
Unit 17: Classification Accuracy of Classifier
Models

Case Study: Modelling Approval for the President's Foreign Policy
with Age and Sex
Model 1 In the beginning of this analysis we will model the following response variable with the following
explanatory variable.

response: approval of the president's foreign policy (approve vs. disapprove)
age

In attempt to improve our classification accuracy of the previous model, we will introduce a new model with more
explanatory Model 2

response: approval of the president's foreign policy (approve vs. disapprove)
explanatory:

sex
age
party

Will model 2 outperform model 1 in terms of classification accuracy? How do we measure how well each of these
models classified the observations in the sample?

New Package Installation
New package: scikit-learn - machine learning package

To install this on your computer enter the following command from a terminal or anaconda window:

conda install scikit-learn

In [1]: import numpy as np 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 

import statsmodels.api as sm 
import statsmodels.formula.api as smf 



1. How to predict the response variable of a given observation
using a logistic regression model.

See Unit 17 slides (Section 1)

2. How can we use a predictive probability to classify a given
observation using a logistic regression model.

See Unit 17 slides (section 2)

Let's again examine our random sample of adults living in the U.S. (from 2017) from Pew Research. We will just
use three variables for this analysis, so we will just create a dataframe using these three variables.

In [2]: missing_values = ["NaN", "nan", "Don't know/Refused (VOL.)"] 
# 
df = pd.read_csv('Feb17public.csv', na_values=missing_values)[['age','sex','q5
cf1']] 
df.head() 

In [3]: df.shape 

In [4]: df=df.dropna() 
df.head() 

In [5]: df.shape 

Out[2]:
age sex q5cf1

0 80.0 Female NaN

1 70.0 Female Disapprove

2 69.0 Female Disapprove

3 50.0 Male NaN

4 70.0 Female Disapprove

Out[3]: (1503, 3)

Out[4]:
age sex q5cf1

1 70.0 Female Disapprove

2 69.0 Female Disapprove

4 70.0 Female Disapprove

6 89.0 Female Disapprove

7 92.0 Female Approve

Out[5]: (691, 3)



In [6]: df['y']=df['q5cf1'].map({'Disapprove':0,'Approve':1}) 
df.head() 

2.1. Let's first fit a logistic regression model to predict the probability of a person
in the sample approving of the president's foreign policy, given age.

Because we only have an explanatory variable (age) and a response variable (y), we can plot the logistic
regression curve over the scatterplot of these observations in the sample.

In [7]: sns.lmplot(x="age", y='y',data=df, logistic=True) 
plt.ylabel('1=approve, 0=disapprove') 
plt.show() 

Out[6]:
age sex q5cf1 y

1 70.0 Female Disapprove 0

2 69.0 Female Disapprove 0

4 70.0 Female Disapprove 0

6 89.0 Female Disapprove 0

7 92.0 Female Approve 1



The equation for this logistic regression model is the following:

.

And we can rewrite this equation in another way as well to directly show us the predictive probability for a given
age:

log( ) = −1.7872 + 0.0236(age)p̂

1−p̂

=p̂ e−1.7872+0.0236(age)

+1e−1.7872+0.0236(age)

In [8]: mod1 = smf.logit(formula='y ~ age', data=df).fit() 
mod1.summary() 

2.2. What is the predictive probability of a 70-year-old approving of the
president's foreign policy (using this fitted logistic regression model)?

In [9]: mod1.predict(exog=dict(age=70)) 

The probability that a 70 year old approves of the president's foreign policy (in this random sample of adults
living in the U.S. in 2017) is 0.466859.

Optimization terminated successfully. 
         Current function value: 0.633703 
         Iterations 5 

Out[8]:
Logit Regression Results

Dep. Variable: y No. Observations: 691

Model: Logit Df Residuals: 689

Method: MLE Df Model: 1

Date: Thu, 08 Apr 2021 Pseudo R-squ.: 0.03047

Time: 13:28:06 Log-Likelihood: -437.89

converged: True LL-Null: -451.65

Covariance Type: nonrobust LLR p-value: 1.553e-07

coef std err z P>|z| [0.025 0.975]

Intercept -1.7872 0.254 -7.023 0.000 -2.286 -1.288

age 0.0236 0.005 5.128 0.000 0.015 0.033

Out[9]: 0    0.466859 
dtype: float64



2.3. If we use a predictive probability threshold of  for this given logistic
regression model (ie. classifier model), what opinion will we classifiy this 70-year-
old as having?

