
 

 
 
 
 

Unit 19: Logistic Regression Variable 
Selection 
Case Studies: 

 To introduce the concept of using training data to 
build a model and using test data to test a model for 
it’s predictive capabilities we will, again, examine the 
relationship between a: 

o Categorical response variable: support for a 
certain opinion (favor/not in favor) and an 

o Explanatory variables: 
 Sex 
 Party, and 
 Age 

 
Summary of Concepts: 
1. Overfitting by using too many uninformative explanatory variables 
2. Some pros and cons of overfitting vs. underfitting a model 
3. Theory: Overfitting vs. Underfitting a Model 

3.1. A general goal of machine learning 
3.2. Properties of the estimation function 
3.3. Estimation function definitions 
3.4. Relationship between bias, variance, overfitting, underfitting, and mean squared error of a model 
3.5. Goal of selecting a model that will make good predictions on new data 

4. Goal: Find a Parsimonious Model 
5. More about Fitting a Logistic Regression Model 

5.1. How are the optimal values of 𝛽መ଴, 𝛽መଵ, … , 𝛽መ௣ determined in a logistic regression model? 
5.2. Where do we find the optimal log-likelihood function value for a given logistic regression model? 

6. Model Selection with Log Likelihood Ratio Test 
7. Model Selection with AIC and BIC 

Additional Resources 

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction to Statistical Learning : with 
Applications in R. New York :Springer, 2013. 
https://www.ime.unicamp.br/~dias/Intoduction%20to%20Statistical%20Learning.pdf 



1. OVERFITTING BY USING TOO MANY UNINFORMATIVE EXPLANATORY 

VARIABLES 

Ex:  of the “spectral fingerprints” of known substances, the first two are benign substances, while the last is an 
“illicit” substance. 

1. Which (if any) of the three substances below are we relatively sure the unknown substance is comprised of? 

 

2. We would like to fit a linear regression model to help us identify which substances the mystery substance is 
comprised of. 
 

a. We will set the response variable values to be the spectral fingerprint of the mystery substance. 
b. We will set the three known spectral fingerprints to be the three explanatory variables. 

Ideally, which values of 𝛽መଵ, 𝛽መଶ, 𝛽መଷ would we want to be non-zero in the linear regression model? Which would 
we want to be zero in the linear regression model? 

 

  



3. When we fit the linear regression model, we get the following values for the slopes: 
 

𝛽መଵ = _____________, 𝛽መଶ = _______________, 𝛽መଷ = ____________________  
 
 
Why do you think we got a result like this? Do you think that this is evidence that the illicit material 3 is actually 
in the unknown substance? 
 
 

 

 

 

 

 

 

IN GENERAL: Adding Explanatory Variables to a Model 

For most fitted linear and logistic regression models, most explanatory variable value slopes 𝛽መ௜ will have some 

_________________ value, regardless of whether _________________________________________________. 

 In a linear regression model, adding an explanatory variable to the model will never 

__________________ the ____________ of the model. 

 

 

 

 In a logistic regression model, adding an explanatory variable to the model will never 

__________________ the __________________________________ of the model. 

  



 

Ex: Choosing the Right Number of Variables in the Model 

Knowing what we know about this example, we can say the following. 

 A linear regression model that includes all three explanatory variables (ie. known substances) to predict 

the response variable (ie. unknown substance) will _____________________ the model. 

 

 

 A linear regression model that includes just explanatory variable 1 (ie. benign substance 1) to predict the 

response variable (ie. unknown substance) will _____________________ the model. 

  



2. SOME PROS AND CONS OF OVERFITTING VS. UNDERFITTING A MODEL (VIA 

TOO MANY OR TOO LITTLE EXPLANATORY VARIABLES) 

Overfitting a Model: Too many explanatory variables 
Pros: 

 The model, for the __________________ dataset, will have __________________ predictive power. 

 

 

Cons: 

 The model, for the __________________ dataset(s), my not have __________________ predictive 

power. 

 The model may ________________ explanatory variables that have no 

_______________________________ with the response variable. 

 

Underfitting a Model: Too few explanatory variables 
Pros: 

 The model, for the __________________ dataset, may have __________________ predictive power. 

