
Unit 16: Logistic Regression - Part 2

Case Study: Modelling Approval for the President's Foreign Policy
with Age and Sex
We would now like to model the following response variable with the following two explanatory variables.

response: approval of the president's foreign policy (approve vs. disapprove)
explanatory:

sex
age

In [1]: import numpy as np 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 

import statsmodels.api as sm 
import statsmodels.formula.api as smf 

1. Analyses for Associations

See Unit 15 slides (section 1)

2. Association Analyses Summary: Numerical(s) and
Categorical(s) Explanatory Variables-> Categorical Response
Variable (with 2 levels)

See Unit 15 slides (section 2)

3. Why should we not use a linear regression to model a
categorical response variable?

See Unit 15 slides (section 3)

Let's again examine our random sample of adults living in the U.S. (from 2017) from Pew Research. We will just
use three variables for this analysis, so we will just create a dataframe using these three variables.



In [2]: missing_values = ["NaN", "nan", "Don't know/Refused (VOL.)"] 
# 
df = pd.read_csv('Feb17public.csv', na_values=missing_values)[['age','sex','q5
cf1']] 
df.head() 

In [3]: df.shape 

We will drop all missing values from the dataframe.

In [4]: df=df.dropna() 
df.head() 

The q5cf1 variable represents the answers to the question "Do you approve or disapprove of the way Donald
Trump is handling the nation's foreign policy?"

Potential Bias Warning! It looks like only 691 respondants out of the 1503 surveyed responded to this question.
These 691 people may have had a strong opinion on the question and thus chose to answer it. So it is possible
that this sample of 691 respondants is not entirely representative of all adults living in the U.S. (the population we
would like to make inferences about).

In [5]: df.shape 

Out[2]:
age sex q5cf1

0 80.0 Female NaN

1 70.0 Female Disapprove

2 69.0 Female Disapprove

3 50.0 Male NaN

4 70.0 Female Disapprove

Out[3]: (1503, 3)

Out[4]:
age sex q5cf1

1 70.0 Female Disapprove

2 69.0 Female Disapprove

4 70.0 Female Disapprove

6 89.0 Female Disapprove

7 92.0 Female Approve

Out[5]: (691, 3)



In [6]: df['q5cf1'].value_counts() 

3.1. Let's first examine the relationship between age and approval for the
president's foreign policy in 2017 in the sample.
By looking at the box plots below, the median age of those that approved was over 10 years higher than the
median age of those that did not approve.

In [7]: sns.boxplot(x='age', y='q5cf1', data=df, order=['Approve','Disapprove']) 
plt.show() 

3.2. Translate the Categorical Variable into a Numerical Variable
Because we were interested in the relationship between a categorical variable and numerical variable, side-by-
side boxplots (or side-by-side violin plots) tends to be one of the best visualizations for respresenting any
association between the two variables. However, if we would like to try to plot a best fit line for the relationship
between these two variables (like what we do in linear regression) we will need to first tranlate our categorical
variable into a numerical variable.

Below we create a new variable 'y' in our dataframe in which all 'approve' values for q5cf1 are translated into a 1
and all 'disapprove' values for q5cf1 are translated into a 0.

The .map() function allows us to make this translation.

Out[6]: Disapprove    442 
Approve       249 
Name: q5cf1, dtype: int64



In [8]: df['y']=df['q5cf1'].map({'Disapprove':0,'Approve':1}) 
df.head() 

In general, we call

the level in which y=1 the success level of the response variable (ie. the level that we are interested in) and
the level in which y=0 the failure level of the response variable (ie. the level that we are not interested in).

In [9]: mod1 = smf.logit(formula='y ~ age+sex', data=df).fit() 
mod1.summary() 

Out[8]:
age sex q5cf1 y

1 70.0 Female Disapprove 0

2 69.0 Female Disapprove 0

4 70.0 Female Disapprove 0

6 89.0 Female Disapprove 0

7 92.0 Female Approve 1

Optimization terminated successfully. 
         Current function value: 0.612754 
         Iterations 5 

Out[9]:
Logit Regression Results

Dep. Variable: y No. Observations: 691

Model: Logit Df Residuals: 688

Method: MLE Df Model: 2

Date: Thu, 08 Apr 2021 Pseudo R-squ.: 0.06252

Time: 13:36:48 Log-Likelihood: -423.41

converged: True LL-Null: -451.65

Covariance Type: nonrobust LLR p-value: 5.457e-13

coef std err z P>|z| [0.025 0.975]

Intercept -2.3609 0.288 -8.190 0.000 -2.926 -1.796

sex[T.Male] 0.8856 0.167 5.296 0.000 0.558 1.213

age 0.0260 0.005 5.466 0.000 0.017 0.035



1.1 Checking Conditions for Inference (and Model Fit) on  in a
Logistic Regression Model

See Unit 16 slides (section 1.1)

Ex: We would like to conduct inference on the intercept and slopes in the population logistic regression model.
Check the conditions for model fit and inference first.

