Unit 12: Multiple Linear Regression Modeling

Case Studies:
e Can we model the weight of healthy adult with a linear relationship of
height, sex, and age_group?

e Can we model the mpg of an old car using the weight?

Purpose of this Lectures

Data Science
Pipeline @

)
and Communication

N o U s

Analyses for Associations
Association Analyses Summary: Numerical and/or Categorical Explanatory Variables-> Numerical
Response Variable
Basic Descriptive Analytics for the Sample Data
(Numerical Response Variable, Multiple Explanatory Variables — Numerical and Categorical)
3.1. Visualizations
3.2. Summary Statistics
3.2.1. Python: .groupby() function
Multiple Linear Regression — Sample Data
Categorical Explanatory Variables
Interpreting Intercepts and Slopes of Regression Equations
Inference for Multiple Linear Regression Intercept and Slopes
7.1. Conditions for Inference
7.2. Inference of a Single Multiple Linear Regression Population Slope
7.2.1. Confidence Intervals
7.2.2. Hypothesis Test Hy: §; = 0
7.3. Inference for ALL Multiple Linear Regression Population Slopes
7.3.1. F-Distribution




7.3.2. ConductingtheTestHy: By =f,==p,=0

7.3.3. Why would we want to conduct the test Hy: f; = f, = - = B, = 0.
7.4. Inference for a Subset of Multiple Linear Regression Population Slopes
7.4.1. Conducting the Test Hy: Bp41 = Pp42 = = Bp+q = 0.

8. Linear Regression Models with Interaction Variables
9. Making Predictions with Multiple Linear Regression Models
10. Linear Transformations: What to try when your multiple linear regression conditions aren’t met.

Additional Resources

Chapter 8.1 and 8.3 in Diez, Barr, and Cetinkaya-Rundel, (2015), Openintro
Statistics https://www.openintro.org/download.php?file=os3&redirect=/stat/textbook/0s3.php



1. ANALYSES FOR ASSOCIATIONS

Questions to consider, when selecting an analysis to test an association.

Descrlptlve
Analytics

RS

1. Which variable is the response variable in this association?
a. Is it a categorical or numerical variable?
b. Ifit’s a categorical variable, how many levels does it
have?

2. Which variable(s) is the explanatory variable in this
association?
a. Is it a categorical or numerical variable?
b. Ifit’s a categorical variable, how many levels does it
have?

3. How would you quantify this association?
a. Difference between two summary statistics? What two
summary statistics?

b. With a model? What kind of model?

4. Are you interested in an association in a sample or a
population?

5. When is it appropriate to use this test for association?

6. Can you use this model/test to make predictions?
a. How would you quantify the performance of your
predictions?




2. ASSOCIATION ANALYSIS SUMMARY:

RESPONSE: NUMERICAL

EXPLANATORY(S): NUMERICAL AND/OR CATEGORICAL

Type of I . Explanatory Variables:
Variables ﬂ Numerical and/or Categorical Variables
Involved in
the Response Variable:
Association Numerical Variable
Test
Is there an association between
Example weight and the height, age, and sex
of healthy adults?
Type of
Association Multiple Linear Regression Model
(Way to Quantify | (linear relationship between explanatory variable (x) and response variable (y))
Association)
How to Describe | 1. Multiple Linear Regression Model:
an Association in o 9 =PBo+Pixs+ Brxst -+ Bpxyp
a Sample? e RZof the model
Descriptive
Analytics When is this
analysis (for the
sample) Linearity condition is met
appropriate to
use?
Conduct inference on:
How to Infer an e Asingle population parameter §3;
Association for a e All population parameters f3y, ..., B,
Population? e Asubset of population parameters 3,1, ..., fp+q
When is this 1. Linearity condition is met
analysis (for the 2. Constant variance of residuals condition is met.
population) 3. Residuals are normal (and centered at 0).
4. Residuals are independent.

appropriate to
use? 5. No-Multicollinearity condition is met.

Use your multiple linear regression line to make predictions § = B, + f1x; +

Making — ——
Predictions Baxa.t -+ fpxp
How to quantify
the performance e Individual Data Point: residual
of your e All Data: root mean square error (RMSE)

prediction(s)?