 

 

Cons: 

 The model, for the __________________ dataset(s), may not have __________________ predictive 

power. 

 The model may ________________ explanatory variables that have 

_______________________________ with the response variable. 

  



3. THEORY: OVERFITTING VS. UNDERFITTING A MODEL 

We want to be able to define “overfitting” and “underfitting” of a model in more mathematically precise terms. Let’s 
consider the case of a linear regression model. 

 

3.1. A GENERAL GOAL OF MACHINE LEARNING 

Actual Relationship Assumption: For some response variable 𝑌 and a set of 𝑝 predictors 𝑋 = (𝑋ଵ, 𝑋ଶ, … , 𝑋௣), 
we assume there is some underlying relationship between 𝑌and 𝑋 modeled with: 

𝑌 = 𝑓(𝑋) + 𝜖 

Properties:  

 𝑓(𝑋) is ___________________ 

 𝜖 is a ___________________ called the error (or noise) term. 

Ex: 𝑌 = 𝛽଴ + 𝛽ଵ𝑋 + 𝜖 = 55609.4685 + 0.4116𝑋 + 𝜖 

 

 

  



Goal of Machine Learning: Come up with an estimation function of 𝑓(𝑋), called: 

𝑓መ(𝑋) = 𝑌෠ 

 

Ex: 𝑓መ(𝑋) = 𝛽መ଴ + 𝛽መଵ𝑋 = 1589.8568 + 0.4985𝑋.  

 In this example, 𝑓መ(𝑋) is ______________________ for a given value of X.  

 In this example, 𝑓መ( ) was determined by using ___________________________________ on a 

__________________________ which was a ___________________________ from the population. 

 

 

 

 

 

 

 

 

 

3.2. PROPERTIES OF THE ESTIMATION FUNCTION 

More about 𝒇෠(𝑿) 

 Many Estimation Functions:  
We can create many different estimation functions 𝑓መ(𝑋) for 𝑓(𝑋) using a variety of different models, 
datasets, and algorithms.  
 

 Using Estimation Functions for Prediction:  
We can use our estimation function to make a prediction 𝑓መ(𝑥଴) = 𝑦ො଴ of the response variable value for a 
given set of explanatory variable value inputs 𝑥଴. 
 

 What we want to know about 𝑓መ(𝑥଴).: 
o How will the predictions 𝑓መ(𝑥଴) vary (based on different ways to create 𝑓መ())? 
o How far away from 𝒇(𝒙𝟎) do we expect 𝑓መ(𝑥଴) to be (based on different ways to create 𝑓መ())? 
o How far away from 𝒚𝟎 do we expect 𝑓መ(𝑥଴) to be (based on different ways to create 𝑓መ())? 

 

  



3.3. ESTIMATION FUNCTION DEFINITIONS 

In order to quantify how 𝑓መ(𝑥଴) will behave based on different datasets and models used to create this 
prediction function, we need the following definitions 

 

Random Variable 𝒇෠(𝒙𝟎) Definition: 

 We can also define 𝒇෠(𝒙𝟎) to be a ___________________________, defined by the following. 

 Random Experiment: 

o Randomly sample n observations from the population. 

o Fit a new linear regression model 𝑓መ(𝑥) with this random sample. 

 Numerical Value Assigned to Outcome in Sample Space: 

o Make a prediction 𝑦ො଴ = 𝑓መ(𝑥଴) of the response variable for 𝑥଴. 

𝑬[𝒇ො(𝒙𝟎)] Definition: 

If we were to collect many, many random samples of observations from the population and fit a linear 

regression model 𝑦ො = 𝛽መ଴ + 𝛽መଵ𝑥ଵ + ⋯ + 𝛽መ௉𝑥௉ with each random sample and then predict the response 

variable value 𝑦ො = 𝑓መ(𝑥଴), then we would call the expected average of these predictions 𝑬[𝒇ො(𝒙𝟎)]. 

We can think of this as: ___________________________________________________________. 

