopes of all other sex and age groups are more similar.

4. Multiple Linear Regression - Sample Data

See unit 13 slides (section 4)

5. Categorical Explanatory Variables

See unit 13 slides (section 5)

6. Interpreting Intercepts and Slopes of a Regression
Equations

See unit 13 slides (section 6)

Let's create our multiple linear regression equation with weight as a response variable and height, sex, and
age_group as explanatory variables.

We can use the same function and format as simple linear regression equations.

» The response variable goes on the left part of the "equation” in the smf.ols() function.
» The explanatory variables go on the right part of the "equation” in the smf.ols() function
= Each explanatory variable is separated by a +.
= The smf.ols() function automatically creates indicator variables when it detects a categorical

AvAlanmatAam s viAaviaklA

In [34]: import statsmodels.api as sm
import statsmodels.formula.api as smf

This step fits the model and creates an object containing the results.

In [35]: results = smf.ols('weight ~ height+sex+age group', data=df).fit()



In [36]: results.summary()

Out[36]: OLS Regression Results
Dep. Variable: weight R-squared: 0.594
Model: OoLS Adj. R-squared: 0.590
Method: Least Squares F-statistic: 176.1

Date: Tue, 30 Mar 2021 Prob (F-statistic): 7.71e-93

Time: 11:05:16 Log-Likelihood: -1737.1
No. Observations: 487 AlC: 3484.
Df Residuals: 482 BIC: 3505.
Df Model: 4
Covariance Type: nonrobust
coef stderr t P>t [0.025 0.975]

Intercept -59.0102 9.409 -6.272 0.000 -77.498 -40.523

sex[T.Male] 7.9128 1.086 7.286 0.000 5.779 10.047
age_group[T.40 and above] 3.4030 1.202 2.830 0.005 1.041 5.765
age_group[T.under_30] -1.7432 0.949 -1.838 0.067 -3.607 0.121

height 0.7291  0.057 12.821 0.000 0.617 0.841

Omnibus: 91.450 Durbin-Watson: 1.991
Prob(Omnibus): 0.000 Jarque-Bera (JB): 182.551
Skew: 1.032 Prob(JB): 2.29e-40

Kurtosis: 5.176 Cond. No. 4.14e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 4.14e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

Formulating the multiple linear regression line.

y = —59.0102 + 7.9128sex[T'. Male] + 3.4030age_group[T.40andabove] — 1.7432age_group|T. unc



Interpreting the Intercept

» We would expect the average weight of a female in her 30's that is 0 cm tall to be -59.0102 kg.
= This is a nonsensical answer though because:
o You can't have a person that is 0 cm tall and
o You can't have a person that has a negative weight.

Interpreting the Slopes

» All else held equal, if we were to increase the height of a healthy adult by 1 cm, then we would expect the
weight to increase, on average, by 0.7291 kg.

» All else held equal, we would expect the the average healthy adult male weight to be 7.9128 kg higher than
healthy adult females.

» All else held equal, we would expect the the average weight of healthy adults under 30 to be 1.7432 kg
lower than healthy adults in their 30's.

» All else held equal, we would expect the the average weight of healthy adults at least 40 to be 3.4030 kg
higher than healthy adults in their 30's.

7. Inference for Multiple Linear Regression Intercept and
Slopes

see Unit 13 slides section 7

7.1 Conditions for Inference on Multiple Linear Regression Intercept and
Slopes

see Unit 13 slides section 7

Ex: Suppose now we also wanted to add ‘elbow diameter’ to our list of explanatory variables.

7.1.1. Fit a multiple linear regression model predicting weight with:

a. Height
b. Elbow diameter
c. Sex

d. Age group.



In [37]: results = smf.ols('weight ~ height+ elbow_diameter+sex+age_group', data=df).fi
t0O)

results.summary()

Out[37]:
[37] OLS Regression Results
Dep. Variable: weight R-squared: 0.688
Model: OLS Adj. R-squared: 0.685
Method: Least Squares F-statistic: 212.0

Date: Tue, 30 Mar 2021 Prob (F-statistic): 4.04e-119

Time: 11:05:16 Log-Likelihood: -1672.9
No. Observations: 487 AIC: 3358.
Df Residuals: 481 BIC: 3383.
Df Model: 5
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]