3. BASIC DESCRIPTIVE ANALYTICS FOR SAMPLE DATA — NUMERICAL RESPONSE

VARIABLE — MULTIPLE EXPLANATORY VARIABLES (NUMERICAL AND CATEGORICAL)

See the Unit 13 notebook for examples of visualizations and summary statistics that involve a
numerical response variable and two or more explanatory variables.

4. MULTIPLE LINEAR REGRESSION — SAMPLE DATA

A multiple linear regression line is generally a best fit line that has requires p>1 slopes.

V= PBo+ B1xy + Brxs + -+ Bpxy

To find the optimal values of B, B4, B>, ...,[?p can similarly fit an Ordinary Least Squares Regression line to
this data.

Goal for Finding the Ordinary Least Squares Regression Line: Find optimal values for B, 81, B2, ..., [?pfor the
equation value 9 = Sy + B1x; + foxy + - + ﬁ’pxp that minimizes

Z(yi - }7)2 = Z(yi - (Bo + lei,l + -t Bpxi,p))z

= — (Bo + [?1951,1 + -t ,éprp))z + ot (O — (Bo + .élxn,l + et Bpxn,p))z



Calculation of optimal values for By, 81, B, ..., [?p:

e Based on the same idea for simple linear regression.
e Won’t ask to calculate by hand in this class. The Python output tables will give you these optimal values

P

of Bo, b1, Bz .. Bp-

In general, linear regression can incorporate and explanatory

variables, but the response variable must be




5. CATEGORICAL EXPLANATORY VARIABLES

How would we convert our sample dataset, with categorical explanatory variables into a linear regression
equation?

A — — — — —
Response y - ﬁ() + ﬁlxl + ﬁZXZ + ﬁ3X3 + ﬁ4—X4—
Variable Explanatory Variables
weight sex age_group height . 2 x1 x2 x3 x4 Yy
73|Male under_30 176.5 1 0 1 176.5 73
65.2 |Female under_30 168.5 0 0 (s 168.5 65.2
84.5|Female 40 and above 162.6 0 1 0 162.6 84.5
58.4|Female 30-39 173.2 0 0 0 173.2 58.4
70.2|Male under_30 175 1 0 ol 175 70.2
Predicted age_Group[T.40| age_Group[T.un
Weight sex[T.Male] and above] der_30]|height Observed Weight
Definitions:

Categorical explanatory variables can be represented as 0/1 indicator variables.

The level of the categorical explanatory variable that is represented as a “1” in a given indicator variable is the
indicator of that variable.

Example: Indicator variables can be translated as asking a (yes=1)/(no=0) question about the input
observation.

e The variable (x; also named sex[T.male]) can be translated as a yes/no question for an
observation.
o Is person male?
= Yes=
= No-=
e The variable (x5 also named age_Group[T.40 and above]) can be translated as a yes/no question
for an observation.
o Is person at least 40 years old?
= Yes=
= No-=
e The variable (x3 also named age_Group[T.under_30]) can be translated as a yes/no question for
an observation.
o Is person under 307
= Yes=
= No-=

The level of an explanatory variable that has no corresponding indicator variable is called the reference level.

Rules:

A categorical explanatory variable with w levels must be represented by exactly w-1 levels. Otherwise when

you try to calculate the optimal values of By, 1, B2, .., Bp in your multiple linear regression equation, you will
get “multiple solution errors.”



Go to Unit 13 notebook to formulate the multiple linear regression line which predict weight, given height,
sex, and age group.

Dep. Variable weight R-squared:
Model: OLS  Adj. R-squared:
Method Least Squares F-statistic:
Date: Sun, 28 Mar 2021 Prob (F-statistic):
Time: 14:41:21 Log-Likelihood:
No. Observations: 487 AIC:
Df Residuals: 482 BIC:
Df Model: -
Covariance Type: nonrobust
coef stderr t
Intercept -50.0102 0400 -5272
sex[T.Male] 7.0128 1088 72238
age_group|[T.40 and above] 34030 1202 2830
age_group[T.under_30] -1.7432 00649 -1838
height 07201 0.057 12.821
Omnibus: ©1.450 Durbin-Watson: 1.601
Prob{Omnibus): 0000 Jarque-Bera(JB): 182551
Skew: 1.032 Prob(JB): 2.20e-40
Kurtosis: 5.176 Cond. No. 4.14e+03
Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.504
0.580
176.1
7.71e-03
-17371
2484
3505.