= 0.5p0

Because , we classify this person with y=0 (or that they disapprove of the president's
foreign policy).

0.466859 ≤ = 0.5p0

2.4 Using this predictive probability threshold of p_0=0.5, what is the minimum
age that a person needs to be in order to be classified as approving the
president’s foreign policy in this sample?

What value of age satisfies this inequality? .

.

.

= > 0.5p̂ e−1.7872+0.0236(age)

+1e−1.7872+0.0236(age)

log( ) < −1.7872 + 0.0236(age)0.5
1−0.5

age > 75.7288

In [10]: #Plug in 0.5 into your logistic regression equation and solve for age. 
threshold_age=(np.log(.5/(1-.5))+1.7872)/.0236 
threshold_age 

3. Types of Misclassifications and Correct Classifications

3.1. Let's classify ALL of the observations in the sample using this predictive
probability threshold of  and the logistic regression model.

First we need to get the predictive probabilities for all of the observations in our df dataframe.

We can use the .predict() function and simply just input the whole dataframe into the dict() function for the exog
parameter. While the df dataframe has more columns than just age in it (ie. our only explanatory variable at the
moment in this logistic regression model) the predict function is intelligent enough to know that we only want to
extract just the columns values that correspond to the given logistic regression model (mod1).

We add these predictive probabilities as a column in our dataframe.

p0

Out[10]: 75.72881355932203



In [11]: pred_probabilities=mod1.predict(exog=dict(df))  
df['predictive_prob']=pred_probabilities 
df 

Then we can create another column in our dataframe that is our classification (or predicted value for y) for each
of the observations. To do this we can set up a row condition on the inside of some parantheses.

This (row condition for a dataframe) by itself will produce a series of True or False values depending on whether
the condition for that particular row is true or not.

Then by using 1*(row condition for a dataframe), we translate each True to a 1 and each False to a 0.

Out[11]:
age sex q5cf1 y predictive_prob

1 70.0 Female Disapprove 0 0.466859

2 69.0 Female Disapprove 0 0.460982

4 70.0 Female Disapprove 0 0.466859

6 89.0 Female Disapprove 0 0.578423

7 92.0 Female Approve 1 0.595610

... ... ... ... ... ...

1494 23.0 Female Approve 1 0.223812

1498 37.0 Male Approve 1 0.286448

1499 30.0 Female Approve 1 0.253858

1501 67.0 Male Disapprove 0 0.449260

1502 35.0 Female Approve 1 0.276884

691 rows × 5 columns



In [12]: df['yhat']=1*(df['predictive_prob']>0.5) 
df 

3. Types of Misclassifications and Correct Classifications

See Unit 17 slides (section 3).

3.1 Let's plot our predicted (classified) y-values for the observations (shown in
blue and orange) as well as our actual values for y (shown on the y-axis.)

Out[12]:
age sex q5cf1 y predictive_prob yhat

1 70.0 Female Disapprove 0 0.466859 0

2 69.0 Female Disapprove 0 0.460982 0

4 70.0 Female Disapprove 0 0.466859 0

6 89.0 Female Disapprove 0 0.578423 1

7 92.0 Female Approve 1 0.595610 1

... ... ... ... ... ... ...

1494 23.0 Female Approve 1 0.223812 0

1498 37.0 Male Approve 1 0.286448 0

1499 30.0 Female Approve 1 0.253858 0

1501 67.0 Male Disapprove 0 0.449260 0

1502 35.0 Female Approve 1 0.276884 0

691 rows × 6 columns



In [13]: x=np.arange(18,95,.1) 
p=np.exp(-1.7872+0.0236*x)/(1+np.exp(-1.7872+0.0236*x)) 
sns.scatterplot(x="age", y='y',data=df, hue='yhat') 
plt.plot(x,p, color='black', label='Logistic Regression Curve') 
plt.hlines(y=0.5, xmin=18, xmax=95, color='red', label='Threshold') 
plt.ylabel('Actual Values: 1=approve, 0=disapprove') 
plt.legend(bbox_to_anchor=(1,1)) 
plt.show() 

3.2. Next, let's create a confusion matrix for this classifier model and the given
threshold.

In [14]: # This import requires that you already  
# installed the scikit-learn library  
# as described in the introduction to this chapter. 
# 
from sklearn.metrics import confusion_matrix, roc_curve, roc_auc_score 