Intercept -75.1198 8.363 -8.982 0.000 -91.553 -58.686

sex[T.Male] 0.7195 1.125 0.640 0.523 -1.490 2.929
age_group[T.40 and above] 1.2766 1.070 1.194 0.233 -0.825 3.378
age_group[T.under_30] -1.4391 0.833 -1.728 0.085 -3.075 0.197
height 0.4139 0.056 7.345 0.000 0.303 0.525

elbow_diameter 55146  0.458 12.043 0.000 4.615 6.414

Omnibus: 61.496 Durbin-Watson: 1.925
Prob(Omnibus): 0.000 Jarque-Bera (JB): 93.358
Skew: 0.833 Prob(JB): 5.34e-21

Kurtosis: 4.352 Cond. No. 4.21e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 4.21e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

7.1.2. What is the R? of this model?

R? = 0.688



In [38]: results.rsquared

Out[38]: ©.6878417369562507

7.1.3 Check the multiple linear regression conditions for inference for this model.

Condition 1: Linearity Condition

Because the distribution of points in the plot below are roughly evenly distributed above and below the line as we
move from left to right, we can say the linearity condition is met.

In [39]: sns.regplot(x=results.fittedvalues, y=results.resid, ci=None)
plt.ylabel('Residual')
plt.xlabel('Fitted Value')
plt.show()

Residual

Fitted Yalue

Condition 2: Constant Variability of Residuals Condition

Because the y-axis spread of points in the plot below slightly change as we move from left to right, we can say
that this condition is slightly not met.



In [40]: sns.regplot(x=results.fittedvalues, y=results.resid, ci=None)
plt.ylabel('Residual')
plt.xlabel('Fitted Value')
plt.show()

0 - 'y

Residual

Fitted Walue

Condition 3: Normality of Residuals (with Mean of 0) Condition

Because the histogram of residuals is slightly skewed to the right, the assumption that the residuals are normally
distributed is slightly not met. (However, it does look like the mean is about 0).

In [41]: plt.hist(results.resid)
plt.xlabel('Residuals"’)
plt.show()
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Condition 4 Independence of Residuals Condition
At the very least, we verify that:

 the data is randomly sampled and
» the sample size n=487<10% of all healthy adults

Thus the condition for independence of residuals may not be violated in this particular way.

However, it may still be the case that these residuals are not independent (for other reasons that you will discuss
in later statistics classes).

Condition 5: No Multicollinearity Condition

Let's take a look at the relationships between each pair of numerical explanatory variables. (We only have two in
this example, but the sns.pairplot() can be useful when you have lots of numerical explanatory variables).

We see that there is a pretty strong linear relationship (R=0.736) between the explanatory variables height and
elbow_diameter. Thus the multicollinearity condition is violated.

Leaving in both of these explanatory variables may lead to biased estimates for the slopes.

In [42]: sns.pairplot(df[['height', 'elbow_diameter']])

plt.show()
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In [43]: df[['height', 'elbow_diameter']].corr()

Out[43]:
height elbow_diameter
height 1.000000 0.735508
elbow_diameter 0.735508 1.000000

7.1.4 If we were to delete one of these numerical explanatory variables (because of the multicollinearity
condition being violated), which one would you choose.

Let's try deleting both variables (one at a time) and see which resulting model has a higher R? (ie. more
explanatory power).

In [44]: results = smf.ols('weight ~ height+sex+age_group', data=df).fit()
print('R*2 for the model without elbow diameter:',results.rsquared)

R*2 for the model without elbow_diameter: 0.5937143871724584

In [45]: results = smf.ols('weight ~ elbow_diameter+sex+age_group', data=df).fit()
print('R*2 for the model without height:',results.rsquared)

R*2 for the model without height: 0.6528321666723595

If you were particularly interested in exploring the relationship between weight, height, sex, and age, then you
would want to delete the height variable. This is because the R? of the model without height is higher, and thus
can explain more of the variability of weight.

However, because we knew ahead of time that we were interested in exploring the relationship between weight,
height, sex, and age we will delete elbow_diameter and keep height.

7.1.5 Fit a multiple linear regression model predicting weight with the following explanatory variables
and check the conditions.

a. Height
b. Elbew-diameter
c. Sex

d. Age group.