P>t
0.000
0.000
0.005
0.067
0.000

[0.025
-77.488
5.779
1.041
-32.607
0.817

0.975)
-40.523
10.047
5.785
0.121
0.841

[2] The condition number is large, 4. 14e+03. This might indicate that there are
strong multicollinearity or other numerical problems



Y =PBo+ P1x1 + Baxy + -+ Bpxy

1. B,lntercepts: “If the explanatory variables were all 0, we would expect the response
variable value, on average, to be f,.”

a. Note: Sometimes the interpretation of ﬁo can be nonsensical to the application.

2. B;Slope of a Numerical Explanatory Variable: All else held equal, if we were to increase
x; by 1, then, on average, we would expect the response variable value to increase by
Bi.

a. Note: This language is important, as we do not want to phrase this interpretation to imply that
X; a change in the response variable.

3. B;, Slope of a Categorical Indicator Variable: All else held equal, we would expect the
difference in average response variable value for those observations in the indicator
level of x; and those observations in the reference level (for the corresponding

explanatory variable) is f3;.
a. Note: This language is important, as we do not want to phrase this interpretation to imply that
X; a change in the response variable.

Ex: Interpret the intercept, height slope, and age group[t.under 30] slope for the problem above.




7. INFERENCE FOR MULTIPLE LINEAR REGRESSION INTERCEPT AND SLOPES

Just like with simple linear regression, we can use:

e Bo B B2 ..., By, from the multiple linear regression equation ¥ = By + f1x; + fox, +
et ,épxp for the sample data, to conduct inference on

® Bo, By, .-, By, from the multiple linear regression equation = By + f1x; + Box; +
-+ Bpx, for the population data.

However, with multiple linear regression, we can conduct many types of hypothesis testing on
the slopes.

1. Hypothesis Testing on One Population Slope
Ho:ﬁl‘ = O
HA:IBi * 0

2. Hypothesis Testing on All Population Slopes

Ho:pr=p2 = =pp=0
Hy:at leastone ; #0 (fori=1,..,p)

3. Hypothesis Testing on a Subset of g Population Slopes

Ho:Bpi1 = Bp+2 = = Pp+q =0

Hy:at leastone §; # 0 (fori=p+1,..,p+q)




7.1. CONDITIONS FOR INFERENCE ON MULTIPLE LINEAR REGRESSION

INTERCEPT AND SLOPES

The conditions for multiple linear regression are the same as those for simple linear regression, except
there is one more condition that must hold.

[SLR AND MLR]: Linearity condition

[SLR AND MLR]: Constant variability of residuals condition

[SLR AND MLR]: Normality or residuals (with mean of 0) condition
[SLR AND MLR]: Independence of residuals condition

[JUST MLR]: No-Multicollinearity Condition

vk wN e

In order to avoid the model producing slope estimates, one should avoid having
explanatory variables that are collinear. Two explanatory variables are collinear if they have a

between them.

Ex: Suppose now we also wanted to add ‘elbow diameter’ to our list of explanatory variables.

1. Fit a multiple linear regression model predicting weight with:

a. Height

b. Elbow diameter
c. Sex

d. Age group.

2. What is the R*2 of this model?

Check the multiple linear regression conditions for inference for this model.

4. If we were to delete one of these numerical explanatory variables (because of the multicollinearity
condition being violated), which one would you choose.

5. Fit a multiple linear regression model predicting weight with the following explanatory variables and
check the conditions.

w

a. Height
b—Elbow-diameter
c. Sex

d. Age group.

Go to the notebook (section 7.1) to answer these questions.



7.2. INFERENCE FOR A SINGLE MULTIPLE LINEAR REGRESSION SLOPE

We can create confidence intervals and conduct hypothesis testing on population slopes in a multiple
linear regression using the same procedure that we used for the one population slope in a simple
linear regression.

7.2.1. CONFIDENCE INTERVAL FOR A SINGLE MULTIPLE LINEAR

REGRESSION SLOPE

1. Check the conditions for conducting inference on a population
slope/intercept.

a. The linearity condition holds.

b. The constant residuals condition holds.
c. Theresiduals are normal.

d. The residuals are independent.

e. The explanatory variables (if a multiple linear regression is used) are not
collinear.

