
 

 Unit 12: Multiple Linear Regression Modeling 
Case Studies: 

 Can we model the weight of healthy adult with a linear relationship of 
height, sex, and age_group? 

 
 
 

 Can we model the mpg of an old car using the weight? 
 
 
 
 
 

Purpose of this Lectures 

 
1. Analyses for Associations 
2. Association Analyses Summary: Numerical and/or Categorical Explanatory Variables-> Numerical 

Response Variable 
3. Basic Descriptive Analytics for the Sample Data 

(Numerical Response Variable, Multiple Explanatory Variables – Numerical and Categorical) 
3.1. Visualizations 
3.2. Summary Statistics 

3.2.1. Python: .groupby() function 
4. Multiple Linear Regression – Sample Data 
5. Categorical Explanatory Variables 
6. Interpreting Intercepts and Slopes of Regression Equations 
7. Inference for Multiple Linear Regression Intercept and Slopes 

7.1. Conditions for Inference 
7.2. Inference of a Single Multiple Linear Regression Population Slope 

7.2.1. Confidence Intervals 
7.2.2. Hypothesis Test 𝐻଴: 𝛽௜ = 0 

7.3. Inference for ALL Multiple Linear Regression Population Slopes 
7.3.1. F-Distribution 



7.3.2. Conducting the Test 𝐻଴: 𝛽ଵ = 𝛽ଶ = ⋯ = 𝛽௣ = 0 
7.3.3. Why would we want to conduct the test 𝐻଴: 𝛽ଵ = 𝛽ଶ = ⋯ = 𝛽௣ = 0. 

7.4. Inference for a Subset of Multiple Linear Regression Population Slopes 
7.4.1. Conducting the Test 𝐻଴: 𝛽௣ାଵ = 𝛽௣ାଶ = ⋯ = 𝛽௣ା௤ = 0. 

8. Linear Regression Models with Interaction Variables 
9. Making Predictions with Multiple Linear Regression Models 
10. Linear Transformations: What to try when your multiple linear regression conditions aren’t met.  
 

 

Additional Resources 

Chapter 8.1 and 8.3 in Diez, Barr, and Cetinkaya-Rundel, (2015), OpenIntro 
Statistics https://www.openintro.org/download.php?file=os3&redirect=/stat/textbook/os3.php 



1. ANALYSES FOR ASSOCIATIONS 

Questions to consider, when selecting an analysis to test an association. 

1. Which variable is the response variable in this association? 
a. Is it a categorical or numerical variable? 
b. If it’s a categorical variable, how many levels does it 

have? 

 

2. Which variable(s) is the explanatory variable in this 
association? 

a. Is it a categorical or numerical variable?  
b. If it’s a categorical variable, how many levels does it 

have? 

 

3. How would you quantify this association? 
a. Difference between two summary statistics? What two 

summary statistics? 
b. With a model? What kind of model? 

 

4. Are you interested in an association in a sample or a 
population? 

 

5. When is it appropriate to use this test for association? 
 

 
 

6. Can you use this model/test to make predictions? 
a. How would you quantify the performance of your 

predictions? 

  



2. ASSOCIATION ANALYSIS SUMMARY:  

       RESPONSE: NUMERICAL 

       EXPLANATORY(S): NUMERICAL AND/OR CATEGORICAL 

Research 
Questions 

about 
Associations 

Type of 
Variables 

Involved in 
the 

Association 
Test 

Explanatory Variables:  
Numerical and/or Categorical Variables 
 
Response Variable:  
Numerical Variable 

Example 

Is there an association between 
weight and the height, age, and sex 

of healthy adults? 

Type of 
Association 

(Way to Quantify 
Association) 

Multiple Linear Regression Model 
(linear relationship between explanatory variable (x) and response variable (y)) 

Descriptive 
Analytics 

How to Describe 
an Association in 

a Sample? 

1. Multiple Linear Regression Model: 
 𝑦ො = 𝛽଴

෢ + 𝛽ଵ
෢𝑥ଵ + 𝛽ଶ

෢𝑥ଶ. + ⋯ + 𝛽௣
෢𝑥௣   

 𝑅ଶof the model 

When is this 
analysis (for the 

sample) 
appropriate to 

use? 