In [46]: results = smf.ols('weight ~ height+sex+age_group', data=df).fit()
results.summary()

Out[46]:
[46] OLS Regression Results
Dep. Variable: weight R-squared: 0.594
Model: OLS Adj. R-squared: 0.590
Method: Least Squares F-statistic: 1761

Date: Tue, 30 Mar 2021 Prob (F-statistic): 7.71e-93

Time: 11:05:17 Log-Likelihood: -1737.1
No. Observations: 487 AIC: 3484.
Df Residuals: 482 BIC: 3505.
Df Model: 4
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]

Intercept -59.0102 9.409 -6.272 0.000 -77.498 -40.523

sex[T.Male] 7.9128 1.086 7.286 0.000 5.779 10.047
age_group[T.40 and above] 3.4030 1.202 2.830 0.005 1.041 5.765
age_group[T.under_30] -1.7432 0.949 -1.838 0.067 -3.607 0.121

height 0.7291  0.057 12.821 0.000 0.617 0.841

Omnibus: 91.450 Durbin-Watson: 1.991
Prob(Omnibus): 0.000 Jarque-Bera (JB): 182.551
Skew: 1.032 Prob(JB): 2.29e-40

Kurtosis: 5.176 Cond. No. 4.14e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 4.14e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

7.1.3 Check the multiple linear regression conditions for inference for this model.

Condition 1: Linearity Condition

Because the distribution of points in the plot below are roughly evenly distributed above and below the line as we
move from left to right, we can say the linearity condition is met.



In [47]: sns.regplot(x=results.fittedvalues, y=results.resid, ci=None)

plt.ylabel('Residual')
plt.xlabel('Fitted Value')

plt.show()
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Condition 2: Constant Variability of Residuals Condition

Because the y-axis spread of points in the plot below doesn't really change as we move from left to right, we can
say that this condition is met.

In [48]: sns.regplot(x=results.fittedvalues, y=results.resid, ci=None)

plt.ylabel('Residual’)
plt.xlabel('Fitted Value')

plt.show()
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Condition 3: Normality of Residuals (with Mean of 0) Condition

Because the histogram of residuals is slightly skewed to the right, the assumption that the residuals are normally
distributed is slightly not met. (However, it does look like the mean is about 0).



In [49]: plt.hist(results.resid)
plt.xlabel('Residuals")

plt.show()
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Condition 4 Independence of Residuals Condition
At the very least, we verify that:

 the data is randomly sampled and
» the sample size n=487<10% of all healthy adults

Thus the condition for independence of residuals may not be violated in this particular way.

However, it may still be the case that these residuals are not independent (for other reasons that you will discuss
in later statistics classes).

Condition 5: No Multicollinearity Condition

This new model only has one numerical explanatory variable, height. So height will not be collinear with another
numerical variable. Thus this condition is met.

7.2 Inference for a Single Multiple Linear Regression Slope

see unit 13 slides section 7.2

7.2.1 Confidence Interval for a Single Multiple Linear Regression Slope

Create a 90% confidence interval for the height slope in the model above and interpret it.



In [50]: results = smf.ols('weight ~ height+sex+age_group', data=df).fit()
results.summary()

Out[50]:
[>e] OLS Regression Results
Dep. Variable: weight R-squared: 0.594
Model: OLS Adj. R-squared: 0.590
Method: Least Squares F-statistic: 1761

Date: Tue, 30 Mar 2021 Prob (F-statistic): 7.71e-93

Time: 11:05:18 Log-Likelihood: -1737.1
No. Observations: 487 AIC: 3484.
Df Residuals: 482 BIC: 3505.
Df Model: 4
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]

Intercept -59.0102 9.409 -6.272 0.000 -77.498 -40.523

sex[T.Male] 7.9128 1.086 7.286 0.000 5.779 10.047
age_group[T.40 and above] 3.4030 1.202 2.830 0.005 1.041 5.765
age_group[T.under_30] -1.7432 0.949 -1.838 0.067 -3.607 0.121

height 0.7291  0.057 12.821 0.000 0.617 0.841

Omnibus: 91.450 Durbin-Watson: 1.991
Prob(Omnibus): 0.000 Jarque-Bera (JB): 182.551
Skew: 1.032 Prob(JB): 2.29e-40

Kurtosis: 5.176 Cond. No. 4.14e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 4.14e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

1. First, because our multiple linear regression inference conditions hold (checked above), our
confidence interval will not be making invalid interpretations and conclusions.

2. Creating the confidence interval.

In [51]: point_estimate=0.7291
print('Point Estimate = Sample Slope = ', point_estimate)

Point Estimate = Sample Slope = 0.7291



In [52]: standard_error=0.057
print('Standard Error', standard_error)

Standard Error 0.057

The critical value for this 90% confidence interval is the postive t-score t* (from the t-distribution with
df =n—p—1=487 — 4 — 1 = 482) that encapsulates an area of 0.90 between —t* and t*.

(Remember, p=4=the number of slopes in the model.)