2. The confidence interval for ﬁi is calculated by:

(point estimate) + (critical value)(standard error)
El a tgn—p—l}SEﬁi

Notation:

Go to notebook for an example.



7.2.2. CONDUCTING A HYPOTHESIS TEST FOR A SINGLE POPULATION

SLOPE, TESTING THE CLAIM H4: 8; +# O

1. Set up the hypotheses
Hy: ;=0
HA: ﬁi * O
2. Check the conditions for conducting inference on a population slope/intercept.

a. The linearity condition holds.

b. The constant residuals condition holds.
c. The residuals are normal (with mean 0).
d. The residuals are independent.

e. The explanatory variables (if a multiple linear regression is used) are not collinear.

3. Calculate the point estimate (observed sample statistic)

B,
4. Calculate the p-value (or calculate a confidence interval)
— value = 2P(T.. . . > 1P =0

6. Make a Decision

With a p-value

a. If p—value < «, then we “reject the null hypothesis.” And we say that “there IS sufficient evidence
to suggest the alternative hypothesis.”

b. If p—value > «, then we “fail to reject the null hypothesis.” And we say that “there IS NOT
sufficient evidence to suggest the alternative hypothesis.”

With a confidence interval

a. If the null value (0) is not in the confidence interval, then we “reject the null hypothesis.” And we
say that “there IS sufficient evidence to suggest the alternative hypothesis.”

b. If the null value (0) is in the confidence interval, then we “fail to reject the null hypothesis.” And we
say that “there IS NOT sufficient evidence to suggest the alternative hypothesis.”




Go to notebook for an example.

We are interested in testing the claim that the height slope in the multiple linear regression population model
(that predicts the weight of all healthy adults with height, age group, and sex) is non-zero.

S Regression Resulls

Dep. Variable: weight R-squared: 0.594
Model: OLS  Adj. R-squared: 0.590
Method: Least Squares F-statistic: 176.1
Date: Mon, 29 Mar 2021 Prob (F-statistic): 7.71e-93
Time: 17:3347 Log-Likelihood: -1737.1
No. Observations: 487 AlC: 3484.
Df Residuals: 482 BIC: 3505,
Df Model: 4
Covariance Type: nonrobust
coef stderr t P>t [0.025 0.975]
Intercept -59.0102 9408 -6.272 0.000 -77.498 -40.523
sex[T.Male] 7.9128 1.086 7.286 0000 5779 10.047
age_group[T.40 and above]  3.4030 1.202 2830 0005 1.041 5765
age_group[Tunder_30] -1.7432 0949 -1.838 0067 -3607 0.121
I height | 07291 = 0057 12821 [BOOON 0617 0841 r
Omnibus: 91.450  Durbin-Watson: 1.991
Prob(Omnibus):  0.000 Jarque-Bera (JB):  182.551
Skew: 1.032 Prob(JB): 2.29e-40
Kurtosis: 5176 Cond. No. 4.14e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 4.14e+03. This might indicate that there are
strong multicollinearity or other numerical problems.

Holﬁq_:[]
HA:34750

test stat =

SEg,
p —value = ZP(Tn_p_i = |test stat])

Sampling Distribution of

Sample Slopes
(assuming Hy: f, = D}

N\

Because the 5 multiple
linear regression inference
conditionshold.

~ N(mean = B,,std ~ SEg)

\ Because the sampling

mean

iy

Sampling Distribution of Sample

Slope t-scores test stat = -

(assuming Hy: 5, = 0)

Bs—Ps

distribution is normal




7.3. INFERENCE FOR ALL MULTIPLE LINEAR REGRESSION SLOPES

The hypothesis testing procedure for testing the following hypotheses uses a slightly
different structure than what we’ve used up until now.

Hy:py=po==p,=0
Hy:at leastone B; #0 (fori=1,..,p)

What’s different about this test?

1. First, this test does not have a confidence interval that corresponds to it. So we
must use a p-value.

2. Next, when calculating our p-value in the past our test statistic represented either:
a. The z-score of the sample statistic (point estimate) OR

b. The t-score of the sample statistic (point estimate).

Now, we will use a test statistic to calculate the p-value, but it will not be a z-score or
t-score.