Linearity condition is met 

Inferential 
Statistics 

How to Infer an 
Association for a 

Population? 

Conduct inference on: 
 A single population parameter 𝛽௜ 
 All population parameters 𝛽ଵ, … , 𝛽௣ 
 A subset of population parameters 𝛽௣ାଵ, … , 𝛽௣ା௤ 

 
When is this 

analysis (for the 
population) 

appropriate to 
use? 

1. Linearity condition is met 
2. Constant variance of residuals condition is met. 
3. Residuals are normal (and centered at 0). 
4. Residuals are independent. 
5. No-Multicollinearity condition is met. 

Predictive 
Analytics 

Making 
Predictions 

Use your multiple linear regression line to make predictions 𝑦ො = 𝛽଴
෢ + 𝛽ଵ

෢𝑥ଵ +

𝛽ଶ
෢𝑥ଶ. + ⋯ + 𝛽௣

෢𝑥௣   
 

How to quantify 
the performance 

of your 
prediction(s)? 

 Individual Data Point: residual 
 All Data: root mean square error (RMSE) 



3. BASIC DESCRIPTIVE ANALYTICS FOR SAMPLE DATA – NUMERICAL RESPONSE 

VARIABLE – MULTIPLE EXPLANATORY VARIABLES (NUMERICAL AND CATEGORICAL) 

 
See the Unit 13 notebook for examples of visualizations and summary statistics that involve a 
numerical response variable and two or more explanatory variables. 

 

 

4. MULTIPLE LINEAR REGRESSION – SAMPLE DATA 

A multiple linear regression line is generally a best fit line that has requires p>1 slopes. 

 
To find the optimal values of 𝛽መ଴, 𝛽መଵ, 𝛽መଶ, … , 𝛽መ௣  can similarly fit an Ordinary Least Squares Regression line to 
this data. 

 

Goal for Finding the Ordinary Least Squares Regression Line: Find optimal values for 𝛽መ଴, 𝛽መଵ, 𝛽መଶ, … , 𝛽መ௣for the 
equation value 𝑦ො = 𝛽መ଴ + 𝛽መଵ𝑥ଵ + 𝛽መଶ𝑥ଶ + ⋯ + 𝛽መ௣𝑥௣ that minimizes 

෍(𝑦௜ − 𝑦ො)ଶ = ෍(𝑦௜ − (𝛽መ଴ + 𝛽መଵ𝑥௜,ଵ + ⋯ + 𝛽መ௣𝑥௜,௣))ଶ 

௡

௜ୀଵ

௡

௜ୀଵ

= (𝑦ଵ − (𝛽መ଴ + 𝛽መଵ𝑥ଵ,ଵ + ⋯ + 𝛽መ௣𝑥ଵ,௣))ଶ + ⋯ + (𝑦௡ − (𝛽መ଴ + 𝛽መଵ𝑥௡,ଵ + ⋯ + 𝛽መ௣𝑥௡,௣))ଶ 

  



Calculation of optimal values for 𝜷෡𝟎, 𝜷෡𝟏, 𝜷෡𝟐, … , 𝜷෡𝒑: 

 Based on the same idea for simple linear regression. 
 Won’t ask to calculate by hand in this class. The Python output tables will give you these optimal values 

of 𝛽መ଴, 𝛽መଵ, 𝛽መଶ, … , 𝛽መ௣. 

 

In general, linear regression can incorporate ________________ and __________________ explanatory 

variables, but the response variable must be _______________________. 

  



5. CATEGORICAL EXPLANATORY VARIABLES 

How would we convert our sample dataset, with categorical explanatory variables into a linear regression 
equation? 

 

Definitions: 

Categorical explanatory variables can be represented as 0/1 indicator variables. 

The level of the categorical explanatory variable that is represented as a “1” in a given indicator variable is the 
indicator of that variable. 

Example: Indicator variables can be translated as asking a (yes=1)/(no=0) question about the input 
observation. 