In [53]: from scipy.stats import t

critical_value=t.ppf(0.95, df=482)
print('Critical Value:', critical value)

Critical Value: 1.6480210955444843

In [54]: lower_bound=point_estimate-critical_value*standard_error
upper_bound=point_estimate+critical_value*standard_error

print('90% Confidence Interval for the Height Population Slope in the Current
Model:', lower_bound,upper_bound)

90% Confidence Interval for the Height Population Slope in the Current Model:
0.6351627975539643 0.8230372024460356

3. Interpret the confidence interval.

We are 90% confident that the height slope in the multiple linear regression population model (that predicts the
weight of all healthy adults with height, age group, and sex) is between 0.635 and 0.823.



7.2.2. Conducting a hypothesis test for a single population slope, testing the
claim H, : 8; # 0.

We are interested in testing the claim that the height slope in the multiple linear regression population model
(that predicts the weight of all healthy adults with height, age group, and sex) is non-zero.

1. Set up your hypotheses.

H0:ﬁ4:(]
Hy:B4#0

(B4 is the population slope that corresponds to height)
2. Check your multiple linear regression inference conditions

We already checked them for this model above, and found that they all hold. Thus the conclusions that we make
with our p-value will not be invalid.

3. Find the p-value for this test (in your summary output table).
The summary output table tell us that this p-value<0.0001

4. Calculate the p-value for this test (using the point estimate, the standard error, and the t-distribution).



In [55]: point_estimate=0.7291
print('Point Estimate = Sample Slope = ', point_estimate)

standard_error=0.057
print('Standard Error', standard_error)

null value=0
print('Null Value:', null_value)

test_stat=(point_estimate-null_value)/standard_error
print('Test Statistic:', test_stat)

pvalue=2*(1-t.cdf(np.abs(test_stat), df=482))
print('p-value', pvalue)

Point Estimate = Sample Slope = ©0.7291
Standard Error 0.057

Null Value: ©

Test Statistic: 12.791228070175437
p-value 0.0

5. Make a conclusion with this p-value and a signficance level o = 0.10.

Because p — value < 0.0001 < a = 0.10, we reject the null hypothesis. Thus we have sufficient evidence to
suggest that the height slope 3,4 in the multiple linear regression population model (that predicts the weight of all
healthy adults with height, age group, and sex) is non-zero.

6. Make a conclusion using the 90% confidence interval that you calculated above.



Because the null value (0) is not in the 90% confidence interval (0.635, 0.823) we reject the null hypothesis.
Thus we have sufficient evidence to suggest that the height slope (3, in the multiple linear regression population
model (that predicts the weight of all healthy adults with height, age group, and sex) is non-zero.

7.3. Inference for ALL Multiple Linear Regression Slopes
See unit 13 slides (Section 7.3)

7.3.1. F distribution

See unit 13 slides (section 7.3.1)

Ex: Calculate the probability that an F-score is less than or equal to 4, (using df1=3 and df2=9).

In [56]: from scipy.stats import f
f.cdf (4, dfn=3,dfd=9)

Out[56]: ©.954016001798486

7.3.2. Conductingthe Test Hy : 1 — B2 =...= [, =0

See unit 13 slides (section 7.3.2)

Ex: When using sex, height, and age_group to predict weight in a linear regression equation, is there significant
evidence to suggest that at least one of the slopes in the population linear regression model is non-zero?



In [57]: results.summary()

Out[57]: OLS Regression Results
Dep. Variable: weight R-squared: 0.594
Model: OoLS Adj. R-squared: 0.590
Method: Least Squares F-statistic: 176.1

Date: Tue, 30 Mar 2021 Prob (F-statistic): 7.71e-93

Time: 11:05:18 Log-Likelihood: -1737.1
No. Observations: 487 AlC: 3484.
Df Residuals: 482 BIC: 3505.
Df Model: 4
Covariance Type: nonrobust
coef stderr t P>t [0.025 0.975]

Intercept -59.0102 9.409 -6.272 0.000 -77.498 -40.523

sex[T.Male] 7.9128 1.086 7.286 0.000 5.779 10.047
age_group[T.40 and above] 3.4030 1.202 2.830 0.005 1.041 5.765
age_group[T.under_30] -1.7432 0.949 -1.838 0.067 -3.607 0.121

height 0.7291  0.057 12.821 0.000 0.617 0.841

Omnibus: 91.450 Durbin-Watson: 1.991
Prob(Omnibus): 0.000 Jarque-Bera (JB): 182.551
Skew: 1.032 Prob(JB): 2.29e-40

Kurtosis: 5.176 Cond. No. 4.14e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 4.14e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

1. First set up hypotheses for this test.

Hy:8,=8,=83=0,=0
H, : atleastone §; # 0 (fori = 1,2, 3,4)

2. Next, check conditions for this test.



We have already checked the multiple linear regression conditions for inference and they all hold. Thus the
inference that we make with this test will be valid.

