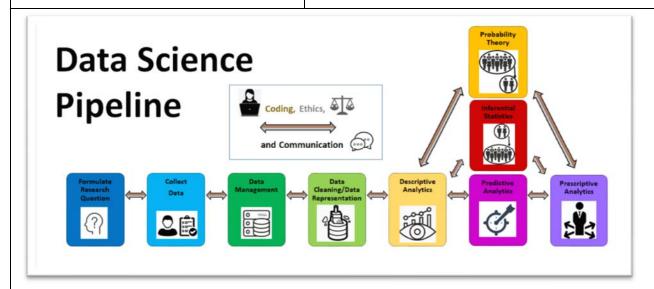


Unit 18: Training Data vs. Test Data

Case Studies:

- To introduce the concept of <u>using training data to</u>
 <u>build a model</u> and <u>using test data to test a model for</u>
 <u>it's predictive capabilities</u> we will, again, examine the
 relationship between a:
 - Categorical response variable: support for a certain opinion (favor/not in favor) and an
 - Explanatory variables:
 - Sex
 - Party, and
 - Age



Summary of Concepts:

- 1. Different Goals for Building a Regression Model
- 2. Problem with Overfitting a Regression Model
- 3. Training vs. Test Dataset
- **4.** <u>Case Study</u>: Building a Model that is Good at Predicting Approval for the President's Foreign Policy with Age, Sex, and Political Affiliation *with New Data*

1. DIFFERENT GOALS FOR BUILDING A REGRESSION MODEL

Data

Suppose you work at a data science firm and we have access to the **Body Dimensions dataset** that we have used in the past that is comprised of various body measurements of a random sample of healthy adults.

	bicep_girth	age	sex	weight	height
0	32.5	21	Male	65.6	174.0
1	34.4	23	Male	71.8	175.3
2	33.4	28	Male	80.7	193.5
3	31.0	23	Male	72.6	186.5
4	32.0	22	Male	78.8	187.2
	***				***
482	30.3	29	Female	71.8	176.5
483	30.1	21	Female	55.5	164.4
484	27.4	33	Female	48.6	160.7
485	30.6	33	Female	66.4	174.0
486	33.2	38	Female	67.3	163.8

You have two clients who would like your help to meet the following goals.

Clients

<u>Client 1 Goal</u>: This client works in a U.S. public health agency and is interested in **understanding the relationship** between bicep girth, age, sex, weight, and height of ALL healthy adults. Having in this information can lead to better informed policies surrounding muscle mass development.

<u>Client 2 Goal</u>: This client works at a clothing company whose goal is to design and ship well-fitted business jackets to customers given their age, sex, weight, and height that they fill out in a survey. One important aspect of producing a well-fitted business jacket is knowing the bicep girth of the customer, however most customers do not know their bicep girth. Therefore, being able to **accurately predict** the bicep girth of a customer given the information that they supply is very important to this client.

Strategies for Building a Model with this Data

Which of the following model building strategies would you suggest for each client?

Strategy 1: Give the client the linear regression model that only **contains the slopes that are statistically significant**.

ie. bicepgirth = 30.7279 + 3.3844sex[T.Male] + 0.2449weight - 0.1060height

OLS Regression	n Re	sults							
Dep. Var	iable			bice	p_girth		R-square	d: (0.831
N	lodel	:			OLS	Adj.	R-square	d: (0.829
Me	thod		Le	ast S	quares		F-statisti	c:	590.9
	Date:	: W	ed, 2	21 Ap	or 2021	Prob (F-statistic	2.94	-184
	Time	:		20	0:38:31	Log-	Likelihoo	d: -96	63.88
No. Observa	tions	:			487		AIG	:	1938.
Df Resid	luals	:			482		BIG	:	1959.
Df N	lodel	:			4				
Covariance	Type	:		nor	nrobust				
	С	oef	std	err	t	P> t	[0.025	0.975]	
Intercept	31.4	253	2.	032	15.465	0.000	27.432	35.418	
sex[T.Male]	3.42	235	0.	235	14.590	0.000	2.962	3.885	
age	-0.0	132	0.	009	-1.547	0.123	-0.030	0.004	
weight	0.2	475	0.	009	26.789	0.000	0.229	0.266	
height	-0.10	880	0.	013	-8.129	0.000	-0.135	-0.083	
Omnib	us:	13.9	78	Di	urbin-W	atson:	1.993	\$	
Prob(Omnibu	ıs):	0.0	01	Jaro	que-Bera	a (JB):	15.394		
	ew:	0.0		Jaro		a (JB): b(JB):	0.000454		