 The variable (𝒙𝟏 also named sex[T.male]) can be translated as a yes/no question for an 
observation. 

o Is person male? 
 Yes = ________ 
 No = ________ 

 The variable (𝒙𝟐 also named age_Group[T.40 and above]) can be translated as a yes/no question 
for an observation. 

o Is person at least 40 years old? 
 Yes = ________ 
 No = ________ 

 The variable (𝒙𝟑 also named age_Group[T.under_30]) can be translated as a yes/no question for 
an observation. 

o Is person under 30? 
 Yes = ________ 
 No = ________ 

The level of an explanatory variable that has no corresponding indicator variable is called the reference level. 

Rules: 

A categorical explanatory variable with w levels must be represented by exactly w-1 levels. Otherwise when 
you try to calculate the optimal values of 𝛽መ଴, 𝛽መଵ, 𝛽መଶ, … , 𝛽መ௣ in your multiple linear regression equation, you will 
get “multiple solution errors.” 

 



6. INTERPRETING INTERCEPTS AND SLOPES OF LINEAR REGRESSION EQUATIONS 

Go to Unit 13 notebook to formulate the multiple linear regression line which predict weight, given height, 
sex, and age group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 
1. 𝛽መ଴Intercepts: “If the explanatory variables were all 0, we would expect the response 

variable value, on average, to be 𝛽መ଴.” 
a. Note: Sometimes the interpretation of 𝛽መ଴ can be nonsensical to the application. 

 

2. 𝛽መ௜Slope of a Numerical Explanatory Variable: All else held equal, if we were to increase 
𝑥௜  by 1, then, on average, we would expect the response variable value to increase by 
𝛽መ௜. 

a. Note: This language is important, as we do not want to phrase this interpretation to imply that 
𝑥௜  _________________ a change in the response variable. 

 

 

3. 𝛽መ௜ , Slope of a Categorical Indicator Variable: All else held equal, we would expect the 
difference in average response variable value for those observations in the indicator 
level of 𝑥௜  and those observations in the reference level (for the corresponding 
explanatory variable) is 𝛽መ௜. 

a. Note: This language is important, as we do not want to phrase this interpretation to imply that 
𝑥௜  _________________ a change in the response variable. 

 

Ex: Interpret the intercept, height slope, and age_group[t.under_30] slope for the problem above. 

 

 

  



7.  INFERENCE FOR MULTIPLE LINEAR REGRESSION INTERCEPT AND SLOPES 

Just like with simple linear regression, we can use: 

 𝛽መ଴, 𝛽መଵ, 𝛽መଶ, … , 𝛽መ௣, from the multiple linear regression equation 𝑦ො = 𝛽መ଴ + 𝛽መଵ𝑥ଵ + 𝛽መଶ𝑥ଶ +

⋯ + 𝛽መ௣𝑥௣ for the sample data, to conduct inference on  
 

 𝛽଴, 𝛽ଵ, … , 𝛽௣, from the multiple linear regression equation 𝑦ො = 𝛽଴ + 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ +

⋯ + 𝛽௣𝑥௣ for the population data. 
 

 

However, with multiple linear regression, we can conduct many types of hypothesis testing on 
the slopes. 

1. Hypothesis Testing on One Population Slope 

𝐻଴: 𝛽௜ = 0 

𝐻஺: 𝛽௜ ≠ 0 

 

2. Hypothesis Testing on All Population Slopes 

𝐻଴: 𝛽ଵ = 𝛽ଶ = ⋯ = 𝛽௣ = 0 

𝐻஺: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽௜ ≠ 0  (𝑓𝑜𝑟 𝑖 = 1, … , 𝑝) 

 

3. Hypothesis Testing on a Subset of q Population Slopes 

𝐻଴: 𝛽௣ାଵ = 𝛽௣ାଶ = ⋯ = 𝛽௣ା௤ = 0 

𝐻஺: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽௜ ≠ 0 (𝑓𝑜𝑟 𝑖 = 𝑝 + 1, … , 𝑝 + 𝑞) 

  



7.1.  CONDITIONS FOR INFERENCE ON MULTIPLE LINEAR REGRESSION 

INTERCEPT AND SLOPES 

The conditions for multiple linear regression are the same as those for simple linear regression, except 
there is one more condition that must hold. 