3. Use the summary output table to find the test statistic for this test.

The output table tells us that teststat = 176.1.

4. Use this test statistic and the F-distribution to calculate the p-value for this test
The two sets of degrees of freedom for this test are:

e df1 = p = 4 (ie. p=number of slopes)
e df2=n—p—1=487—-4 — 1 =482

p — value = P(Fy 80 > teststat) = P(Fy 50 > 176.1) = 1.11 x 10°1¢

In [58]: pvalue=1-f.cdf(176.1, dfn=4,dfd=482)
print('p-value: ',pvalue)

p-value: 1.1102230246251565e-16

5. Verify this p-value using the summary output table.

The summary output tables says that p — value = 7.71 x 10723, Because the p-value is very small, these p-
value may be off due to some precision errors.

6. Make a conclusion with this p-value, using a = 0.05



Because the p — value = 7.71 x 10”2 = 0.05, we reject the null hypothesis. Thus there is suffificient
evidence to suggest that at least one of the four population slopes in the model predicting weight with height,
sex, and age group is non-zero.

7.3.3 Why would we want to conduct thistest Hy : 31 — fo =... = 8, = 07?

see unit 13 slides (Section 7.3.3)

7.4 Inference for a Subset of Multiple Linear Regression
Slopes

see unit 13 slides (Section 7.4)

Ex: Is there sufficient evidence to suggest that at least one of of the slopes that correspond to the age_group
variable in the population model (predicting weight with height, age_group, and sex) are non-zero?

1. First, give the full model and the reduced model. Fit them both in Python as well.

Full Model

y = By + Brx1 + Byxa + B3xs + Byxy

Reduced Model

y = Bo + Brx1 + Byz4,

where

B 1 corresponds to the sex[T.Male] slope

B4 corresponds to the age_group[T.40 and above] slope

(3 corresponds to the age_group[T.under_30] slope

B4 corresponds to the height slope

In [59]: mod_full = smf.ols('weight~height+sex+age_group',
data=df).fit()
mod_red = smf.ols('weight~height+sex’,
data=df).fit()

2. Next, give the hypotheses for this test.



Hy:8,=83=0
Hy: By # 0or B3 # 0.

3. Next, calculate the test statistic and p-value for this test.

We need to import another package (statsmodels.regression.linear_model) to calcualte the test statistic and
p-value for this model.

We can use the "full model output".compare_f_test("reduced model output") function to calculate the
corresponding test statistic and p-value for this test.

In [60]: dimport statsmodels.regression.linear_model as 1m

test_stat, pvalue, df_diff = mod_full.compare_f_test(mod_red)
pd.DataFrame({'f': [test_stat], 'pvalue': [pvalue], 'df_diff': [df_diff]})

Out[60]:
f pvalue df_diff

0 12.151123 0.000007 2.0

4. Verify this p-value by using the test statistic and the F-distribution.



The two degrees of freedom that correspond to this test are:

» df1 = q =2 = (number of slopes in the full model that are not in the reduced model, ie. the number of slopes
in your hypothesis test).
o df2=n-(p + q)-1 =487 -(4)-1 =482

(in this case we say p+q=number of slopes in the full model)

p — value = P(Fy4 > teststat) = P(Fy4 > 12.51123) = 0.00000504

In [61]: 1-f.cdf(12.51123, dfn=2,dfd=482)

Out[61]: 5.044074372295704e-06

These two p-values we calculated are very small (and so are probably slightly off because of rounding issues).

5. Make a conclusion with this p-value using a significance level of o = 0.05.

Because p — value = 0.000007 < a = .05, we reject the null hypothesis. Thus, there is sufficient evidence
to suggest that at least one of the age_group slopes in the population model (that predicts weight with height,
age_group, and sex) is non-zero.



8. Linear Regression Models with Interaction Variables

See unit 13 slides (section 8).

Ex: Set up a multiple linear regression model predicting weight with height, sex, and the interaction between
height and sex.