, , . . .β0 β1 βp

Condition 1: Independence of Observations Condition

a. [NOT SURE IF MET] While the initial survey of 1503 adults living in the U.S. was random, the sample of the
n=691 people answered the question about the president's foreign policy was much smaller. So it may be
possible that our sample size of n=691 is not random, as those that answered this question may have strong
opinions about the matter.

b. [MET] % of all adults living in the U.S.

So because we are not sure if both (a) and (b) are met, we are not sure if condition 1 is met.

n = 691 < 10

Condition 2: Linearity Condition

We only have one numerical explanatory variable (age), so we will fit a simple logistic regression curve to the
scatterplot of x=age and y=0/1 response variable.

We do see a slight S-Shape in this curve below, so we can say that thsi condition is met.



In [10]: sns.lmplot(x="age", y='y',data=df, logistic=True) 
plt.ylabel('1=approve, 0=disapprove') 
plt.show() 

Condition 3: No Multi-Collinearity Condition

We only have one numerical explanatory variable (age), so we do not need to check this condition in this case.
However, you would want to check this condition in the same way that you would with your multiple linear
regression models.

If you see a strong linear relationship between any pair of explanatory numerical variables, then this condition
would not be met.

So because of condition 1, we are not entirely sure if ALL of these conditions are met. Thus it may be
possible that our logistic regression model that predicts the probability of an adult in the sample of
approving of the president's foreign policy (ie. y=1) with age and sex, is not the best fit of the data and
for conducting valid inferences. But we will proceed with caution.

1.2 Create a 90% confidence interval for the age slope in the logistic regression
model.



1.2.0. Check the conditions for conducting inference on this slopes.

We have already checked these conditions in 1.1, and we are unsure if they are met. Thus it may be possible
that the inferences and interpretations that we make with this confidence interval may be slightly off, but we will
proceed with caution.

In [11]: mod1 = smf.logit(formula='y ~ age+sex', data=df).fit() 
mod1.summary() 

1.2.1. What is the point estimate (ie. sample statistic) for this confidence interval?

 
 
 
 
 
 

In [12]: point_estimate=0.0260 
print('Point Estimate', point_estimate) 

Optimization terminated successfully. 
         Current function value: 0.612754 
         Iterations 5 

Out[11]:
Logit Regression Results

Dep. Variable: y No. Observations: 691

Model: Logit Df Residuals: 688

Method: MLE Df Model: 2

Date: Thu, 08 Apr 2021 Pseudo R-squ.: 0.06252

Time: 13:36:51 Log-Likelihood: -423.41

converged: True LL-Null: -451.65

Covariance Type: nonrobust LLR p-value: 5.457e-13

coef std err z P>|z| [0.025 0.975]

Intercept -2.3609 0.288 -8.190 0.000 -2.926 -1.796

sex[T.Male] 0.8856 0.167 5.296 0.000 0.558 1.213

age 0.0260 0.005 5.466 0.000 0.017 0.035

Point Estimate 0.026 



1.2.2. What is the standard error for this confidence interval?

 
 
 
 
 
 

In [13]: standard_error=0.005 
print('Standard Error:', standard_error) 

1.2.3 What is the critical value for this confidence interval?

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In [14]: from scipy.stats import norm 
critical_value=norm.ppf(0.95) 
print("Critical Value", critical_value) 

Standard Error: 0.005 

Critical Value 1.6448536269514722 



1.2.4 Putting it all together, our 90% confidence interval is:

( − S , + S )β̂3 z∗ E
β̂ 3

β̂3 z∗ E
β̂ 3

(0.026 − (1.645)(0.005), 0.026 + (1.645)(0.005))

(0.0178, 0.0342)

In [15]: lower_bound=point_estimate-critical_value*standard_error 
upper_bound=point_estimate+critical_value*standard_error 

print('90% Confidence Interval for Age Population Slope:', lower_bound, upper_
bound) 

1.2.5 Interpreting the Confidence Interval

We are 90% confident that , the population slope for age in the logistic regression model is between 0.0178
and 0.0342.