3. Finally, when calculating our p-value in the past, our test statistic was considered to
be either:
a. an observation from the Z-distribution (ie. standard normal distribution) and
our p-value was two tailed:
ie. p — value = 2P(Z > [test stat|)

b. an observation from the t-distribution and our p-value was two tailed:

ie. p — value = 2P(T > |test stat|)

Now, our test statistic will be an observation from a new distribution called the F-
distribution and our p-value is right tailed.

ie. p — value = P(F > test stat)



7.3.1. F DISTRIBUTION

First, let’s discuss this new distribution and some of it’s properties.

Random Variable that Follows the F-Distribution:

Definition: A continuous random variable is said to follow the F-distribution with d; and d,

degrees of freedom if it has the following probability density function (pdf).

Short-Hand:

Probability Density Function:

(d1x)d1dgz
(dix + dp)%1td2
f(x) = T4 ,forx >0
1 4

Parameters that Dictates Shape:

Properties:

e Always

Shapes: Can take on many different shapes, based on the parameter values.

25
di=1, d2=1 —
d1=2, d2=1 =—

2 d1=5, d2=2 =—
d1=10, d2=1

15 d1=100, d2=100

1 =
> \\
\
0 \\‘— =




Ex: Go to the Jupyter notebook to calculate the probability that an F-score is less than or
equal to 4, (using df1=3 and df2=9).

P(F39<4) =



7.3.2. CONDUCTING THE TEST

HO:ﬁ1:ﬁzz'"=Bp:0

1. Set up the hypotheses

Hy:py=po==p,=0
Hy:at leastone B; #0 (fori=1,..,p)

2. Check the conditions for conducting inference on a population slope/intercept.

a. The linearity condition holds.

b. The constant residuals condition holds.
c. The residuals are normal (with mean 0).
d. The residuals are independent.

e. The explanatory variables (if a multiple linear regression is used) are not collinear.

3. Calculate the test statistic:

SSR
_ p
test stat = SSE
n—p-—1
4. Calculate the p-value
p —value = P(Fp,,_,_1 = test stat)

5. Make a Decision

a. Ifp —value < a, then we “reject the null hypothesis.” And we say that “there IS sufficient evidence to
suggest the alternative hypothesis.”

b. If p—value > «, then we “fail to reject the null hypothesis.” And we say that “there IS NOT sufficient
evidence to suggest the alternative hypothesis.”




Ex: When using sex, height, and age_group to predict weight in a linear regression equation, is there significant evidence
to suggest that at least one of the slopes in the population linear regression model is non-zero? Go to the Jupyter

notebook.

See notebook.

Date:

Time:

No. Observations:
Df Residuals:

Df Model:
Covariance Type:

age_group{T.40 and above]  3.4030
age_group[Tunder_30] -1.7432

Omnibus:
Prob{Omnibus):
Skew:

Kurtosis:

weight
oLs
Least Squares
Sun, 28 Mar 2021
144121 Log-Likelihood:
457 AIC:
432 BiC:
4
noNrobust
coef stdemr t
Intercept -50.0102 0400 -8.272
sex[TMale] 79128 1088 7228
1202 2830
0.e40 -1.838
height 07201 0057 12821
21450 Durbin-Watson: 1.681
0.000 Jarque-Bera (JB): 182551
1.032 Prob{JB): 228=-40
5178 Cond. No. 4.14e+03

Notes

[1] Standard Errors assume that the covariance matrix of the emors is comectly specified
[2] The condition number is large, 4 14e+03. This might indicate that there are

strong multicollinearity or other numerical problems

17271
3484
3505

P>it]  [0.025
0.000 -77.408
0000 5779
0.005  1.041
0067 -2.607
0.000 0617

0.975)
-40.523
10.047
5.785
o121
o.g41

Hy:py=Br="=§,=0

Hy:at leastone §; 20 (fori=1,...p)

p—ualue=P(Fp}n_p_12 st stat)

F distribution (with dfl = p, df2= n-p-1)




7.3.3. WHY WOULD WE WANT TO CONDUCT THIS TEST?

HO:ﬁl :ﬁz = =Bp =0
This test is vague!

Ho:pr=p2 = =pp=0
Hy:at leastone B; #0 (fori=1,..,p)

It does not tell us which slopes are non-zero.

