Unit 18: Training Data vs. Test Data

Case Study: Building a Model that is Good at Predicting Approval
for the President's Foreign Policy with Age, Sex, and Political
Affiliation with New Data

Suppose we work at a political advertising agency. Rather than seek to understand the relationship between
approval for the president's foreign policy with sex, age, and political affiliation, we would like build a model that
will give us the best predictions for adults living in the U.S. in which we don't know what they think about the
president's foreign policy.

We can assume that this agency has the age, sex, political affiliation, and address of all registered voters in the
state. So one goal that this political advertising agency might have is to use this data to make predictions about
whether a given person that lives at a particular house approves of the president's foreign policy. They could
then use that information to decide whether to mail political advertising pamphplets to this address.

Python Libraries and Packages
Python libraries:

statsmodels.api, statsmodels.formula.api, scikit-learn

If you need to install these on your computer enter the following commands from a terminal or anaconda
window:

conda install scikit-learn
conda install -c conda-forge statsmodels

Imports

In [1]: dimport pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

import statsmodels.api as sm
import statsmodels.formula.api as smf

1. Different Goals for Building a Regression Model

See Unit 18 slides (section 1)

Read the body dimensions dataset.

In [2]: df=pd.read_csv('bdims.csv")

28.0
30.8
31.7

28.2

df.head()
Out[2]:
biacromial_diameter pelvic_breadth bitrochanteric_diameter chest_depth chest_diameter
0 42.9 26.0 31.5 17.7
1 43.7 28.5 33.5 16.9
2 40.1 28.2 33.3 20.9
3 443 29.9 34.0 18.4
4 42,5 29.9 34.0 21.5

5 rows x 26 columns

In [3]: df.columns

294

Out[3]: Index(['biacromial diameter', 'pelvic_breadth', 'bitrochanteric_diameter',
‘chest_depth', 'chest_diameter', 'elbow_diameter', 'wrist_diameter’,
"knee_diameter', 'ankle_diameter', 'shoulder_girth', 'chest_girth’,

'waist_girth', 'navel_girth', 'hip_girth', 'thigh_girth’,

"forearm_girth', 'knee_diameter.l', 'calf_girth', 'ankle_girth',
'wrist_girth', 'age', 'weight', 'height', 'sex', 'age_group'],

dtype="object')

'bicep_girt

In [4]: df[['bicep_girth', 'age', 'sex', 'weight’,
out[4]:
bicep_girth age sex weight height
0 325 21 Male 65.6 174.0
1 344 23 Male 718 1753
2 334 28 Male 80.7 193.5
3 31.0 23 Male 726 186.5
4 320 22 Male 78.8 187.2
482 30.3 29 Female 71.8 176.5
483 30.1 21 Female 555 164.4
484 274 33 Female 486 160.7
485 30.6 33 Female 66.4 174.0
486 33.2 38 Female 67.3 163.8

487 rows x 5 columns

"height']]

In [5]: results=smf.ols('bicep_girth~age+sex+weight+height', data=df).fit()
results.summary()

Out[5]:
(5] OLS Regression Results
Dep. Variable: bicep_girth R-squared: 0.831
Model: OLS Adj. R-squared: 0.829
Method: Least Squares F-statistic: 590.9

Date: Wed, 21 Apr 2021 Prob (F-statistic): 2.94e-184

Time: 22:52:06 Log-Likelihood: -963.88
No. Observations: 487 AIC: 1938.
Df Residuals: 482 BIC: 1959.
Df Model: 4
Covariance Type: nonrobust
coef std err t P>|t] [0.025 0.975]

Intercept 31.4253 2.032 15.465 0.000 27.432 35.418
sex[T.Male] 3.4235 0.235 14590 0.000 2.962 3.885
age -0.0132 0.009 -1.547 0.123 -0.030 0.004
weight 0.2475 0.009 26.789 0.000 0.229 0.266

height -0.1088 0.013 -8.129 0.000 -0.135 -0.083

Omnibus: 13.978 Durbin-Watson: 1.993
Prob(Omnibus): 0.001 Jarque-Bera (JB): 15.394
Skew: 0.347 Prob(JB): 0.000454

Kurtosis: 3.526 Cond. No. 4.78e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 4.78e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