1. [SLR AND MLR]: Linearity condition 
2. [SLR AND MLR]: Constant variability of residuals condition 
3. [SLR AND MLR]: Normality or residuals (with mean of 0) condition 
4. [SLR AND MLR]: Independence of residuals condition 
5. [JUST MLR]: No-Multicollinearity Condition 

 

In order to avoid the model producing ____________ slope estimates, one should avoid having 

explanatory variables that are collinear. Two explanatory variables are collinear if they have a 

____________________________ between them. 

 

 

 

Ex: Suppose now we also wanted to add ‘elbow diameter’ to our list of explanatory variables. 

1. Fit a multiple linear regression model predicting weight with: 
a. Height 
b. Elbow diameter 
c. Sex 
d. Age group. 

2. What is the R^2 of this model? 
3. Check the multiple linear regression conditions for inference for this model. 
4. If we were to delete one of these numerical explanatory variables (because of the multicollinearity 

condition being violated), which one would you choose. 
5. Fit a multiple linear regression model predicting weight with the following explanatory variables and 

check the conditions. 
a. Height 
b. Elbow diameter 
c. Sex 
d. Age group. 

 

Go to the notebook (section 7.1) to answer these questions. 

  



7.2.  INFERENCE FOR A SINGLE MULTIPLE LINEAR REGRESSION SLOPE 

We can create confidence intervals and conduct hypothesis testing on population slopes in a multiple 
linear regression using the same procedure that we used for the one population slope in a simple 
linear regression. 

7.2.1.  CONFIDENCE INTERVAL FOR A SINGLE MULTIPLE LINEAR 

REGRESSION SLOPE 

 

1. Check the conditions for conducting inference on a population 
slope/intercept. 

a. The linearity condition holds. 

b. The constant residuals condition holds. 

c. The residuals are normal. 

d. The residuals are independent. 

e. The explanatory variables (if a multiple linear regression is used) are not 

collinear. 

 

2. The confidence interval for 𝒊 is calculated by: 
 

(𝑝𝑜𝑖𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒) ± (𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟) 
 

𝛽ప
෡ ± 𝑡{௡ି௣ିଵ}

∗ 𝑆𝐸ఉ೔
  

 
Notation: 
 
 
 
 
 
 
 
 
Go to notebook for an example. 
 



7.2.2. CONDUCTING A HYPOTHESIS TEST FOR A SINGLE POPULATION 

SLOPE, TESTING THE CLAIM 𝑨  𝒊   

1. Set up the hypotheses 
𝐻଴: 𝛽௜ = 0 
𝐻஺: 𝛽௜ ≠ 0 

2. Check the conditions for conducting inference on a population slope/intercept. 

a. The linearity condition holds. 

b. The constant residuals condition holds. 

c. The residuals are normal (with mean 0). 

d. The residuals are independent. 

e. The explanatory variables (if a multiple linear regression is used) are not collinear. 

3. Calculate the point estimate (observed sample statistic) 
𝛽ప
෡  

4. Calculate the p-value (or calculate a confidence interval) 

𝒑 − 𝒗𝒂𝒍𝒖𝒆 = 𝟐𝑷(𝑻𝒏ି𝒑ି𝟏 ≥ |
𝜷ଙ
෢ − 𝟎

𝑺𝑬𝜷ଙ
෢

|) 

 

 

 

 

 

6. Make a Decision 

With a p-value 

a. If 𝐩 − 𝐯𝐚𝐥𝐮𝐞 < 𝛂, then we “reject the null hypothesis.” And we say that “there IS sufficient evidence 
to suggest the alternative hypothesis.” 

b. If 𝐩 − 𝐯𝐚𝐥𝐮𝐞 ≥ 𝛂, then we “fail to reject the null hypothesis.” And we say that “there IS NOT 
sufficient evidence to suggest the alternative hypothesis.” 

With a confidence interval 
a. If the null value (0) is not in the confidence interval, then we “reject the null hypothesis.” And we 

say that “there IS sufficient evidence to suggest the alternative hypothesis.” 
b. If the null value (0) is in the confidence interval, then we “fail to reject the null hypothesis.” And we 

say that “there IS NOT sufficient evidence to suggest the alternative hypothesis.” 

 



Go to notebook for an example. 

We are interested in testing the claim that the height slope in the multiple linear regression population model 
(that predicts the weight of all healthy adults with height, age group, and sex) is non-zero. 