β3

1.2.6. Create a 90% confidence interval for the odds multiplier corresponding to age in the population
logistic regression model.

Remember that we call  the odds multiplier that corresponds to the given explanatory variable or indicator
variable. So we want to calculate a 90% confidence interval for  (as  corresponds to the age explanatory
variable).

So all we have to do is exponentiate the lower and upper bounds of the 90% confidence interval for .

eβi

eβ3 x3

β3

( , )e0.0178 e0.0342

(1.018, 1.035)

In [16]: print('90% Confidence Interval for Age Odds Multiplier $$e^{\beta_3}$$:', np.e
xp(lower_bound), np.exp(upper_bound)) 

1.2.7 Interpret this 90% confidence interval for the odds multiplier corresponding to age in the population
logistic regression model.

90% Confidence Interval for Age Population Slope: 0.017775731865242637 0.0342
2426813475736 

90% Confidence Interval for Age Odds Multiplier $$e^{�eta_3}$$: 1.01793466048
11483 1.0348166571078978 



Basic Interpretation:

We are 90% confident that  is between 1.018 and 1.035 in the population logistic regression model that
predicts the probability that an observation in the population approves the president's foreign policy (ie. y=1)
given age and sex.

More Informative Interpretation:

We are 90% confident that we would expect the odds that an observation in the population approves of the
president's foreign policy to increase by a multiple of 1.018 and 1.035, on average, if we were to increase age by
one year.

eβ3

1.3. Conducting Hypothesis Testing on  (individually) in a logistic
regression model.

See Unit 16 slides (section 1.3)

, , . . . ,β0 β1 βp

Test whether there is sufficient evidence to suggest that the population slope for
age is non-zero in the logistic regression model (which predicts the probability
for approval for the president’s foreign policy given age and sex.)

1.3.1 Set up hypotheses for this test.

One Option

.

Another Option

.

: = 0H0 β3

: ≠ 0HA β3

: = 1H0 eβ3

: ≠ 1HA eβ3

1.3.2 Check the conditions for conducting this hypothesis test.

We have already checked these conditions in 1.1, and we are unsure if they are met. Thus it may be possible
that the inferences and interpretations that we make with this confidence interval may be slightly off, but we will
proceed with caution.



In [17]: mod1 = smf.logit(formula='y ~ age+sex', data=df).fit() 
mod1.summary() 

1.3.3 Find the test statistic for this hyothesis test using the summary output table for the sample logistic
regression model.

In [18]: test_statistic=5.466 
print('Test Statistic:', test_statistic) 

1.3.4 Calculate this test statistic by hand (using other information from the summary output table for the
sample logistic regression model).

 
 
 
 
 
 
 
 
 

Optimization terminated successfully. 
         Current function value: 0.612754 
         Iterations 5 

Out[17]:
Logit Regression Results

Dep. Variable: y No. Observations: 691

Model: Logit Df Residuals: 688

Method: MLE Df Model: 2

Date: Thu, 08 Apr 2021 Pseudo R-squ.: 0.06252

Time: 13:36:51 Log-Likelihood: -423.41

converged: True LL-Null: -451.65

Covariance Type: nonrobust LLR p-value: 5.457e-13

coef std err z P>|z| [0.025 0.975]

Intercept -2.3609 0.288 -8.190 0.000 -2.926 -1.796

sex[T.Male] 0.8856 0.167 5.296 0.000 0.558 1.213

age 0.0260 0.005 5.466 0.000 0.017 0.035

Test Statistic: 5.466 



In [19]: point_estimate=0.0260 
standard_error=0.005 

In [20]: test_statistic=(point_estimate-0)/standard_error 
print('Test Statistic:', test_statistic) 

These value may be slightly off due to rounding errors.