In [6]: results=smf.ols('bicep_girth~sex+weight+height', data=df).fit()
results.summary()

Out[6]:
6] OLS Regression Results
Dep. Variable: bicep_girth R-squared: 0.830
Model: OLS Adj. R-squared: 0.829
Method: Least Squares F-statistic: 784.7

Date: Wed, 21 Apr 2021 Prob (F-statistic): 3.19e-185

Time: 22:52:06 Log-Likelihood: -965.09
No. Observations: 487 AIC: 1938.
Df Residuals: 483 BIC: 1955.
Df Model: 3
Covariance Type: nonrobust
coef std err t P>|t] [0.025 0.975]

Intercept 30.7279 1.984 15.486 0.000 26.829 34.627
sex[T.Male] 3.3844 0.234 14.487 0.000 2.925 3.843
weight 0.2449 0.009 26.922 0.000 0.227 0.263
height -0.1060 0.013 -7.980 0.000 -0.132 -0.080

Omnibus: 14.566 Durbin-Watson: 1.991
Prob(Omnibus): 0.001 Jarque-Bera (JB): 16.497
Skew: 0.345 Prob(JB): 0.000262

Kurtosis: 3.581 Cond. No. 4.60e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 4.6e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

2. Problem with Overfitting a Regression Model

See Unit 18 slides (section 2)

3. Training vs. Test Data

See Unit 18 slides (section 3)

4. Case Study: Building a Model that is Good at Predicting
Approval for the President's Foreign Policy with Age, Sex, and
Political Affiliation with New Data

Problem Statement: Suppose we work at a political advertising agency. Rather than seek to understand the
relationship between approval for the president's foreign policy with sex, age, and political affiliation, we would
like build a model that will give us the best predictions for adults living in the U.S. in which we don't know what
they think about the president's foreign policy.

We can assume that this agency has the age, sex, political affiliation, and address of all registered voters in the
state. So one goal that this political advertising agency might have is to use this data to make predictions about
whether a given person that lives at a particular house approves of the president's foreign policy. They could
then use that information to decide whether to mail political advertising pamphplets to this address.

4.1 Data Preliminaries

We will be using a portion of our 2017 random sample Pew dataset to train a logistic regression model that
predicts the probability that an adult living in the U.S. supported the president's foreign policy given sex, age, and
political affiliation.

Loading the dataset

In [7]: missing_values = ["NaN", "nan", "Don't know/Refused (VOL.)"]
df = pd.read_csv('Febl7public.csv’,
na_values=missing_values)[['age', 'sex', \
'g5cf1l', 'party']]

df.head()
Out[7]:

age sex q5cf1 party
0 80.0 Female NaN Independent
1 70.0 Female Disapprove Democrat
2 69.0 Female Disapprove Independent
3 500 Male NaN Republican
4 70.0 Female Disapprove Democrat

Dropping missing values

Let's first drop the rows in this dataset with missing values.

In [8]: df = df.dropna()

df.head()
Oout[8]:

age sex q5cf1 party
1 70.0 Female Disapprove Democrat
2 69.0 Female Disapprove Independent
4 70.0 Female Disapprove Democrat
6 89.0 Female Disapprove Independent
7 92.0 Female Approve Republican

Size of the dataset.

In [9]: n=df.shape[9]
n

Out[9]: 679

Creating a 0/1 response variable value for the logistic regression model where:

» approve =1 and
 disapprove =0.

In [10]: df['y'] = df['q5cfl'].map({ 'Disapprove’':0, 'Approve':1})

df.head()
Out[10]:

age sex q5cf1 party y
1 70.0 Female Disapprove Democrat 0
2 69.0 Female Disapprove Independent 0
4 70.0 Female Disapprove Democrat 0
6 89.0 Female Disapprove Independent O
7 92.0 Female Approve Republican 1

4.2 Creating the Training and Test Dataset
Next, we split the data into the:

« training dataset: where we randomly select 80% of observations from Pew dataset and the

« test data set: comprised of the remaining 20% of observations from Pew dataset.
It's usually best to have your training dataset have much more observations than your test dataset!
We use the train_test_split() function from the sklearn.model_selection package to do this. The parameters
for this function are:

« the dataframe we wish to randomly split into a training dataset and a test dataset
« the test_size= the percent of the dataset we would like to be allocated to the test dataset
« we an also supply a random_state number.