In [62]: mod_int = smf.ols('weight~height+sex+height*sex',
data=df).fit()

In [63]: mod_int.summary()

Out[63]:
[63] OLS Regression Results
Dep. Variable: weight R-squared: 0.575
Model: OLS Adj. R-squared: 0.572
Method: Least Squares F-statistic: 217.5

Date: Tue, 30 Mar 2021 Prob (F-statistic): 3.00e-89

Time: 11:05:18 Log-Likelihood: -1748.3
No. Observations: 487 AlC: 3505.
Df Residuals: 483 BIC: 3521.
Df Model: 3
Covariance Type: nonrobust
coef std err t P>|t] [0.025 0.975]

Intercept -43.8193 13.791 -3.177 0.002 -70.917 -16.721
sex[T.Male] -16.1357 19.885 -0.811 0.418 -55.208 22.936
height 0.6333 0.084 7.577 0.000 0.469 0.798

height:sex[T.Male] 0.1453 0.116 1.252 0.211 -0.083  0.373

Omnibus: 92.090 Durbin-Watson: 2.002
Prob(Omnibus): 0.000 Jarque-Bera (JB): 187.527
Skew: 1.030 Prob(JB): 1.90e-41

Kurtosis: 5.235 Cond. No. 1.11e+04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.11e+04. This might indicate that there are

strong multicollinearity or other numerical problems.



Ex: Is there sufficient evidence to suggest that the slope of the interaction variable (of height and sex) in the
population model (that predicts weight with height, sex, and the interaction of height and sex) is non-zero?

H0!/83:0

Hy:B3#0

(Where 35 is the slope that corresponds to the interaction of height and sex).

Because the p-value for this test = 0.211 > a = 0.05, we fail to reject the null hypothesis. Thus there is not
sufficient evidence to suggest that there is a linear interaction effect in this population model.

9. Making a Prediction with Multiple Linear Regression

See unit 13 slides (section 9).

Ex: Set up the multiple linear regression model that predicts weight with height, sex, and age group. Then
predict the weight of a 20 year old woman that is 170cm tall.



In [64]: final_mod = smf.ols('weight~height+sex+age_group’,
data=df).fit()
final mod.summary()

Out[64]: OLS Regression Results
Dep. Variable: weight R-squared: 0.594
Model: OLS Adj. R-squared: 0.590
Method: Least Squares F-statistic: 1761
Date: Tue, 30 Mar 2021 Prob (F-statistic): 7.71e-93
Time: 11:05:18 Log-Likelihood: -1737.1
No. Observations: 487 AIC: 3484.
Df Residuals: 482 BIC: 3505.
Df Model: 4
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]
Intercept -59.0102 9.409 -6.272 0.000 -77.498 -40.523
sex[T.Male] 79128 1.086 7.286 0.000 5.779 10.047
age_group[T.40 and above] 3.4030 1.202 2.830 0.005 1.041 5.765
age_group[T.under_30] -1.7432 0.949 -1.838 0.067 -3.607 0.121
height 0.7291 0.057 12.821 0.000 0.617 0.841
Omnibus: 91.450 Durbin-Watson: 1.991
Prob(Omnibus): 0.000 Jarque-Bera (JB): 182.551
Skew: 1.032 Prob(JB): 2.29e-40
Kurtosis: 5.176 Cond. No. 4.14e+03
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 4.14e+03. This might indicate that there are
strong multicollinearity or other numerical problems.
Model:

weight = —59.0102 + 7.9128sex[T. Male] + 3.4030age roup(T.40andabove] — 1.7432age,roup(T .



Prediction by Hand:

weight = —59.0102 + 7.9128(0) + 3.4030age,roup(0) — 1.7432(1) + 0.7291(170) = 63.1978

In [65]: final mod.predict(exog=dict(height=170, sex='Female', age group='under_30'))

Out[65]: @ 63.197806
dtype: float64

10. Linear Transformations: What to try when your multiple linear
regression conditions aren't met

Let's examine one more case study with a new dataset.

Case Study Predicting Car Fuel Efficiency (mpg) with Weight

We would like to build a linear regression model predicting the mpg of a car using the weight of the car.

We will use a random sample of 398 cars that were designed in the 70's and 80's.

In [66]: df_cars=pd.read_csv('auto-mpg.csv', na_values=['data missing'])
df_cars.head()

Out[66]:
mpg num_cylinders displacement horsepower weight acceleration year
0 18.0 8 307.0 130.0 3504 12.0 70
1 15.0 8 350.0 165.0 3693 1.5 70
2 18.0 8 318.0 150.0 3436 11.0 70
3 16.0 8 304.0 150.0 3433 12.0 70
4 17.0 8 302.0 140.0 3449 10.5 70

In [67]: df_cars.shape

out[67]: (398, 7)



In [68]: sns.scatterplot(x="weight", y="mpg', data=df_cars)
plt.title('Relationship between Car Weight and MPG')

plt.show()
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The relationship between weight and mpg in this dataset is negative, nonlinear, and moderately strong. There do
not appear to be any obvious outliers.