 

 



7.3.  INFERENCE FOR ALL MULTIPLE LINEAR REGRESSION SLOPES 

The hypothesis testing procedure for testing the following hypotheses uses a slightly 
different structure than what we’ve used up until now. 

𝐻଴: 𝛽ଵ = 𝛽ଶ = ⋯ = 𝛽௣ = 0 

𝐻஺: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽௜ ≠ 0  (𝑓𝑜𝑟 𝑖 = 1, … , 𝑝) 

 

What’s different about this test? 

1. First, this test does not have a confidence interval that corresponds to it. So we 
must use a p-value. 

 

2. Next, when calculating our p-value in the past our test statistic represented either: 
a. The z-score of the sample statistic (point estimate) OR 

 
 
 
 

b. The t-score of the sample statistic (point estimate). 
 
 
 
 

 
Now, we will use a test statistic to calculate the p-value, but it will not be a z-score or 
t-score. 

 

  



3. Finally, when calculating our p-value in the past, our test statistic was considered to 
be either: 

a. an observation from the Z-distribution (ie. standard normal distribution) and 
our p-value was two tailed: 
ie. p − value = 2P(Z ≥ |test stat|) 
 
 
 
 
 
 
 
 
 

b. an observation from the t-distribution and our p-value was two tailed: 

ie. p − value = 2P(T ≥ |test stat|) 

 

 

 

 

 

 

Now, our test statistic will be an observation from a new distribution called the F-
distribution and our p-value is right tailed. 

ie. p − value = P(F ≥ test stat) 

 

  



7.3.1.  F DISTRIBUTION 

First, let’s discuss this new distribution and some of it’s properties. 

Random Variable that Follows the F-Distribution:  

Definition: A continuous random variable is said to follow the F-distribution with 𝒅𝟏 and 𝒅𝟐 

degrees of freedom if it has the following probability density function (pdf). 

Short-Hand: _____________________ 

Probability Density Function: 

𝑓(𝑥) =

ඨ
(𝑑ଵ𝑥)ௗభ𝑑ଶ

ௗమ

(𝑑ଵ𝑥 + 𝑑ଶ)ௗభାௗమ

𝑥𝐵(
𝑑ଵ
2

,
𝑑ଶ
2

)
, 𝑓𝑜𝑟 𝑥 > 0 

 

Parameters that Dictates Shape: _____________________ 

 

Properties: 

 Always ________________________ 

Shapes: Can take on many different shapes, based on the parameter values. 

 

  



Ex: Go to the Jupyter notebook to calculate the probability that an F-score is less than or 
equal to 4, (using df1=3 and df2=9). 

𝑃൫𝐹ଷ,ଽ ≤ 4൯ = 

  



7.3.2.  CONDUCTING THE TEST 

  𝟎 𝟏 𝟐 𝒑  

1. Set up the hypotheses 
𝐻଴: 𝛽ଵ = 𝛽ଶ = ⋯ = 𝛽௣ = 0 

𝐻஺: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽௜ ≠ 0  (𝑓𝑜𝑟 𝑖 = 1, … , 𝑝) 

2. Check the conditions for conducting inference on a population slope/intercept. 

a. The linearity condition holds. 

b. The constant residuals condition holds. 

c. The residuals are normal (with mean 0). 

d. The residuals are independent. 

e. The explanatory variables (if a multiple linear regression is used) are not collinear. 

3. Calculate the test statistic: 

𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡 =

𝑆𝑆𝑅
𝑝

𝑆𝑆𝐸
𝑛 − 𝑝 − 1

 

4. Calculate the p-value 
 

𝒑 − 𝒗𝒂𝒍𝒖𝒆 = 𝑷(𝑭𝒑,𝒏ି𝒑ି𝟏 ≥ 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡) 

 

 

 

 

 

 

 

5. Make a Decision 
a. If 𝐩 − 𝐯𝐚𝐥𝐮𝐞 < 𝛂, then we “reject the null hypothesis.” And we say that “there IS sufficient evidence to 

suggest the alternative hypothesis.” 
b. If 𝐩 − 𝐯𝐚𝐥𝐮𝐞 ≥ 𝛂, then we “fail to reject the null hypothesis.” And we say that “there IS NOT sufficient 

evidence to suggest the alternative hypothesis.” 