In [11]: from sklearn.model_selection import train_test_split

df_train, df_test = train_test_split(df,
test_size=0.20,
random_state=123)

Let's inspect the newly created training dataset.

In [12]: df_train

Oout[12]:
age sex q5cf1 party y

725 39.0 Female Disapprove Democrat 0
836 67.0 Female Disapprove Democrat 0
961 51.0 Male Disapprove Democrat 0
348 72.0 Male Approve Republican 1

1025 61.0 Female Disapprove Democrat 0

205 90.0 Female Approve Republican 1
693 20.0 Male Approve Independent 1
838 68.0 Male Approve Republican 1
791 56.0 Male Disapprove Independent 0

1115 45.0 Male Approve Independent 1

543 rows x 5 columns

We can double check that this training dataset contains about 80% of the observations from df.

In [13]: df_train.shape[@]/df.shape[@]

Out[13]: @.7997054491899853

Let's inspect this new test dataset.

In [14]: df_test

Out[14]:
age sex q5cf1 party y

337 79.0 Female Approve Republican 1
424 30.0 Female Disapprove Independent 0
751 46.0 Male Disapprove Independent O
1423 77.0 Male Disapprove Democrat 0

1367 58.0 Male Approve Independent 1

872 42.0 Female Approve Republican 1
915 52.0 Male Disapprove Democrat 0
535 22.0 Male Disapprove Independent O
1075 69.0 Female Disapprove Democrat 0

933 74.0 Male Disapprove Independent O

136 rows x 5 columns

We can double check that this test dataset contains about 20% of the observations from df.

In [15]: df_test.shape[@]/df.shape[Q]

Out[15]: ©.20029455081001474

4.3. Fit (ie. train) the model to training data.

Next we will train our logistic regression model with the training dataset only.

In [16]: pewmod = smf.logit('y ~ party + age + sex',\
data=df_train).fit()
pewmod . summary ()

Optimization terminated successfully.
Current function value: 0.402672
Iterations 7

Out[16]: Logit Regression Results
Dep. Variable: y No. Observations: 543
Model: Logit Df Residuals: 536
Method: MLE Df Model: 6
Date: Wed, 21 Apr 2021 Pseudo R-squ.: 0.3899
Time: 22:52:06 Log-Likelihood: -218.65
converged: True LL-Null: -358.39
Covariance Type: nonrobust LLR p-value: 2.035e-57

coef stderr

N

P>|z| [0.025 0.975]
Intercept -4.6644 0.535 -8.719 0.000 -5.713 -3.616
party[T.Independent] 2.1964 0.352 6.232 0.000 1.506 2.887
party[T.No preference (VOL.)] 2.7477 0.722 3.805 0.000 1.332 4.163
party[T.Other party (VOL.)] 4.0648 1.230 3.306 0.001 1.655 6.475
party[T.Republican] 4.4606 0.388 11.498 0.000 3.700 5.221
sex[T.Male] 0.9140 0.252 3.633 0.000 0.421 1.407

age 0.0271 0.007 3.840 0.000 0.013 0.041

4.4 Test the model's predictive accuracy with the test dataset.

Finally, in order to get an idea as to how well our trained Ioglstlc regressmn model with perform with new data
(that was not factored in to the optimal selection of BO, ﬁl, e Bp) we will calculate various metric that assess
the predictive performance of our model with the test dataset including the:

« ROC
« AUC
« sensitivity and specificity for a few selected predictive probability thresholds.

4.4.1 First, get the predictive probabilities of the test dataset with this trained model.

The predict function uses the fitted model to extract any exogenous variables it needs from the test data. We do
not have to specify which variables. We just provide the whole test data frame. Compare the following two code
cells and results.

In [17]:

Out[17]:

In [18]:

Out[18]:

predictive probabilities - explicit method
phat_test

phat_test.

337
424
751
1423
1367
440
801
1279
187
342

OO O O0OO0OOO®OOOC

= pewmod.predict(exog=df_test[['age', 'sex', 'party']])
head(10)

.874386
.160607
.424221
.159691
.505054
.079614
.850883
.890355
.082286
Q.