In [15]: confusion_matrix(y_true=df['y'], y_pred=df['yhat']) 

In [16]: tn, fp, fn, tp = confusion_matrix(y_true=df['y'],  
                                 y_pred=df['yhat']).ravel() 
(tn, fp, fn, tp) 

3.3. What is the number of true positive, false positive, true negative, and false
negative observations in the sample using the logistic regression model and the
predictive threshold of ?= 0.5p0

Out[15]: array([[420,  22], 
       [221,  28]], dtype=int64)

Out[16]: (420, 22, 221, 28)



 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.4 What is the sensitivity of the logistic regression model with the predictive
threshold of  using the sample data?= 0.5p0

In [17]: sensitivity=tp/(tp+fn) 
print('sensitivity:', sensitivity) 

This is quite low, which indicates that the logistic regression model with  did not do well at correctly
classifying people that actually approved of the president's foreign policy.

= 0.05p0

3.5 What is the specificity of the logistic regression model with the predictive
threshold of  using the sample data?= 0.5p0

In [18]: specificity=tn/(tn+fp) 
print('specificity:', specificity) 

This is quite high, which indicates that the logistic regression model with  did a pretty good job at
correctly classifying people that actually disapproved of the president's foreign policy.

= 0.05p0

3.6 What is the false positive rate of the logistic regression model with the
predictive threshold of  using the sample data?= 0.5p0

sensitivity: 0.11244979919678715 

specificity: 0.9502262443438914 



In [19]: false_positive_rate=fp/(tn+fp) 
print('false positive rate:', false_positive_rate) 

This is quite low, which indicates that the logistic regression model with  did a pretty good job at
correctly classifying people that actually disapproved of the president's foreign policy.

= 0.05p0

4. Relationship between Sensitivity and Specificity

See Unit 16 slides (Section 4)

4.1 Using the same logistic regression model as before, and now a predictive
probability threshold of  to classify all of the observations in the
sample.

= 0.3p0

Let's first re-classify our observations in our dataframe with our new threshold of .= 0.3p0

In [20]: df['yhat']=1*(df['predictive_prob']>0.3) 
df 

false positive rate: 0.049773755656108594 

Out[20]:
age sex q5cf1 y predictive_prob yhat

1 70.0 Female Disapprove 0 0.466859 1

2 69.0 Female Disapprove 0 0.460982 1

4 70.0 Female Disapprove 0 0.466859 1

6 89.0 Female Disapprove 0 0.578423 1

7 92.0 Female Approve 1 0.595610 1

... ... ... ... ... ... ...

1494 23.0 Female Approve 1 0.223812 0

1498 37.0 Male Approve 1 0.286448 0

1499 30.0 Female Approve 1 0.253858 0

1501 67.0 Male Disapprove 0 0.449260 1

1502 35.0 Female Approve 1 0.276884 0

691 rows × 6 columns



In [21]: x=np.arange(18,95,.1) 
p=np.exp(-1.7872+0.0236*x)/(1+np.exp(-1.7872+0.0236*x)) 
sns.scatterplot(x="age", y='y',data=df, hue='yhat') 
plt.plot(x,p, color='black', label='Logistic Regression Curve') 
plt.hlines(y=0.3, xmin=18, xmax=95, color='red', label='Threshold') 
plt.ylabel('Actual Values: 1=approve, 0=disapprove') 
plt.legend(bbox_to_anchor=(1,1)) 
plt.show() 

4.2. Find the sensitivity and specificity for this threshold and classifier.

In [22]: tn, fp, fn, tp = confusion_matrix(y_true=df['y'],  
                                 y_pred=df['yhat']).ravel() 
(tn, fp, fn, tp) 

In [23]: sensitivity=tp/(tp+fn) 
print('sensitivity:', sensitivity) 

In [24]: specificity=tn/(tn+fp) 
print('specificity:', specificity) 

4.3 Which predictive probability threshold yielded better results?  or 
?

= .5p0
= 0.3p0

Out[22]: (172, 270, 51, 198)

sensitivity: 0.7951807228915663 

specificity: 0.3891402714932127 



Ideally, we would like both our sensitivty and specificity to be high. However, we know that generally when one of
these increases, the other will decrease (based on us changing our predictive probability threshold).

Which of these results is best is dependent on how much we care accurately classifying people that actually
approve vs. accurately classifying people that disapprove.