 

𝑽𝒂𝒓[𝒇ො(𝒙𝟎)] Definition: 

If we were to collect many, many random samples of observations from the population and fit a linear 

regression model 𝑦ො = 𝛽መ଴ + 𝛽መଵ𝑥ଵ + ⋯ + 𝛽መ௉𝑥௉ with each random sample and then predict the response 

variable value 𝑦ො = 𝑓መ(𝑥଴), then we would call the expected variance of these predictions 𝑽𝒂𝒓[𝒇ො(𝒙𝟎)]. 

We can think of this as: ___________________________________________________________. 

 

  



𝑩𝒊𝒂𝒔[𝒇ො(𝒙𝟎)] Definition: 

We define the bias of the random variable 𝒇෠(𝒙𝟎) as: 

𝑩𝒊𝒂𝒔൫𝒇ො(𝒙𝟎)൯ =  𝑬[𝒇ො(𝒙𝟎)] − 𝒇(𝒙𝟎) 

 

We can think of this as: ___________________________________________________________. 

 

Expected Mean Squared Error of 𝒙𝟎 Definition: 

We define the expected mean squared error of 𝒙𝟎 with the random variable 𝒇෠(𝒙𝟎) as 

𝑬 ቀ൫𝒚𝟎 − 𝒇ො(𝒙𝟎)൯
𝟐

 ቁ, 

Where 𝑦଴is the actual response variable value that corresponds to 𝑥଴. 

 

We can think of this as: ___________________________________________________________. 

 

 

 

 

3.4. RELATIONSHIP BETWEEN BIAS, VARIANCE, OVERFITTING, UNDERFITTING, 
AND MEAN SQUARED ERROR OF A MODEL. 

Here is a special property that links together everything we have talked about in this unit so far: 

 

Bias-Variance Trade-Off Property: 

𝑬 ቀ൫𝒚𝟎 − 𝒇ො(𝒙𝟎)൯
𝟐

 ቁ = ൣ𝑩𝒊𝒂𝒔൫𝒇ො(𝒙𝟎)൯൧
𝟐

+  𝑽𝒂𝒓[𝒇ො(𝒙𝟎)] + 𝑽𝒂𝒓[𝝐] 



An Overfit Model: 

𝑬 ቀ൫𝒚𝟎 − 𝒇ො(𝒙𝟎)൯
𝟐

 ቁ = ൣ𝑩𝒊𝒂𝒔൫𝒇ො(𝒙𝟎)൯൧
𝟐

+  𝑽𝒂𝒓[𝒇ො(𝒙𝟎)] + 𝑽𝒂𝒓[𝝐] 

 Will have __________________ variables in the model. 

 Will have _____________________ variance in the values of 𝒇෠(𝒙𝟎). 

 Will have 𝑬[𝒇ො(𝒙𝟎)] be ________________ from the true estimate 𝑓(𝑥଴), so thus the 

bias will be __________________. 

 

 

 

 

An Underfit Model: 

𝑬 ቀ൫𝒚𝟎 − 𝒇ො(𝒙𝟎)൯
𝟐

 ቁ = ൣ𝑩𝒊𝒂𝒔൫𝒇ො(𝒙𝟎)൯൧
𝟐

+  𝑽𝒂𝒓[𝒇ො(𝒙𝟎)] + 𝑽𝒂𝒓[𝝐] 

 Will have __________________ variables in the model. 

 Will have _____________________ variance in the values of 𝒇෠(𝒙𝟎). 

 Will have 𝑬[𝒇ො(𝒙𝟎)] be ________________ from the true estimate 𝑓(𝑥଴), so thus the 

bias will be __________________. 

  



3.5. GOAL OF SELECTING A MODEL THAT WILL MAKE GOOD PREDICTIONS ON 

NEW DATA 

 

Here are some examples of things you can “select” in a given model of a dataset X with 
a response variable Y. 