057777

dtype: floaté64d

predictive probabilities - implicit method
phat_test = pewmod.predict(exog=df_test)

phat_test.

337
424
751
1423
1367
440
801
1279
187
342

head(10)

0.874386
0.160607
0.424221
0.159691
Q.
0
0
%]
(%]

505054

.079614
.850883
.890355
.082286
Q.

057777

dtype: float64

In [19]: df_test['phat_test']=phat_test
df_test
<ipython-input-19-c185c916a8e2>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
table/user_guide/indexing.html#returning-a-view-versus-a-copy
df_test['phat_test']=phat_test
Out[19]:
age sex q5cf1 party y phat_test

337 79.0 Female Approve Republican 1 0.874386

424 30.0 Female Disapprove Independent 0 0.160607

751 46.0 Male Disapprove Independent 0 0.424221

1423 77.0 Male Disapprove Democrat 0 0.159691

1367 58.0 Male Approve Independent 1 0.505054

872 42.0 Female Approve Republican 1 0.718312

915 52.0 Male Disapprove Democrat 0 0.087940

535 22.0 Male Disapprove Independent 0 0.277510

1075 69.0 Female Disapprove Democrat 0 0.057777

933 74.0 Male Disapprove Independent 0 0.611701

136 rows x 6 columns

4.4.2 Next, we generate the ROC curve and calculate the AUC for the test dataset.

In [20]: from sklearn.metrics import roc_curve

from sklearn.metrics import roc_auc_score
fpr_pew, tpr_pew, score pew = roc_curve(y true=df test['y'], y_score=df test]
‘phat_test'])

auc_pew = roc_auc_score(y_true=df_test['y'], y_score=df_test['phat_test'])

In [21]: def plot_roc(fpr, tpr, auc, lw=2):

plt.plot(fpr, tpr, color='darkorange', lw=1lw,

label="ROC curve (area = '+str(round(auc,3))+')")

plot([@, 1], [@, 1], color="navy', lw=lw, linestyle='--")
xlabel('False Positive Rate')
ylabel('True Positive Rate')
title('ROC Curve')
legend(loc="1lower right")

show()

plt.
plt.
plt.
plt.
plt.
plt.

In [22]: plot_roc(fpr_pew, tpr_pew, auc_pew)

ROC Curve

10 1

= = =
= o oo
. . ;

Tue Positive Rate

=
P
!

o —— ROC curve {area = 0.518)

=
=]
5

T T T
0.0 02 04 06 08 10
False Positive Rate

Interpretation:

Evaluation: The AUC for the test dataset is 0.818.

What can we use it form: This gives us a sense of how good our logistic regression model (which has been
trained with the training dataset) would be at predicting the probability that an adult living in the U.S. approves
of the president's foreign policy with new data (in which we don't know the actual answer of whether they
disapprove or approve.

Interpreting AUC: Because the AUC is somewhat high (ie. closer to 1 than it is to 0.5), this tells us that there
does exist some predictive probability threshold that gets somewhat close to giving us the ideal scenario of a
model with a false positive rate of 0 and a true positive rate of 1 with new data.

4.5 Finding a "good" (FPR, TPR) combination.

Ideally, we would like to pick a predictive probability threshold that gives us a false positive rate of 0 and true
positive rate of 1. However, this ROC curve shows that there does not exist a predictive probability threshold that
will give us this ideal combination. So what predictive probability threshold should we choose?

Well, it depends on much a high true positive rate is worth to you vs. a low false positive rate is to you.

Here's a couple options.

Option 1: About (FPR = 0.5, TPR = 0.95)

Notice how that at a FPR of 0.5, the TPR starts to level off in the ROC curve above. By increasing the FPR any
more past 0.5, we do not gain much more in the way of a better (higher) TPR. So we could choose the predictive
probability threshold that gives us this combination of (FPR = 0.5, TPR = 0.95).

Option 2: About (FPR = 0.1, TPR = 0.6)

Notice how that at a TPR of 0.6, the FPR starts to level off in the ROC curve above. By decreasing the TPR any
more past 0.6, we do not gain much more in the way of a better (lower) FPR. So we could choose the predictive
probability threshold that gives us this combination of (FPR = 0.1, TPR = 0.6).