If we care more about accurately classifying people that actually approve (ie. actually have y=1), we would
want to pick the threshold of  that yields a higher sensitivity of 0.795.
If we care more about accurately classifying people that actually disapprove (ie. actually have y=0), we
would want to pick the threshold of  that yields a higher specificity of 0.950.

= 0.3p0

= 0.5p0

5. ROC and AUC Which classifier will give us the best
combinations of (false positive rate, true positive rate) for all sets
of thresholds?

See unit 17 slides (section 5)

5.1Model 1: Logistic regression model that predicts approval of presidential
foreign policy given age.
Below the ROC curve for model 1.

In [25]: fprs, tprs, thresholds = roc_curve(y_true=df['y'],  
                           y_score=mod1.fittedvalues) 
auc = roc_auc_score(y_true=df['y'],  
                   y_score=mod1.fittedvalues) 
print(auc) 

In [26]: def plot_roc(fpr, tpr, auc, lw=2): 
   plt.plot(fpr, tpr, color='darkorange', lw=lw, 
            label='ROC curve (area = '+str(round(auc,3))+')') 
   plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') 
   plt.xlabel('False Positive Rate') 
   plt.ylabel('True Positive Rate') 
   plt.title('ROC Curve') 
   plt.legend(loc="lower right") 
   plt.show() 

0.6178832978974722 



In [27]: plot_roc(fprs, tprs, auc) 

5.2 Model 2: Logistic regression model that predicts approval of presidential
foreign policy given age and sex.
Let's reread the data in again, as we would now like to model approval for the president's foreign policy with age,
sex, and party.

In [28]: missing_values = ["NaN", "nan", "Don't know/Refused (VOL.)"] 
# 
df = pd.read_csv('Feb17public.csv', na_values=missing_values)[['age','sex','q5
cf1','party']] 
df.head() 

Out[28]:
age sex q5cf1 party

0 80.0 Female NaN Independent

1 70.0 Female Disapprove Democrat

2 69.0 Female Disapprove Independent

3 50.0 Male NaN Republican

4 70.0 Female Disapprove Democrat



In [29]: df=df.dropna() 
df.head() 

In [30]: df['y']=df['q5cf1'].map({'Disapprove':0,'Approve':1}) 
df.head() 

Out[29]:
age sex q5cf1 party

1 70.0 Female Disapprove Democrat

2 69.0 Female Disapprove Independent

4 70.0 Female Disapprove Democrat

6 89.0 Female Disapprove Independent

7 92.0 Female Approve Republican

Out[30]:
age sex q5cf1 party y

1 70.0 Female Disapprove Democrat 0

2 69.0 Female Disapprove Independent 0

4 70.0 Female Disapprove Democrat 0

6 89.0 Female Disapprove Independent 0

7 92.0 Female Approve Republican 1



In [31]: mod2 = smf.logit(formula='y ~ age+sex+party', data=df).fit() 
mod2.summary() 

In [32]: fprs, tprs, thresholds = roc_curve(y_true=df['y'],  
                           y_score=mod2.fittedvalues) 
auc = roc_auc_score(y_true=df['y'],  
                   y_score=mod2.fittedvalues) 
print(auc) 

Optimization terminated successfully. 
         Current function value: 0.419649 
         Iterations 7 

Out[31]:
Logit Regression Results

Dep. Variable: y No. Observations: 679

Model: Logit Df Residuals: 672

Method: MLE Df Model: 6

Date: Thu, 08 Apr 2021 Pseudo R-squ.: 0.3614

Time: 13:28:07 Log-Likelihood: -284.94

converged: True LL-Null: -446.23

Covariance Type: nonrobust LLR p-value: 1.185e-66

coef std err z P>|z| [0.025 0.975]

Intercept -4.5635 0.465 -9.807 0.000 -5.475 -3.651

sex[T.Male] 0.7288 0.217 3.363 0.001 0.304 1.154

party[T.Independent] 2.2604 0.312 7.236 0.000 1.648 2.873

party[T.No preference (VOL.)] 2.5881 0.680 3.808 0.000 1.256 3.920

party[T.Other party (VOL.)] 4.0865 1.212 3.372 0.001 1.711 6.462

party[T.Republican] 4.2985 0.341 12.592 0.000 3.629 4.968

age 0.0272 0.006 4.443 0.000 0.015 0.039

0.8750863920799477 



In [33]: plot_roc(fprs, tprs, auc) 

STAT 207, Victoria Ellison and Douglas Simpson, University of Illinois at Urbana-Champaign

In [ ]:  


