
Unit 14: Analysis of Variance (ANOVA)

Case Study: Analysis of the Relationship between Age and
Political Affiliation
A very common special case of linear regression models is when there is one categorical explanatory variable,
and the goal is to determine if the mean response is significantly different between categories of the explanatory
variable.

This is an extension of two-sample analysis where we have one categorical exaplanatory variable, such as
website version A versus B, and we compare them based on a quantitifed outcome. The ANOVA approach lets
us compare K > 2 categories at the same time.

In [1]: import pandas as pd 
import numpy as np 
import seaborn as sns 
import matplotlib.pyplot as plt 

import statsmodels.api as sm 
import statsmodels.formula.api as smf 



1. Analyses for Associations

See Unit 14 slides (section 1)

2. Association Analyses Summary: One Categorical Explanatory
Variable (with >2 Levels)-> Numerical Response Variable (One
Way)

See Unit 14 slides (section 2)

3. Association Analyses Summary: One Categorical Explanatory
Variable (with >2 Levels)-> Numerical Response Variable (Another
Way)

See Unit 14 slides (section 3)

4. Modeling the Association Between a Categorical Explanatory
Variable (with >2 levels) and a Numerical Response Variable (in the
Sample).

See Unit 14 slides (section 4)

Let's again examine our random sample of adults living in the U.S. (from 2017) from Pew Research.

In [2]: missing_values = ["NaN", "nan", "Don't know/Refused (VOL.)"] 
pew = pd.read_csv('Feb17public.csv',  
                  na_values=missing_values)[['age', 'party']].dropna() 
pew.head() 

In [3]: pew.shape 

How many of each political affiliation are there in this sample?

Out[2]:
age party

0 80.0 Independent

1 70.0 Democrat

2 69.0 Independent

3 50.0 Republican

4 70.0 Democrat

Out[3]: (1465, 2)



In [4]: pew['party'].value_counts() 

Let's rename the party categories so they are easier to label in graphs. We can do this as follows.

In [5]: # rename categories so they display better 
party = pd.Categorical(pew['party']) 
party.rename_categories({'Democrat': 'Dem',  
                        'Independent': 'Ind',  
                        'Republican': 'Rep',
                        'No preference (VOL.)': 'No_Pref', 
                        'Other party (VOL.)': 'Other' 
                       }, inplace=True) 
pew['party']=party 

In [6]: pew['party'].value_counts() 

Next, let's fit our multiple linear regression model for the sample, where age is our response variable and party is
our explanatory variable.

Out[4]: Democrat                527 
Independent             525 
Republican              367 
No preference (VOL.)     41 
Other party (VOL.)        5 
Name: party, dtype: int64

Out[6]: Dem        527 
Ind        525 
Rep        367 
No_Pref     41 
Other        5 
Name: party, dtype: int64



In [7]: agemod = smf.ols('age ~ party', data=pew).fit() 
agemod.summary() 

4.1. RELATIONSHIP BETWEEN THE SAMPLE INTERCEPT AND SLOPES OF THIS
MULTIPLE LINEAR REGRESSION AND THE SAMPLE MEANS

See Unit 14 (Section 4.1) slides.

Is there an association between party and age in this sample? Let's next use descriptive analytics to find
out.

Out[7]:
OLS Regression Results

Dep. Variable: age R-squared: 0.052

Model: OLS Adj. R-squared: 0.049

Method: Least Squares F-statistic: 19.82

Date: Mon, 05 Apr 2021 Prob (F-statistic): 6.66e-16

Time: 17:29:42 Log-Likelihood: -6261.1

No. Observations: 1465 AIC: 1.253e+04

Df Residuals: 1460 BIC: 1.256e+04

Df Model: 4

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

Intercept 50.4991 0.758 66.618 0.000 49.012 51.986

party[T.Ind] -3.6914 1.073 -3.440 0.001 -5.796 -1.587

party[T.No_Pref] -7.3527 2.821 -2.606 0.009 -12.887 -1.818

party[T.Other] -5.8991 7.819 -0.754 0.451 -21.237 9.439

party[T.Rep] 6.2775 1.183 5.306 0.000 3.957 8.598

Omnibus: 130.613 Durbin-Watson: 1.725

Prob(Omnibus): 0.000 Jarque-Bera (JB): 40.798

Skew: -0.017 Prob(JB): 1.38e-09

Kurtosis: 2.183 Cond. No. 19.0

 
 
Notes: 
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.