1. Which _______________________ you have included the model. 

2. What type of regression model it is: ____________________________________. 

3. Some other type of model (not a regression), for example 

______________________________________________________. 

Goal: In order to select a model that has a low error for new data (measured by 

𝐸 ൬ቀ𝑦଴ − 𝑓መ(𝑥଴)ቁ
ଶ

 ൰), you should select one that will both have _______________bias 

and ________________ variance for 𝑓መ(𝑥଴) 

 

  



4. GOAL: FIND A “PARSIMONIOUS” MODEL 

Definition 

Thus, because we do not want to underfit or overfit a model, our goal is to find the 
parsimonious model which is a balance of the two. Specifically, a parsimonious model 
will find the ideal balance of: 

 a __________________ number of explanatory variables to avoid 

_________________________ and  

 a __________________ predictive power to avoid _________________________. 

 

 

 

Methods 

Depending on the model that we are using, there are various metrics/tests that help us find a parsimonious model. 
For logistic regression models, the following metrics/tests can help us find this parsimonious model: 

1. Log Likelihood Ratio Test 

 

2. Pick the model with the Lowest AIC Score 

 
 

3. Pick the model with the Lowest BIC Score 



5. MORE ABOUT FITTING A LOGISTIC REGRESSION MODEL 

5.1. HOW ARE THE OPTIMAL VALUES OF 𝟎 𝟏 𝒑 DETERMINED IN A 

LOGISTIC REGRESSION MODEL? 

1. Logistic Regression Model Assumptions  
If we are to fit a logistic regression model to a training dataset with 𝑛 observations 
with response variable 𝑦 = (𝑦ଵ, 𝑦ଶ, … , 𝑦௡), then we make the following model 
assumptions. 

a. Independence of Observations: Each response variable observation 𝑦ଵ, 𝑦ଶ, … , 𝑦௡ 
in the training sample is independent. 

 

 

b. Bernoulli Random Variables: The response variable values follow a Bernoulli 
distribution 

𝑦௜ ∼ 𝐵𝑒𝑟𝑛(𝑝௜), 
 

where  
 

log ቀ
௣೔

ଵି௣೔
ቁ = 𝛽଴ + 𝛽ଵ𝑋௜ଵ + ⋯ + 𝛽௣𝑋௜௣, 

which is equivalent to 

p୧ =
௘

ഁబశഁభ೉೔భశ⋯శഁ೛೉೔೛

ଵା௘
ഁబశഁభ೉೔భశ⋯శഁ೛೉೔೛

, 

 
 
 
 

2. Probability Mass Function of a Single Random Variable 𝒊 
 

𝑝൫𝑦௜ห𝛽଴, 𝛽ଵ, … , 𝛽௣𝑋௜൯ = 𝑝௜
௬೔(1 − 𝑝௜)ଵି௬೔ = ൜

___________ 𝑖𝑓 𝑦௜ = 1
___________ 𝑖𝑓 𝑦௜ = 0

ൠ 

Where, p୧ =
௘

ഁబశഁభ೉೔భశ⋯శഁ೛೉೔೛

ଵା௘
ഁబశഁభ೉೔భశ⋯శഁ೛೉೔೛

 

  



 

3. Probability Mass Function of a All Random Variable 𝟏 𝒏 
 
In binary response models such as logistic regression the likelihood function (LF) is the joint 
probability mass function of the responses viewed as a function of the parameters. For a logit model with 
independent Bernoulli responses, the likelihood function has the form 

 
𝐿𝐹൫𝛽଴, 𝛽ଵ, … , 𝛽௣൯ = 𝑝൫𝑦ଵ, … , 𝑦௡ห𝛽଴, 𝛽ଵ, … , 𝛽௣, 𝑋ଵ, … , 𝑋௡൯

= (𝑝ଵ
௬భ(1 − 𝑝ଵ)ଵି௬భ) ⋅ (𝑝ଶ

௬మ(1 − 𝑝ଶ)ଵି௬మ) ⋅ … ⋅ (𝑝௡
௬೙(1 − 𝑝௡)ଵି௬೙) 

 

Where, p୧ =
௘

ഁబశഁభ೉೔భశ⋯శഁ೛೉೔೛

ଵା௘
ഁబశഁభ೉೔భశ⋯శഁ೛೉೔೛

 

 
 
 
 
 

4. Goal: Find the optimal values of ଴ ଵ ௣, that maximize the 
likelihood function . 
 
We use the method of maximum likelihood to find the optimal values of 
𝛽መ଴, 𝛽መଵ, … , 𝛽መ௣ that maximize the likelihood of the data we observed (ie. 𝑦ଵ, … , 𝑦௡). 
 