Given that this is not a linear relationship, we can already see that one of our linear regression conditions is not

going to hold. But, for now, let's fit a regression model predicting mpg with weight and check what other
conditions might not be met.

10.1 Initial Model Fitting



In [69]: car_result = smf.ols('mpg ~ weight', data=df_cars).fit()
car_result.summary()

Out[69]:
[69] OLS Regression Results
Dep. Variable: mpg R-squared: 0.692
Model: OLS Adj. R-squared: 0.691
Method: Least Squares F-statistic: 888.9

Date: Tue, 30 Mar 2021 Prob (F-statistic): 2.97e-103

Time: 11:05:18 Log-Likelihood: -1148.4
No. Observations: 398 AIC: 2301.
Df Residuals: 396 BIC: 2309.
Df Model: 1
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]

Intercept 46.3174 0.795 58.243 0.000 44.754 47.881
weight -0.0077 0.000 -29.814 0.000 -0.008 -0.007

Omnibus: 40.423 Durbin-Watson: 0.797
Prob(Omnibus): 0.000 Jarque-Bera (JB): 56.695
Skew: 0.713 Prob(JB): 4.89e-13

Kurtosis: 4.176 Cond. No. 1.13e+04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.13e+04. This might indicate that there are

strong multicollinearity or other numerical problems.

10.2 Initial Model Condition Checking
Condition 1: Linearity Condition

The distribution of points in the plot below are NOT roughly evenly distributed above and below the line as we
move from left to right, therefore we can NOT say the linearity condition is met.



In [70]: sns.regplot(x=car_result.fittedvalues, y=car_result.resid, ci=None)

plt.ylabel('Residual')
plt.xlabel('Fitted Value')
plt.show()
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Condition 2: Constant Variability of Residuals Condition

Because the y-axis spread of points in the plot below CHANGES as we move from left to right, thus we can NOT
say that this condition is met.

In [71]: sns.regplot(x=car_result.fittedvalues, y=car_result.resid, ci=None)

plt.ylabel('Residual’)
plt.xlabel('Fitted Value')
plt.show()
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Condition 3: Normality of Residuals (with Mean of 0) Condition

Because the histogram of residuals is slightly skewed to the right, the assumption that the residuals are normally
distributed is slightly not met. (However, it does look like the mean is about 0).



In [72]: plt.hist(car_result.resid)
plt.xlabel('Residuals")

plt.show()
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Condition 4 Independence of Residuals Condition
At the very least, we verify that:

» the data is randomly sampled and
» the sample size n=392<10% of all car models from the 70's and 80's

Thus the condition for independence of residuals may not be violated in this particular way.

However, it may still be the case that these residuals are not independent (for other reasons that you will discuss
in later statistics classes).

Condition 5: No Multicollinearity Condition

This is a simple linear regression model (which only has one explanatory variable), thus we do not need to check
this condition.

Thus, because not all of the model conditions are met:

» we cannot say that a linear model is a good fit for this data set,
» and inference we conduct on the population slopes/intercept of this model may be invalid.

So what can we do?



10.3. Try Transforming Some of the Variables to See if the Conditions are Met with
That Variable Instead

Let's create a new variable in our df_cars dataframe that takes the natural log of each values in the response
variable (mpg).

In [73]: df_cars['log_mpg']=np.log(df_cars['mpg'])

df _cars.head()

ouEL7els mpg num_cylinders displacement horsepower weight acceleration year log_mpg
0 18.0 8 307.0 130.0 3504 12.0 70 2.890372
1 150 8 350.0 165.0 3693 11.5 70 2.708050
2 18.0 8 318.0 150.0 3436 11.0 70 2.890372
3 16.0 8 304.0 150.0 3433 120 70 2.772589
4 17.0 8 302.0 140.0 3449 105 70 2.833213

10.4 Now, let try setting up our model again with log_mpg as our response
variable instead.



In [74]: car_result = smf.ols('log_mpg ~ weight', data=df_cars).fit()
car_result.summary()

Out[74]:
[74] OLS Regression Results
Dep. Variable: log_mpg R-squared: 0.767
Model: OLS Adj. R-squared: 0.766
Method: Least Squares F-statistic: 1301.