What kind of political advertising groups would choose option 1 over option 27?

Political Ad Group 1:

Suppose this group really values predicting as many people as possible that support the president's foreign
policy (ie. are a 1 or positive). Furthermore there is no penalty for mailing ads to houses in which the
homeowners don't support the policy (ie. are a 0 or negative).

In [23]: plot_roc(fpr_pew, tpr_pew, auc_pew)

ROC Curve
10 1 =
’n‘
-
"J‘
0.8 1 e
P
i <
= -~
2% o
]
= P
£ 041 -~
- 04 ,".‘
= -~
J"'"
0.2 1 -
#-f
-
-
00l ¥ ROC curve (area = 0.818)
T T T T T T
0.0 0.2 0.4 0.6 0.8 10

False Positive Rate

Political Ad Group 2:

Suppose this group would ideally like to predict as many people as possible that support the president's foreign
policy (ie. are a 1/positive), but have learned that there is a very high backfire effect when they mail ads to
houses in which the homeowners don't support the policy (ie. are a 0 or negative).

In [24]: plot_roc(fpr_pew, tpr_pew, auc_pew)

ROC Curve
10 1 ’d
’n‘
-
"J‘
0.8 1 .
e
i <
= -~
2% o
]
= P
£ 041 -~
e 04 ,..".‘
= -~
J"J-
0.2 1 -
#-f
-
-
00l ¥ ROC curve (area = 0.818)
T T T T T T
0.0 0.2 0.4 0.6 0.8 10

False Positive Rate

4.6 Finding the predictive probability threshold that corresponds to a (FPR,
TPR).

You can use this defined function below to quickly generate the fpr and tpr of a model given:

» y = the actual 0/1 response variable values for a given dataset
« pred_prob = the predictive probabilities for each of the observations of a given dataset
» thresh = a predictive probability threshold value

In [25]: from sklearn.metrics import confusion_matrix

def tpr_fpr_thresh(y, pred_prob, thresh):
yhat = 1*(pred_prob >= thresh)
tn, fp, fn, tp = confusion_matrix(y_true=y, y pred=yhat).ravel()
tpr = tp / (fn + tp)
fpr = fp / (fp + tn)
return pd.DataFrame({'threshold’:[thresh],
“tpr':[tpr],
“fpr':[fprl})

For instance, the test dataset has a tpr = 0.6170 and a fpr = 0.1348 given a predictive probability threshold of
po = 0.5 with this logistic regression model.

In [26]: tpr_fpr_thresh(df_test['y'], df _test['phat test'], 0.5)

Out[26]:
threshold tpr fpr

0 0.5 0.617021 0.134831

Let's iterate through a series of predictive probability thresholds starting from p, = 0 and ending with py; = 1
and a step size of 0.01, to see if we can find which predictive probability threshold will give us:

e Option 1: About (FPR = 0.5, TPR = 0.95) and
o Option 2: About (FPR = 0.1, TPR = 0.6).

In [27]: for thresh in np.arange(0,1,.01):
print(tpr_fpr_thresh(df_test['y'], df_test['phat_test'], thresh))

threshold
0.0
threshold
0.01
threshold
0.02
threshold
0.03
threshold
0.04
threshold
0.05
threshold
0.06
threshold
0.07
threshold
0.08
threshold
0.09
threshold
0.1
threshold
0.11
threshold
0.12
threshold
0.13
threshold
0.14
threshold
0.15
threshold
0.16
threshold
0.17
threshold
0.18
threshold
0.19
threshold
0.2
threshold
0.21
threshold
0.22
threshold
0.23
threshold
0.24
threshold
0.25
threshold
0.26
threshold
0.27
threshold

tpr
1.0
tpr
1.0

fpr
1.0
fpr
1.0
tpr
0.978723
tpr
0.978723
tpr
0.978723
tpr
0.978723
tpr
0.978723
tpr
0.978723
tpr
0.978723
tpr
0.978723
tpr
0.978723
tpr
0.957447
tpr
0.957447
tpr
0.957447
tpr
0.93617
tpr
0.914894
tpr
0.893617
tpr
0.893617
tpr
0.87234
tpr
0.87234
tpr
0.87234
tpr
0.87234
tpr
0.87234
tpr
0.87234
tpr
0.87234
tpr
0.851064
tpr
0.829787
tpr
0.787234
tpr