Ex: When using sex, height, and age_group to predict weight in a linear regression equation, is there significant evidence 
to suggest that at least one of the slopes in the population linear regression model is non-zero? Go to the Jupyter 
notebook. 

See notebook. 

 

  



7.3.3.  WHY WOULD WE WANT TO CONDUCT THIS TEST? 

  𝟎 𝟏 𝟐 𝒑  

This test is vague!  

𝐻଴: 𝛽ଵ = 𝛽ଶ = ⋯ = 𝛽௣ = 0 

𝐻஺: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽௜ ≠ 0  (𝑓𝑜𝑟 𝑖 = 1, … , 𝑝) 

 

It does not tell us which slopes are non-zero.  

Q: Why not conduct the following p tests instead to find out which slopes specifically are non-zero 
using a significance level of α=0.05? 

𝐻଴: 𝛽ଵ = 0 
𝐻஺: 𝛽ଵ ≠ 0 
 
 
 
𝐻଴: 𝛽ଶ = 0 
𝐻஺: 𝛽ଶ ≠ 0 
 
… 
 
𝐻଴: 𝛽௣ = 0 
𝐻஺: 𝛽௣ ≠ 0 
 

A: The more tests we conduct, the more likely we are to have made a Type 1 Error. 

To make a Type 1 Error in your hypothesis test decision is to have incorrectly rejected a null hypothesis 
that was actually true. 

The probability of making a of Type 1 Error is highly related to the significance level. Actually they’re 
the same! 

𝑷(𝑻𝒚𝒑𝒆 𝟏 𝑬𝒓𝒓𝒐𝒓) = 𝜶 = 𝒔𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒄𝒆 𝒍𝒆𝒗𝒆𝒍 

 

  



Ex: If we were to use a significance level of 𝛼 = 0.05 for each of the following individual population slope tests 
that corresponds to one of the slopes in the model below, what is the probability that at least one of these 
tests made a type 1 error? 

  



7.4.  INFERENCE FOR A SUBSET OF MULTIPLE LINEAR REGRESSION SLOPES 

The hypothesis testing structure for testing a subset of population slopes also requires a 
slightly different structure than before. 

𝐻଴: 𝛽௣ାଵ = 𝛽௣ାଶ = ⋯ = 𝛽௣ା௤ = 0 

𝐻஺: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽௜ ≠ 0 (𝑓𝑜𝑟 𝑖 = 𝑝 + 1, … , 𝑝 + 𝑞) 

 

 

What’s different about this test? 

1. First, this test also does not have a confidence interval that corresponds to it. 
So we must use a p-value. 

 

2. Also, our test statistic will also be an observation the F-distribution and our p-
value is right tailed. 

ie. p − value = P(F ≥ test stat) 

 

 

3. Finally, we need to define two “nested” sample models. 
 
Full Model (contains all the slopes) 

𝒚𝒇𝒖𝒍𝒍ෟ = 𝜷𝟎
෢ + 𝜷𝟏

෢𝒙𝟏 + ⋯ +𝜷𝒑
෣𝒙𝒑 + 𝜷𝒑ା𝟏

෣ 𝒙𝒑ା𝟏 + ⋯ 𝜷𝒑ା𝒒
෣ 𝒙𝒑ା𝒒 

 
We can calculate the sum squared error for this model: 

𝑆𝑆𝐸௙௨௟௟ = ෍൫𝑦௜ − 𝑦௙௨௟௟ෟ൯
ଶ

= ෍(𝑦௜ − (𝛽መ଴ + 𝛽መଵ𝑥௜,ଵ + ⋯ + 𝛽𝑝
෢𝑥𝑝 + 𝛽𝑝+1

෣ 𝑥𝑝+1 + ⋯ 𝛽𝑝+𝑞
෣ 𝑥𝑝+𝑞))ଶ 

௡

௜ୀଵ

௡

௜ୀଵ

 

 
 

Reduced Model (contains just the slopes that you aren’t testing) 
𝒚𝒓𝒆𝒅ෟ = 𝜷𝟎

෢ + 𝜷𝟏
෢𝒙𝟏 + ⋯ +𝜷𝒑

෣𝒙𝒑 
 

We can also calculate the sum squared error for this model: 