Visualization

With several groups we can use side by side boxplots to visualize the age distributions.

In [8]: sns.boxplot(x='party', y='age', data=pew) 
plt.show() 

The median age across the five different political affiliation groups is different, so we can say that there is at least
some association in the sample between political affiliation and age.

Summary statistics

Using Pandas groupby() function to get summary statistics for each political affiliation

In [9]: # within group means 
pew.groupby('party').mean() 

Out[9]:
age

party

Dem 50.499051

Ind 46.807619

No_Pref 43.146341

Other 44.600000

Rep 56.776567



In [10]: # within group sample standard deviations 
pew.groupby('party').std() 

In [11]: # within group sample sizes 
pew.groupby('party').count() 

In [12]: pew.groupby('party').mean().sort_values(by='age').plot.bar() 
plt.ylabel('Mean Age') 
plt.show() 

Out[10]:
age

party

Dem 17.687279

Ind 17.517144

No_Pref 17.062475

Other 13.939153

Rep 16.885801

Out[11]:
age

party

Dem 527

Ind 525

No_Pref 41

Other 5

Rep 367



5. Modeling the Association Between a Categorical Explanatory
Variable (with >2 levels) and a Numerical Response Variable (in the
Population).

See Unit 14 slides (section 5)

Now let’s think about what the multiple linear regression equation would look like if we modelled the relationship
between age (response variable) and political affiliation (explanatory variable) in the population of all adults living
in the U.S.

Do we have sufficient evidence to suggest that at least one of the four population
slopes is non-zero?

1. First let’s formulate the hypotheses.

 At least one  (for i=1,2,3,4)

2. Next, let’s check the conditions for conducting inference.

a.) Linearity Condition

It appears that there is an even distribution of points above and below the line in the fitted values vs. residuals
plot as we move from left to right. So we can say that this condition is met.

= + party[T . Ind] + party[T . Ind] + party[T .Nopref] + party[T .Rep]age^ β0 β1 β2 β3 β4

: = = = = 0H0 β1 β2 β3 β4

:HA ≠ 0βi

In [13]: sns.regplot(x=agemod.fittedvalues, y=agemod.resid, ci=None) 
plt.ylabel('Residual') 
plt.xlabel('Fitted Value') 
plt.show() 



b.) Constant Variance of Residuals Condition

It appears that the spread of the residuals (ie. the y-axis spread) in the fitted values vs. residuals plot changes as
we move from left to right. So we cannot say that this condition is met.

In [14]: sns.regplot(x=agemod.fittedvalues, y=agemod.resid, ci=None) 
plt.ylabel('Residual') 
plt.xlabel('Fitted Value') 
plt.show() 

c.) Normality of Residuals (with Mean 0) Condition

It appears that the residuals are slightly skewed to the right. So because the histogram of residuals is not quite
symmetric and unimodal, this condition is somewhat not met.

In [15]: plt.hist(agemod.resid) 
plt.xlabel('Residuals') 
plt.show() 



d.) Independence of Residuals Condition

While we cannot know for sure if this condition is met (using the methods that we know so far in this class), we
know that this condition will NOT be met if the sample is not random or % of the population.

But, we do know that:

this sample is random and
% of all adults living in the U.S..

So this tells us that this condition is not violated in this particular way.

n ≥ 10

n = 1465 < 10

e.) No Multicollinearity Condition

This linear regression model involves only one explanatory variable and it is categorical, so we do not need to
check this condition.

So not all of the conditions for conducting inference on a population slope or intercept are quite met.
Thus some of the conclusions that we make about our hypotheses may be slightly off, but we will proceed with
caution with that in mind.