fpr
0.932584
fpr
0.831461
fpr
0.786517
fpr
0.752809
fpr
0.640449
fpr
0.606742
fpr
0.58427
fpr
0.561798
fpr
0.550562
fpr
0.550562
fpr
0.539326
fpr
0.483146
fpr
0.483146
fpr
0.47191
fpr
0.460674
fpr
0.438202
fpr
0.438202
fpr
0.438202
fpr
0.404494
fpr
0.382022
fpr
0.382022
fpr
0.382022
fpr
0.382022
fpr
0.382022
fpr
0.382022
fpr
0.382022
fpr

0.28
threshold
0.29
threshold
0.3
threshold
0.31
threshold
0.32
threshold
0.33
threshold
0.34
threshold
0.35
threshold
0.36
threshold
0.37
threshold
0.38
threshold
0.39
threshold
0.4
threshold
0.41
threshold
0.42
threshold
0.43
threshold
0.44
threshold
0.45
threshold
0.46
threshold
0.47
threshold
0.48
threshold
0.49
threshold
0.5
threshold
0.51
threshold
0.52
threshold
0.53
threshold
0.54
threshold
0.55
threshold
0.56

.765957

tpr

.765957

tpr

.765957

tpr

.765957

tpr

.765957

tpr

.765957

tpr

.765957

tpr

.723404

tpr

.723404

tpr

.659574

tpr

.659574

tpr

.638298

tpr

.617021

tpr

.617021

tpr

.617021

tpr

.617021

tpr

.617021

tpr

.617021

tpr

.617021

tpr

.617021

tpr

.617021

tpr

.617021

tpr

.617021

tpr

.574468

tpr

.574468

tpr

.574468

tpr

.574468

tpr

.574468

tpr

.574468

.359551

fpr

.337079

fpr

.337079

fpr

.325843

fpr

.314607

fpr

.314607

fpr

.292135

fpr

.269663

fpr

.269663

fpr

.258427

fpr

.235955

fpr

.213483

fpr

.191011

fpr

.179775

fpr

.179775

fpr

.168539

fpr

.168539

fpr

.15730e3

fpr

.146067

fpr

.146067

fpr

.134831

fpr

.134831

fpr

.134831

fpr

.134831

fpr

.123596

fpr

.123596

fpr

.123596

fpr

.123596

fpr

.123596

threshold
0.57
threshold
0.58
threshold
0.59
threshold
0.6
threshold
0.61
threshold
0.62
threshold
0.63
threshold
0.64
threshold
0.65
threshold
0.66
threshold
0.67
threshold
0.68
threshold
0.69
threshold
0.7
threshold
0.71
threshold
0.72
threshold
0.73
threshold
0.74
threshold
0.75
threshold
0.76
threshold
0.77
threshold
0.78
threshold
0.79
threshold
0.8
threshold
0.81
threshold
0.82
threshold
0.83
threshold
0.84
threshold