Q: Why not conduct the following p tests instead to find out which slopes specifically are non-zero
using a significance level of a=0.05?

Hy: 1 =0

HA: Bl #* 0

HA:BZ *0

Ho:ﬁp =0
HA:Bp *#0

A: The more tests we conduct, the more likely we are to have made a Type 1 Error.

To make a Type 1 Error in your hypothesis test decision is to have incorrectly rejected a null hypothesis
that was actually true.

The probability of making a of Type 1 Error is highly related to the significance level. Actually they're
the same!

P(Type 1 Error) = a = significance level



Ex: If we were to use a significance level of @ = 0.05 for each of the following individual population slope tests
that corresponds to one of the slopes in the model below, what is the probability that at least one of these
tests made a type 1 error?

OLS Regression Results

Dep. Variable: weght R-squared: 0.504
Model: OLS  Adj. R-squared: 0.500
Method: Least Squares F-statistic: 176.1
Date: Sun, 28 Mar 2021 Prob (F-statistic): 7.71e-83
Time: 14:41:21 Log-Likelihood: -1727.1
No. Observations: 487 AIC: 2484
Df Residuals: 432 BIC: 3505.

Df Model: <

Covariance Type: nonrobust

coef stderr t P>t [0.025 0.975)

Intercept -50.0102 ©408 -6272 0000 -77.488 -40523

sex[T.Male] 790128 1085 7285 0.000 577¢ 10.047
age_group{T.40 and above] 34020 1202 2830 0.005 1.041 5.765
age_group[T.under_30] -1.7432 00640 -1838 0067 -2807 0.121
height 07201 0.057 12821 0.000 08617 02841

Omnibus: ©1.450  Durbin-Watson: 1.601
Prob{(Omnibus): 0.000 Jarque-Bera (JB): 182551
Skew: 1.032 Prob(JB): 2.2082-40

Kurtosis: 5.176 Cond. No. 4.14e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 4.14e+03. This might indicate that there are

strong multicollinearity or other numerical problems.



7.4. INFERENCE FOR A SUBSET OF MULTIPLE LINEAR REGRESSION SLOPES

The hypothesis testing structure for testing a subset of population slopes also requires a
slightly different structure than before.

HO:.Bp+1 = ﬁp+2 == ﬁp+q =0

Hy:at leastone §; # 0 (fori=p+1,..,p+q)

What’s different about this test?

1. First, this test also does not have a confidence interval that corresponds to it.
So we must use a p-value.

2. Also, our test statistic will also be an observation the F-distribution and our p-
value is right tailed.

ie. p — value = P(F > test stat)

3. Finally, we need to define two “nested” sample models.

Full Model (contains all the slopes)

y/flm = E) + B\lxl + - +ﬂpxp + ﬂp+1xp+1 + ”'ﬁ’p:rxp+q

We can calculate the sum squared error for this model:

n n
N2 A A — _ _
SSEpun = Z(}’i —Vrau) = Z(J’i — (Bo + Prxig + -+ ,Bpxp + ﬁp+1xp+1 + "'.Bp+qxp+q))2

i=1 i=1

Reduced Model (contains just the slopes that you aren’t testing)
Yred = Bo + B1X1 + - +Bpx,

We can also calculate the sum squared error for this model:

n n
SSBrea = ) i = Vrea)? = ) 0 = (o + Buxin ++++ B ))?
i=1 i=1



7.4.1. CONDUCTING THE TEST

HO:ﬁp+1 :ﬁp+2 — e =ﬁp+q — O

1. Set up the hypotheses

Ho:Bp+1 = Bp+2 = = Pp+q =0
Hy:atleastone f; # 0 (fori=p+1,..,p+q)
2. Check the conditions for conducting inference on a population slope/intercept.

a. The linearity condition holds.

b. The constant residuals condition holds.
c. The residuals are normal (with mean 0).
d. The residuals are independent.

e. The explanatory variables (if a multiple linear regression is used) are not collinear.

3. Calculate the test statistic:

(SSEred - SSEfull)/q
(SSEqy)/(n—(p+4q) — 1)

test stat =

4. Calculate the p-value

p —value = P(F 1 = test stat)

qn—-(p+q)—

5. Make a Decision
c. Ifp —value < a, then we “reject the null hypothesis.” And we say that “there IS sufficient evidence to
suggest the alternative hypothesis.”
d. If p—value > a, then we “fail to reject the null hypothesis.” And we say that “there IS NOT sufficient
evidence to suggest the alternative hypothesis.”