 
𝐿𝐹൫𝛽଴, 𝛽ଵ, … , 𝛽௣൯ = 𝑝൫𝑦ଵ, … , 𝑦௡ห𝛽଴, 𝛽ଵ, … , 𝛽௣, 𝑋ଵ, … , 𝑋௡൯

= (𝑝ଵ
௬భ(1 − 𝑝ଵ)ଵି௬భ) ⋅ (𝑝ଶ

௬మ(1 − 𝑝ଶ)ଵି௬మ) ⋅ … ⋅ (𝑝௡
௬೙(1 − 𝑝௡)ଵି௬೙) 

 

Where, p୧ =
௘

ഁబశഁభ೉೔భశ⋯శഁ೛೉೔೛

ଵା௘
ഁబశഁభ೉೔భశ⋯శഁ೛೉೔೛

 

 
 
 
 

  



 

5. Easier Goal: Find the optimal values of ଴ ଵ ௣, that 
maximize the equivalent log-likelihood function. 
𝐿𝐿𝐹൫𝛽଴, 𝛽ଵ, … , 𝛽௣൯

= 𝑦ଵ log(pଵ) +(1 − 𝑦ଵ) log(1 − 𝑝ଵ)
+ 𝑦ଶ log(pଶ) +(1 − 𝑦ଶ) log(1 − 𝑝ଶ) + ⋯ + 𝑦௡ log(p୬) + (1 − 𝑦௡)log(1
− 𝑝௡) 

 

Where, p୧ =
௘

ഁబశഁభ೉೔భశ⋯శഁ೛೉೔೛

ଵା௘
ഁబశഁభ೉೔భశ⋯శഁ೛೉೔೛

 

 
 
 

5.2. WHERE DO WE FIND THE OPTIMAL LOG-LIKELIHOOD FUNCTION VALUE 

FOR A GIVEN LOGISTIC REGRESSION MODEL? 

  



6. MODEL SELECTION WITH THE LOG LIKELIHOOD RATIO TEST 

Recall that in linear regression modeling it can be useful to test between two models 
using an analysis of variance F test, which compares the residual sums of squares for 
two, nested models. It allows us to test multiple parameters within one hypothesis test.  

 

In logistic regression modeling, the F test is no longer applicable. However, the same 
general testing idea is possible by comparing log-likelihoods between two nested 
models. The change in log-likelihood is used as a large sample chi-square test of the null 
hypothesis that the simpler model is adequate. 

 

 

 

1. First, we need to define two “nested” sample models. 
 

Full Model (contains all the slopes) 

𝒍𝒐𝒈 ൬
𝒑ෝ

𝟏 − 𝒑ෝ
൰ = 𝜷𝟎

෢ + 𝜷𝟏
෢𝒙𝟏 + ⋯ +𝜷𝒑

෣𝒙𝒑 + 𝜷𝒑ା𝟏
෣ 𝒙𝒑ା𝟏 + ⋯ 𝜷𝒑ା𝒒

෣ 𝒙𝒑ା𝒒 

Where 𝑙𝑙𝑓௙௨௟௟  is the optimal log likelihood function value of the full model. 
 

Reduced Model (contains just the slopes that you aren’t testing) 

𝒍𝒐𝒈 ൬
𝒑ෝ

𝟏 − 𝒑ෝ
൰ = 𝜷𝟎

෢ + 𝜷𝟏
෢𝒙𝟏 + ⋯ +𝜷𝒑

෣𝒙𝒑 

Where 𝑙𝑙𝑓௥௘ௗ is the optimal log likelihood function value of the reduced 
model. 

 

 

2. Set up the hypotheses 

𝐻଴: 𝑇ℎ𝑒 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡. 

𝐻஺: 𝑇ℎ𝑒 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑛

− 𝑧𝑒𝑟𝑜. 