tpr

.574468

tpr

.553191

tpr

.531915

tpr

.510638

tpr

.510638

tpr

.489362

tpr

.468085

tpr

.446809

tpr

.446809

tpr

.446809

tpr

.446809

tpr

.446809

tpr

.446809

tpr

.446809

tpr

.446809

tpr

.425532

tpr

.425532

tpr

.425532

tpr

.425532

tpr

.425532

tpr

.425532

tpr

.404255

tpr

.382979

tpr

.361702

tpr

.319149

tpr

.297872

tpr

.297872

tpr

.276596

tpr

fpr

.123596

fpr

.11236

fpr

.11236

fpr

.11236

fpr

.11236

fpr

.089888

fpr

.089888

fpr

.089888

fpr

.078652

fpr

.078652

fpr

.078652

fpr

.078652

fpr

.078652

fpr

.078652

fpr

.067416

fpr

.067416

fpr

.067416

fpr

.067416

fpr

.067416

fpr

.067416

fpr

.05618

fpr

.05618

fpr

.05618

fpr

.05618

fpr

.05618

fpr

.05618

fpr

.05618

fpr

.033708

fpr

0 0.85 0.255319 0.033708

threshold tpr fpr
0 0.86 0.234043 0.022472
threshold tpr fpr
0 0.87 0.234043 0.022472
threshold tpr fpr
0 0.88 0.212766 0.022472
threshold tpr fpr
0 0.89 0.170213 0.022472
threshold tpr fpr
0 0.9 0.12766 0.022472
threshold tpr fpr
0 0.91 0.106383 0.0
threshold tpr fpr
0 0.92 0.085106 0.0
threshold tpr fpr
0 ©0.93 0.042553 0.0
threshold tpr fpr
0 0.94 0.042553 0.0
threshold tpr fpr
0 0.95 0.0 0.0
threshold tpr fpr
0 0.96 0.0 0.0
threshold tpr fpr
0 0.97 0.0 0.0
threshold tpr fpr
0 0.98 0.0 0.0
threshold tpr fpr
0 0.99 0.0 0.0

Option 1: It looks like a predictive probability threshold of py = 0.13 will gve us a tpr=0.957447 and a
fpr=0.483146.

Option 2: It looks like a predictive probability threshold of py = 0.50 will gve us a tpr=0.617021and a
fpr=0.134831.

4.7. For Comparison

Just for comparison, let's also create a ROC curve and AUC for this logistic regression model, now using the
training dataset instead.

4.7 1 First, get the predictive probabilities of the training dataset with this trained model.

In [28]: # predictive probabilities - implicit method
phat_train = pewmod.predict(exog=df_train)
phat_train.head(10)

Out[28]: 725 0.026445
836 0.054892
961 0.085788
348 0.934888
1025 0.047031
251 0.044657
73 0.477928
217 0.572393
1461 0.922323
987 0.237726

dtype: float64

In [29]: df_train['phat_train']=phat_train
df_train

<ipython-input-29-1a816231d49d>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
table/user_guide/indexing.html#returning-a-view-versus-a-copy
df_train['phat_train']=phat_train

out[29]:

<

age sex q5cf1 party phat_train

o

725 39.0 Female Disapprove Democrat 0.026445
836 67.0 Female Disapprove Democrat 0 0.054892
961 51.0 Male Disapprove Democrat 0 0.085788
348 72.0 Male Approve Republican 1 0.934888

1025 61.0 Female Disapprove Democrat 0 0.047031

205 90.0 Female Approve Republican 1 0.903685
693 20.0 Male Approve Independent 1 0.266759
838 68.0 Male Approve Republican 1 0.927960
791 56.0 Male Disapprove Independent 0 0.491485

1115 45.0 Male Approve Independent 1 0.417605

543 rows x 6 columns

4.4.2 Next, we generate the ROC curve and calculate the AUC for the training dataset.

In [30]: from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score

fpr_pew, tpr_pew, score_pew = roc_curve(y_true=df_train['y'], y_score=df_train

['phat_train'])
auc_pew = roc_auc_score(y_true=df_train['y'], y_score=df_train['phat_train'])

In [31]: plot_roc(fpr_pew, tpr_pew, auc_pew)

ROC Curve
10 A1 ’d
’p‘
-
-"f
0.8 1 .
".a"‘
L)
= -~
g 0.6 1 ”,.ﬁ'
£
= P
£ ga- -~
L 04 ’,.r
- e
’."'
0.2 1 -
-
-
-
00d 7 ROC curve (area = 0.886)
T T T T T T
0.0 0.2 0.4 0.6 0.8 10

False Positive Rate

Interpretation:

Evaluation: The AUC for the training dataset 0.886, which is higher than it was for the test dataset (ie. AUC =
0.818).!

However, this is to be expected! We would expect to get better predictions from the training dataset that we
specifically used to pick the values of 3, 8, . . . ,Bp that would fit the training dataset the most.

However, using this AUC of 0.886 to assess how well this model would be at predicting the probability that an
adult living in the U.S. supports the president's foreign policy for new data would be misleading.

It is much more likely that this model would be slightly worse (with an AUC=0.818) at predicting the probability
that an adult living in the U.S. supports the president's foreign policy for new data.

STAT 207, Victoria Ellison and Douglas Simpson, University of lllinois at Urbana-Champaign