𝑆𝑆𝐸௥௘ௗ = ෍(𝑦௜ − 𝑦௥௘ௗෞ )ଶ = ෍(𝑦௜ − (𝛽መ଴ + 𝛽መଵ𝑥௜,ଵ + ⋯ + 𝛽𝑝
෢𝑥𝑝))ଶ 

௡

௜ୀଵ

௡

௜ୀଵ

 



7.4.1.  CONDUCTING THE TEST 

  𝟎 𝒑+𝟏 𝒑+𝟐 𝒑+𝒒  

1. Set up the hypotheses 
𝐻଴: 𝛽௣ାଵ = 𝛽௣ାଶ = ⋯ = 𝛽௣ା௤ = 0 
𝐻஺: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽௜ ≠ 0 (𝑓𝑜𝑟 𝑖 = 𝑝 + 1, … , 𝑝 + 𝑞) 

2. Check the conditions for conducting inference on a population slope/intercept. 

a. The linearity condition holds. 

b. The constant residuals condition holds. 

c. The residuals are normal (with mean 0). 

d. The residuals are independent. 

e. The explanatory variables (if a multiple linear regression is used) are not collinear. 

3. Calculate the test statistic: 

𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡 =
(𝑆𝑆𝐸௥௘ௗ − 𝑆𝑆𝐸௙௨௟௟)/𝑞

(𝑆𝑆𝐸௙௨௟௟)/(𝑛 − (𝑝 + 𝑞) − 1)
 

4. Calculate the p-value 
 

𝒑 − 𝒗𝒂𝒍𝒖𝒆 = 𝑷(𝑭𝒒,𝒏ି(𝒑ା𝒒)ି𝟏 ≥ 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡) 

 

 

 

 

 

 

 

 

 

5. Make a Decision 
c. If 𝐩 − 𝐯𝐚𝐥𝐮𝐞 < 𝛂, then we “reject the null hypothesis.” And we say that “there IS sufficient evidence to 

suggest the alternative hypothesis.” 
d. If 𝐩 − 𝐯𝐚𝐥𝐮𝐞 ≥ 𝛂, then we “fail to reject the null hypothesis.” And we say that “there IS NOT sufficient 

evidence to suggest the alternative hypothesis.” 



Ex: Is there sufficient evidence to suggest that at least one of of the slopes that correspond to the age_group variable in 
the population model (predicting weight with height, age_group, and sex) are non-zero? Go to the Jupyter notebook to 
answer this.  



8. LINEAR REGRESSION MODELS WITH INTERACTION VARIABLES 

By fitting a multiple linear regression model to predict weight with height and sex, we 
get 

𝒘𝒆ଙ𝒈𝒉𝒕෣ = −𝟓𝟔. 𝟐𝟒𝟓𝟕 + 𝟖. 𝟕𝟐𝟎𝟕𝒔𝒆𝒙[𝑻. 𝒎𝒂𝒍𝒆] + 𝟎. 𝟕𝟎𝟖𝟕𝒉𝒆𝒊𝒈𝒉𝒕. 

However, given that 𝑠𝑒𝑥[𝑇. 𝑚𝑎𝑙𝑒] is an indicator variable, this multiple linear regression line can be 
equivalently broken down into two separate regression models. 

1. One model just for females: 𝒆𝒙[𝑻. 𝒎𝒂𝒍𝒆] = 𝟎 

𝑤𝑒𝚤𝑔ℎ𝑡෣ = −56.2457 + 8.7207(0) + 0.7087ℎ𝑒𝑖𝑔ℎ𝑡. 

𝑤𝑒𝚤𝑔ℎ𝑡෣ = −56.2457 + 0.7087ℎ𝑒𝑖𝑔ℎ𝑡. 

2. One model just for males: 𝒆𝒙[𝑻. 𝒎𝒂𝒍𝒆] = 𝟏 

𝑤𝑒𝚤𝑔ℎ𝑡෣ = −56.2457 + 8.7207(1) + 0.7087ℎ𝑒𝑖𝑔ℎ𝑡. 