 
 



3. Calculate the test statistic: 
We call the test statistic for this test the log likelihood ratio: 

𝑙𝑙𝑟 = −2(𝑙𝑙𝑓௥௘ௗ − 𝑙𝑙𝑓௙௨௟௟) 
 
 
 
 
 
 

4. Calculate the p-value 
 

𝒑 − 𝒗𝒂𝒍𝒖𝒆 = 𝑷(𝚾𝒅𝒇ୀ𝒒
𝟐 ≥ 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡) 

 

 

 

 

 

 

 

 

 

5. Make a Decision 
a. If 𝐩 − 𝐯𝐚𝐥𝐮𝐞 < 𝛂, then we “reject the null hypothesis.” And we say that “there IS sufficient evidence to 

suggest the alternative hypothesis.” 
b. If 𝐩 − 𝐯𝐚𝐥𝐮𝐞 ≥ 𝛂, then we “fail to reject the null hypothesis.” And we say that “there IS NOT sufficient 

evidence to suggest the alternative hypothesis.” 

  



6.1. CHI-SQUARED DISTRIBUTION 

First, let’s discuss this new distribution and some of it’s properties. 

Random Variable that Follows the 𝚾𝟐-Distribution:  

Definition: A continuous random variable is said to follow the 𝚾𝟐-distribution with 𝒌 degrees 

of freedom if it has the following probability density function (pdf). 

Short-Hand: _____________________ 

Probability Density Function: 

𝑓(𝑥) =
1

2
௞
ଶΓ(

𝑘
2

)

𝑥
௞
ଶ

ିଵ𝑒ି
௫
ଶ, 𝑓𝑜𝑟 𝑥 > 0 

 

Parameters that Dictates Shape: _____________________ 

 

Properties: 

 Always ________________________ 

Shapes: Can take on many different shapes, based on the parameter values. 

 

 

 

 

 

 

 

 

Go to section 6 in the Unit 19 notebook for application of Log Likelihood Ratio test. 



7. MODEL SELECTION WITH THE AIC AND BIC 

 
AIC and BIC are criteria for evaluating a model that combine the likelihood assessment of 
fit with a penalty for complex models. Historically they were derived from different 
perspectives. 
 
Akaike Information Criterion (AIC) 
 
The AIC of a regression model with 𝑝 slopes is calculated as: 
 

𝐴𝐼𝐶 = −2 ⋅ 𝐿𝐿𝐹 + 2𝑝 
 
 
 
Using AIC: 
 

 The model with the _______________ AIC is considered more of a 

_______________________________. 

 

How does AIC Help Pick out a Parsimonious Model: 
 

 As the number of slopes _____________ in a model… 

 

𝐴𝐼𝐶 = −2 ⋅ 𝐿𝐿𝐹 + 2𝑝 
 

 As the number of slopes _____________ in a model… 

 

𝐴𝐼𝐶 = −2 ⋅ 𝐿𝐿𝐹 + 2𝑝 
 
AIC helps us find a model with ideally a _________________ number of slopes and a 

_________________ LLF (ie. predictive power).  



Bayes Information Criterion (BIC) 
 
The BIC of a regression model with 𝑝 slopes is calculated as: 
 

𝐴𝐼𝐶 = −2 ⋅ 𝐿𝐿𝐹 + ln(𝑛) ⋅ 𝑝 
 
 
 
Using BIC: 
 

 The model with the _______________ BIC is considered more of a 

_______________________________. 

 

How does BIC Help Pick out a Parsimonious Model: 
 

 As the number of slopes _____________ in a model… 

 

𝐴𝐼𝐶 = −2 ⋅ 𝐿𝐿𝐹 + ln(𝑛) ⋅ 𝑝 
 

 As the number of slopes _____________ in a model… 

 

𝐴𝐼𝐶 = −2 ⋅ 𝐿𝐿𝐹 + ln(𝑛) ⋅ 𝑝 
 

 
AIC helps us find a model with ideally a _________________ number of slopes and a 

_________________ LLF (ie. predictive power).  

 

  



AIC vs. BIC 

BIC tends to favor _________________ more heavily than does AIC due to its ______________ penalty 

for large p. 

 

What AIC and BIC can be used for… 

 

 

 

 

What AIC and BIC cannot be used for… 

 

 

 