1.3.5 Find the p-value for this hypothesis test in the summary output table for the sample logistic
regression model.

The p-value that we see int the summary output table for this hypothesis test is very small ( ).< 0.0001

1.3.6. Using the test statistic (from the summary output table) calculate the p-value "by hand".

 
 
 
 
 
 
 
 
 
 
 
 
 
 

In [21]: test_statistic=5.466 
pvalue=2*(1-norm.cdf(np.abs(test_statistic))) 
print('p-value:', pvalue) 

1.3.7. Make a conclusion about your hypothesis using this p-value, using a significance level of 
.α = 0.10

Test Statistic: 5.199999999999999 

p-value: 4.603043346484981e-08 



Because the , we reject the null hypothesis. Thus we can say the
following:

there is sufficient evidence to suggest that the population slope for age in this model is non-zero (ie. 
).

there is sufficient evidence to suggest that the population odds multiplier for age in this model is not equal to
1 (ie. ).

p − value = 4.603 × < α = 0.1010−8

≠ 0β3

≠ 1eβ3

1.3.8. Make a conclusion about your hypothesis using this p-value, using your 90% confidence interval
for the population slope for age (ie. ).β3

Because the null value  is not in our 90% confidence interval for  (the population slope for age) 
, we reject the null hypothesis. Thus we can say the following:

there is sufficient evidence to suggest that the population slope for age in this model is non-zero (ie. 
).

there is sufficient evidence to suggest that the population odds multiplier for age in this model is not equal to
1 (ie. ).

= 0β3 β3

(0.0178, 0.0342)

≠ 0β3

≠ 1eβ3

1.3.9. Make a conclusion about your hypothesis using this p-value, using your 90% confidence interval
for the population odds multiplier for age (ie. ).eβ3

Because the null value  is not in our 90% confidence interval for  (the population odds multplier for
age) , we reject the null hypothesis. Thus we can say the following:

there is sufficient evidence to suggest that the population slope for age in this model is non-zero (ie. 
).

there is sufficient evidence to suggest that the population odds multiplier for age in this model is not equal to
1 (ie. ).

= 1eβ3 eβ3

(1.018, 1.035)

≠ 0β3

≠ 1eβ3



2. Modeling Interaction Effects in a Logistic Regression
Model

See Unit 16 slides (section 2)

2.1. In the Jupyter notebook, create a logistic regression model that predicts the
probability that a person in the sample approves of the president’s foreign policy
given:

sex,
age, and
the interaction between sex and age.

In [22]: mod2 = smf.logit(formula='y ~ age+sex+age*sex', data=df).fit() 
mod2.summary() 

2.2 Write out the resulting logistic regression model for the sample.

log( ) = −2.1418 + 0.4760sex[T . Male] + 0.0220age + 0.0078(age ⋅ sex[T . Male])
p̂

1−p̂

Optimization terminated successfully. 
         Current function value: 0.612268 
         Iterations 5 

Out[22]:
Logit Regression Results

Dep. Variable: y No. Observations: 691

Model: Logit Df Residuals: 687

Method: MLE Df Model: 3

Date: Thu, 08 Apr 2021 Pseudo R-squ.: 0.06326

Time: 13:36:51 Log-Likelihood: -423.08

converged: True LL-Null: -451.65

Covariance Type: nonrobust LLR p-value: 2.392e-12

coef std err z P>|z| [0.025 0.975]

Intercept -2.1418 0.387 -5.530 0.000 -2.901 -1.383

sex[T.Male] 0.4760 0.525 0.906 0.365 -0.553 1.505

age 0.0220 0.007 3.253 0.001 0.009 0.035

age:sex[T.Male] 0.0078 0.010 0.820 0.412 -0.011 0.026



2.3 Use this model to predict the probability that 19 year old male supported the
president’s foreign policy (in 2017).

First we can find the predicted log-odds for this person.

By hand:

log( ) = −2.1418 + 0.4760(1) + 0.0220(19) + 0.0078(19 ⋅ 1) = −1.0996
p̂

1−p̂

In [23]: log_odds=-2.1418 +0.4760*(1) +0.0220*(19) +0.0078*(19* 1) 
print('Predicted Log Odds for 19-year-old male approving of the presidents for
eign policy:', log_odds) 

In [24]: odds=np.exp(log_odds) 
print('Predicted Odds for 19-year-old male approving of the presidents foreign 
policy::', odds) 

In [25]: predictive_probability=odds/(1+odds) 
print('Predictive Probability for 19-year-old male approving of the presidents 
foreign policy::', predictive_probability) 

With Python:

In [26]: mod2.predict(exog=dict(sex='Male',age=19)).iloc[0] 

STAT 207, Victoria Ellison and Douglas Simpson, University of Illinois at Urbana-Champaign

Predicted Log Odds for 19-year-old male approving of the presidents foreign p
olicy: -1.0996000000000001 

Predicted Odds for 19-year-old male approving of the presidents foreign polic
y:: 0.3330042587647964

Predictive Probability for 19-year-old male approving of the presidents forei
gn policy:: 0.24981484985904592 

Out[26]: 0.24992333217292967