Dep. Variable: Model:				bice	p_girth	1	R-squared	1:	0.830
					OLS	Adj.	R-squared	0.829	
Me	ethod	:	Le	ast S	quares		F-statistic	:	784.7
	Date	: W	/ed,	21 Ap	or 2021	Prob (f	-statistic	: 3.19	e-185
	Time	:		2	0:58:11	Log-l	Likelihood	l: -9	65.09
No. Observa	tions	:			487		AIC	:	1938
Df Resi	duals	:			483		BIC	:	1955
Df N	/lodel	:			3				
Covariance Type:		:		nor	nrobust				
	(coef	std	err	t	P> t	[0.025	0.975]	
Intercept	30.7	279	1.	984	15.486	0.000	26.829	34.627	
sex[T.Male]	3.3	844	0.	234	14.487	0.000	2.925	3.843	
weight	0.2	449	0.	009	26.922	0.000	0.227	0.263	
height	-0.1	060	0.	013	-7.980	0.000	-0.132	-0.080	
Omnit	ous:	14.5	666	Di	urbin-Wa	itson:	1.991		
Prob(Omnibus): 0.0		01	Jaro	que-Bera	(JB):	16.497			
Sk	ew:	0.3	45		Prol	o(JB):	0.000262		
Kurto	sis:	3.5	81		Con	d. No.	4.60e+03		

Strategy 2: Choose the best combination of explanatory variables (from sex, age, weight, and height) that will give the **best bicep girth predictions** for new customers (ie. not the people already in this dataset of 487 health adults).

2. PROBLEM WITH OVERFITTING A REGRESSION MODEL

Suppose we build two classifier models using the **given dataset** below. We call the dataset the **training data.**

Suppose this dataset is comprised of a <u>random sample of</u> **50** <u>actual positives</u> (ie. observations with a response variable of 1) from a population of positives and a <u>random sample</u> of **50** <u>actual negatives</u> (ie. observations with a response variable value of 0) from a population of negatives.

For each classifier model we also select a **prediction threshold** (shown in red below) with a rule that determines when/how we classify a given point as a 1 or a 0.

Training Data

a. What is the <u>false positive rate</u> and <u>true positive rate</u> of classifier model 1 (using the given prediction threshold)?

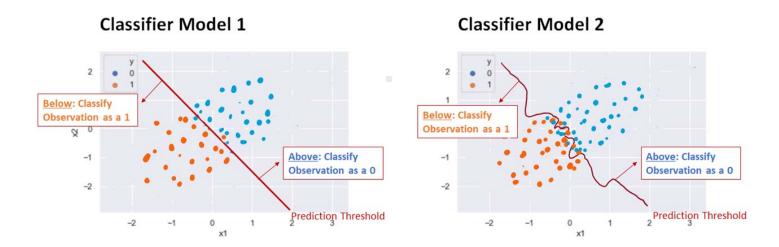
b. What is the <u>false positive rate</u> and <u>true positive rate</u> of classifier model 2 (using the given prediction threshold)?

c. If our goal is to classify the observations in **this training dataset** as accurately as possible, which model and threshold is better?

Classifier Model 1 Classifier Model 2 2 2 3 Below: Classify Observation as a 1 Above: Classify Observation as a 0 Prediction Threshold Prediction Threshold

Test Data

d. Now suppose that we select *another* random sample of positives from the population of positives and *another* random sample of negatives from the population of negatives. We will call this new dataset the <u>test dataset</u>. We then classify these new points with the same two prediction thresholds shown above. If our goal is to classify the observations in **this test dataset** as accurately as possible, which model and threshold is better?



Definition of Overfitting

The example above introduces t	ne concept of	a model to a given		
This i	s a situation that arises in whic	h we make decisions when fitti	ng a model (and	
picking threshold) with a given _		_ that give us really good pred	iction accuracy	
for the	However, the model and th	reshold fit the	so well	
that when we try to make predic	tions with a new dataset the p	rediction accuracy is	•	

Common Way to Overfit a Model

A common way to overfit your model is to create a model that has too many ______

3. TRAINING VS. TEST DATA

Definition of Training Dataset

specifically, when fitting a <u>lifted regression model</u> of a <u>logistic regression model</u> , we call the
the dataset that was used to find the optimal values of $\widehat{\beta_0},\widehat{\beta_1},,\widehat{\beta_p}$ in the
model. For the resulting model, we say that this model has been with the training dataset
<u>Problem</u>
In order to train a linear or logistic regression model, we need to know the values y
to determine how well our predictions were.
However, if our goal is to have the best predictions for new datasets , we often do
not know what the response variable values are.
So how are we supposed to get an idea of how well our trained linear or logistic regression models will do
with new data that doesn't have?
Solution:
In order to solve this problem, we can take a dataset that we have where we know
, and randomly split it into two datasets:
1. The training dataset
This dataset is used to
2. The test dataset
This dataset is used to

4. <u>CASE STUDY</u>: Building a Model that is Good at Predicting Approval for the President's Foreign Policy with Age, Sex, and Political Affiliation with New Data

<u>Goal:</u> Suppose we work at a political advertising agency. Rather than seek to **understand the relationship** between approval for the president's foreign policy with sex, age, and political affiliation, we would like build a model that will give us the **best predictions** for adults living in the U.S. in which we don't know what they think about the president's foreign policy.

<u>Data:</u>We can assume that this agency has the age, sex, political affiliation, and address of all registered voters in the state.

<u>Actions:</u> So one goal that this political advertising agency might have is to use this data to make predictions about whether a given person that lives at a particular house approves of the president's foreign policy. They could then use that information to decide whether to mail political advertising pamphplets to this address.

Go to the Unit 18 notebook section 4 to explore this case study.