Ex: Is there sufficient evidence to suggest that at least one of of the slopes that correspond to the age_group variable in
the population model (predicting weight with height, age_group, and sex) are non-zero? Go to the Jupyter notebook to
answer this.



8. LINEAR REGRESSION MODELS WITH INTERACTION VARIABLES

By fitting a multiple linear regression model to predict weight with height and sex, we
get

wetght = —56.2457 + 8.7207sex|[T.male] + 0.7087height.

However, given that sex[T.male] is an indicator variable, this multiple linear regression line can be
equivalently broken down into two separate regression models.

1. One model just for females: ex[T.male] = 0

weight = —56.2457 + 8.7207(0) + 0.7087height.
wetght = —56.2457 + 0.7087height.

2. One model just for males: ex[T.male] = 1

weilght = —56.2457 + 8.7207(1) + 0.7087 height.

weight = —47.525 + 0.7087height

These two models indicate the height and weight best fit lines have the same
for males and females, but a different




However, the data below indicates that the slope of the height/weight best fit lines for
males and females might be slightly different. So how could we model these differing

slopes for men and women?If we suspect that the interaction of two explanatory variables x; and
we can x; define an interaction variable x; - x;, and add this to the linear regression model.

Relationship between Height, Sex, and Weight
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Ex: Go to the Jupyter notebook to set up a multiple linear regression model predicting
weight with height, sex, and the interaction between height and sex.

OLS Regression Results

Dep. Variable: weight R-squared: 0.575
Model: oLS Adj. R-squared: 0.572
Method: Least Squares F-statistic: 217.5

Date: Mon, 29 Mar 2021 Prob (F-statistic): 3.00e-89

Time: 19:52:45 Log-Likelihood: -1748.3
No. Observations: 487 AlC: 3505.
Df Residuals: 483 BIC: 3521.
Df Model: 3
Covariance Type: nonrobust
coef stderr t P>t [0.025 0.975]

Intercept -43.8193 13.791 -3.177 0.002 -70.917 -16.721
sex[T.Male] -16.1357 19.885 -0.811 0.418 -55.208 22.936
height  0.6333 0.084 7.577 0.000 0.469  0.798
height:sex[T.Male] 0.1453 0.116 1.252 0.211 -0.083  0.373

Omnibus: 92.090 Durbin-Watson: 2.002
Prob(Omnibus): 0.000 Jarque-Bera (JB): 187.527
Skew: 1.030 Prob(JB): 1.90e-41

Kurtosis:  5.235 Cond. No. 1.11e+04



By modeling the interaction variable of height and sex, we get this model.

wetght = —43.8193 — 16.1357sex[T.male] + 0.6333height + 0.1453(height -
sex|T.male])

Again, given that sex[T.male] is an indicator variable, this multiple linear regression line can be
equivalently broken down into two separate regression models.

1. One model just for females: ex|[T. male] = 0
weight = —43.8193 — 16.1357(0) + 0.6333height + 0.1453(height - 0) )

weilght = —43.8193 + 0.6333height.

2. One model just for males: ex|T.male] = 1
weight = —43.8193 — 16.1357(1) + 0.6333height + 0.1453 (height - 1))

weight = —59.955 + 0.7786height

So now this new model indicates that the male and female relationships between height
and weight have different intercepts AND slopes.

Ex: Is there sufficient evidence to suggest that the slope of the interaction variable (of
height and sex) in the population model (that predicts weight with height, sex, and the
interaction of height and sex) is non-zero?



9. MAKING A PREDICTION WITH A MULTIPLE LINEAR REGRESSION

Making predictions with multiple linear regression is the same procedure used by simple linear
regression.

Ex: Set up the multiple linear regression model that predicts weight with height, sex, and age
group. Then predict the weight of a 20 year old woman that is 170cm tall. Go to Jupyter
notebook.

10. LINEAR TRANSFORMATIONS: WHAT TO TRY WHEN YOUR MULTIPLE LINEAR

REGRESSION CONDITIONS AREN’T MET

See unit 13 notebook (section 10).