3. Next, let’s find the test statistic and the p-value that correspond to these hypotheses.



In [16]: agemod.summary() 

The test statistic for this test is 19.82 and the p-value for this test is .6.66 × 10−16

4. Finally, use the p-value (and a significance level of α=0.05) to make a conclusion about your
hypotheses.

Because  we reject the null hypothesis. Thus there is sufficient evidence
to suggest that at least one of the population slopes in this model is non-zero.

p − value = 6.66 × ≤ α0, 0510−16

Out[16]:
OLS Regression Results

Dep. Variable: age R-squared: 0.052

Model: OLS Adj. R-squared: 0.049

Method: Least Squares F-statistic: 19.82

Date: Mon, 05 Apr 2021 Prob (F-statistic): 6.66e-16

Time: 17:29:43 Log-Likelihood: -6261.1

No. Observations: 1465 AIC: 1.253e+04

Df Residuals: 1460 BIC: 1.256e+04

Df Model: 4

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

Intercept 50.4991 0.758 66.618 0.000 49.012 51.986

party[T.Ind] -3.6914 1.073 -3.440 0.001 -5.796 -1.587

party[T.No_Pref] -7.3527 2.821 -2.606 0.009 -12.887 -1.818

party[T.Other] -5.8991 7.819 -0.754 0.451 -21.237 9.439

party[T.Rep] 6.2775 1.183 5.306 0.000 3.957 8.598

Omnibus: 130.613 Durbin-Watson: 1.725

Prob(Omnibus): 0.000 Jarque-Bera (JB): 40.798

Skew: -0.017 Prob(JB): 1.38e-09

Kurtosis: 2.183 Cond. No. 19.0

 
 
Notes: 
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.



5.1 ANOVA: RELATIONSHIP BETWEEN THE POPULATION SLOPES OF THIS
MULTIPLE LINEAR REGRESSION AND THE POPULATION MEANS

See Unit 14 slides (section 5.1).

Do we have sufficient evidence to suggest that at least one pair of political
affiliations (Democrat, Republican, Independent, No preference, Other party) have
average ages out of all adults living in the U.S. that are different?

1. First let's formulate the hypotheses.

 At least one pair of groups has population mean values are different from each other.

2. Next, let’s check the conditions for conducting inference (on the intercept and slopes 
 of the population model 

3. Next, let’s find the test statistic and the p-value that correspond to these hypotheses?

: = = = =H0 μDem μInd μOther μN refoP
μRep

:HA

, , , ,β0 β1 β2 β3 β4

hatage = + party[T . Ind] + party[T . Ind] + party[T .Nopref] + party[T .Rep])β0 β1 β2 β3 β4



In [17]: agemod = smf.ols('age ~ party', data=pew).fit() 
agemod.summary() 

The test statistic for this test is 19.82 and the p-value for this test is .6.66 × 10−16

4. Finally, use the p-value (and a significance level of α=0.05) to make a conclusion about your
hypotheses.

Because  we reject the null hypothesis. Thus there is sufficient evidence
to at least one pair of population mean ages (out of the five political affiliation groups) are not equal to each
other.

p − value = 6.66 × ≤ α0, 0510−16

Out[17]:
OLS Regression Results

Dep. Variable: age R-squared: 0.052

Model: OLS Adj. R-squared: 0.049

Method: Least Squares F-statistic: 19.82

Date: Mon, 05 Apr 2021 Prob (F-statistic): 6.66e-16

Time: 17:29:43 Log-Likelihood: -6261.1

No. Observations: 1465 AIC: 1.253e+04

Df Residuals: 1460 BIC: 1.256e+04

Df Model: 4

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

Intercept 50.4991 0.758 66.618 0.000 49.012 51.986

party[T.Ind] -3.6914 1.073 -3.440 0.001 -5.796 -1.587

party[T.No_Pref] -7.3527 2.821 -2.606 0.009 -12.887 -1.818

party[T.Other] -5.8991 7.819 -0.754 0.451 -21.237 9.439

party[T.Rep] 6.2775 1.183 5.306 0.000 3.957 8.598

Omnibus: 130.613 Durbin-Watson: 1.725

Prob(Omnibus): 0.000 Jarque-Bera (JB): 40.798

Skew: -0.017 Prob(JB): 1.38e-09

Kurtosis: 2.183 Cond. No. 19.0

 
 
Notes: 
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
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