𝑤𝑒𝚤𝑔ℎ𝑡෣ = −47.525 + 0.7087ℎ𝑒𝑖𝑔ℎ𝑡 

 

These two models indicate the height and weight best fit lines have the same 
_________________ for males and females, but a different ________________. 

  



However, the data below indicates that the slope of the height/weight best fit lines for 
males and females might be slightly different. So how could we model these differing 
slopes for men and women?If we suspect that the interaction of two explanatory variables 𝑥௜  and 
we can 𝑥௝ define an interaction variable 𝑥௜ ⋅ 𝑥௝, and add this to the linear regression model. 

 

 

 

 

 

 

 

 

 

 

 

Ex: Go to the Jupyter notebook to set up a multiple linear regression model predicting 
weight with height, sex, and the interaction between height and sex.  

 

 

 

 

 

  



By modeling the interaction variable of height and sex, we get this model. 

𝒘𝒆ଙ𝒈𝒉𝒕෣ = −𝟒𝟑. 𝟖𝟏𝟗𝟑 − 𝟏𝟔. 𝟏𝟑𝟓𝟕𝒔𝒆𝒙[𝑻. 𝒎𝒂𝒍𝒆] + 𝟎. 𝟔𝟑𝟑𝟑𝒉𝒆𝒊𝒈𝒉𝒕 + 𝟎. 𝟏𝟒𝟓𝟑(𝒉𝒆𝒊𝒈𝒉𝒕 ⋅

𝒔𝒆𝒙[𝑻. 𝒎𝒂𝒍𝒆] ) 

 

Again, given that 𝑠𝑒𝑥[𝑇. 𝑚𝑎𝑙𝑒] is an indicator variable, this multiple linear regression line can be 
equivalently broken down into two separate regression models. 

1. One model just for females: 𝒆𝒙[𝑻. 𝒎𝒂𝒍𝒆] = 𝟎 
𝒘𝒆ଙ𝒈𝒉𝒕෣ = −𝟒𝟑. 𝟖𝟏𝟗𝟑 − 𝟏𝟔. 𝟏𝟑𝟓𝟕(𝟎) + 𝟎. 𝟔𝟑𝟑𝟑𝒉𝒆𝒊𝒈𝒉𝒕 + 𝟎. 𝟏𝟒𝟓𝟑(𝒉𝒆𝒊𝒈𝒉𝒕 ⋅ 𝟎) ) 

𝑤𝑒𝚤𝑔ℎ𝑡෣ = −43.8193 + 0.6333ℎ𝑒𝑖𝑔ℎ𝑡. 

2. One model just for males: 𝒆𝒙[𝑻. 𝒎𝒂𝒍𝒆] = 𝟏 
𝒘𝒆ଙ𝒈𝒉𝒕෣ = −𝟒𝟑. 𝟖𝟏𝟗𝟑 − 𝟏𝟔. 𝟏𝟑𝟓𝟕(𝟏) + 𝟎. 𝟔𝟑𝟑𝟑𝒉𝒆𝒊𝒈𝒉𝒕 + 𝟎. 𝟏𝟒𝟓𝟑(𝒉𝒆𝒊𝒈𝒉𝒕 ⋅ 𝟏) ) 

𝑤𝑒𝚤𝑔ℎ𝑡෣ = −59.955 + 0.7786ℎ𝑒𝑖𝑔ℎ𝑡 

 

So now this new model indicates that the male and female relationships between height 
and weight have different intercepts AND slopes. 

 

Ex: Is there sufficient evidence to suggest that the slope of the interaction variable (of 
height and sex) in the population model (that predicts weight with height, sex, and the 
interaction of height and sex) is non-zero?  

 

  



9. MAKING A PREDICTION WITH A MULTIPLE LINEAR REGRESSION 

Making predictions with multiple linear regression is the same procedure used by simple linear 
regression. 

 

Ex: Set up the multiple linear regression model that predicts weight with height, sex, and age 
group. Then predict the weight of a 20 year old woman that is 170cm tall. Go to Jupyter 
notebook. 

 

 

 

10. LINEAR TRANSFORMATIONS: WHAT TO TRY WHEN YOUR MULTIPLE LINEAR 

REGRESSION CONDITIONS AREN’T MET 

 

See unit 13 notebook (section 10). 