Date: Tue, 30 Mar 2021 Prob (F-statistic): 3.45e-127

Time: 11:05:19 Log-Likelihood: 155.09
No. Observations: 398 AIC: -306.2
Df Residuals: 396 BIC: -298.2
Df Model: 1
Covariance Type: nonrobust
coef std err t P>|t] [0.025 0.975]

Intercept  4.1445 0.030 137.818 0.000 4.085 4.204
weight -0.0004 9.74e-06 -36.066 0.000 -0.000 -0.000

Omnibus: 5.176 Durbin-Watson: 0.785
Prob(Omnibus): 0.075 Jarque-Bera (JB): 5.678
Skew: 0.163 Prob(JB): 0.0585

Kurtosis: 3.485 Cond. No. 1.13e+04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.13e+04. This might indicate that there are

strong multicollinearity or other numerical problems.

10.5 Let's check the conditions for our new model (with log_mpg response
variable).

Condition 1: Linearity Condition

The distribution of points in the plot below are now roughly evenly distributed above and below the line as we
move from left to right, therefore we can say the linearity condition is met.



In [75]: sns.regplot(x=car_result.fittedvalues, y=car_result.resid, ci=None)
plt.ylabel('Residual’)
plt.xlabel('Fitted Value')
plt.show()
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Condition 2: Constant Variability of Residuals Condition

The y-axis spread of points in the plot below as we move from left to right now changes very little, thus we can
now say that this condition is met.

In [76]: sns.regplot(x=car_result.fittedvalues, y=car_result.resid, ci=None)
plt.ylabel('Residual')
plt.xlabel('Fitted Value')
plt.show()
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Condition 3: Normality of Residuals (with Mean of 0) Condition

Because the histogram of residuals is symmeric and unimodal and centered at 0, we can assume that the
distribution of the residuals is normal with a mean of 0.



In [77]: plt.hist(car_result.resid)
plt.xlabel('Residuals")

plt.show()
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Condition 4 Independence of Residuals Condition
At the very least, we verify that:

 the data is randomly sampled and
» the sample size n=392<10% of all car models from the 70's and 80's

Thus the condition for independence of residuals may not be violated in this particular way.

However, it may still be the case that these residuals are not independent (for other reasons that you will discuss
in later statistics classes).

Condition 5: No Multicollinearity Condition

This is a simple linear regression model (which only has one explanatory variable), thus we do not need to check
this condition.

So, we can now say that the conditions are met when predicting log_mpg with a weight in a simple linear
regression model.

10.6 Predictions, Inference, and Interpretations Change when You Transform the
Model

Be careful to remember that you transformed variables when being asked to do thing with your transformed
model.

10.6.1 Set up your new linear regression equation.



In [78]: car_result.summary()

Out[78]: OLS Regression Results
Dep. Variable: log_mpg R-squared: 0.767
Model: OoLS Adj. R-squared: 0.766
Method: Least Squares F-statistic: 1301.

Date: Tue, 30 Mar 2021 Prob (F-statistic): 3.45e-127

Time: 11:05:19 Log-Likelihood: 155.09
No. Observations: 398 AlC: -306.2
Df Residuals: 396 BIC: -298.2
Df Model: 1
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]

Intercept  4.1445 0.030 137.818 0.000 4.085 4.204

weight -0.0004 9.74e-06 -36.066 0.000 -0.000 -0.000

Omnibus: 5.176 Durbin-Watson: 0.785
Prob(Omnibus): 0.075 Jarque-Bera (JB): 5.678
Skew: 0.163 Prob(JB): 0.0585
Kurtosis: 3.485 Cond. No. 1.13e+04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.13e+04. This might indicate that there are
strong multicollinearity or other numerical problems.

It looks like the slope is very small. To minimize rounding issues, let's extract the slope and intercept to get a
more accurate (less rounded) estimate for the intercept and slope.

In [79]: car_result.params

Out[79]: Intercept 4.144531
weight -0.000351
dtype: float64

In(mpg) = 4.1445 — 0.0004(weight)

10.6.2 Predict the mpg of a 3500 Ib car.



In(mpg) = 4.144531 — 0.000351(3500) = 2.92

In [80]: car_result.predict(exog=dict(weight=3500))

Out[80]: o 2.915409
dtype: float64

Don't forget to exponentiate both sides of this equation to get the predicted mpg not the predicted In(mpg).

eln(mpg) — 292

In [81]: np.exp(2.92)

Out[81]: 18.54128745974687

mpg = 18.54

10.6.3 Interpret your intercept and slope of your model in words.

« Intercept: We would expect a car that is 0 Ibs, on average, to have a In(mpg) of 4.1445. (This is a
nonsensical answer, as a car cannot be 0 Ibs).

« Slope: If we were to increase the weight of a car by 1 Ib, we would expect the In(mpg) of the car to
decrease, on average, by 0.000351.

STAT 207, Victoria Ellison and Douglas Simpson, University of lllinois at Urbana-Champaign



