Unit 19: Logistic Regression Variable

Selection

Case Studies:

e Tointroduce the concept of using training data to
build a model and using test data to test a model for
it’s predictive capabilities we will, again, examine the
relationship between a:

o Categorical response variable: support for a
certain opinion (favor/not in favor) and an
o Explanatory variables:

= Sex
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Summary of Concepts:

1. Overfitting by using too many uninformative explanatory variables
2. Some pros and cons of overfitting vs. underfitting a model
3. Theory: Overfitting vs. Underfitting a Model
3.1. A general goal of machine learning
3.2. Properties of the estimation function
3.3. Estimation function definitions
3.4. Relationship between bias, variance, overfitting, underfitting, and mean squared error of a model
3.5. Goal of selecting a model that will make good predictions on new data
4. Goal: Find a Parsimonious Model
5. More about Fitting a Logistic Regression Model
5.1. How are the optimal values of Sy, By, ..., Bp determined in a logistic regression model?
5.2. Where do we find the optimal log-likelihood function value for a given logistic regression model?
6. Model Selection with Log Likelihood Ratio Test
7. Model Selection with AIC and BIC

Additional Resources

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction to Statistical Learning : with
Applications in R. New York :Springer, 2013.
https://www.ime.unicamp.br/~dias/Intoduction%20to%20Statistical%20Learning.pdf



1. OVERFITTING BY USING TOO MANY UNINFORMATIVE EXPLANATORY

VARIABLES

Ex: of the “spectral fingerprints” of known substances, the first two are benign substances, while the last is an

“illicit” substance.

1. Which (if any) of the three substances below are we relatively sure the unknown substance is comprised of?

2. We would like to fit a linear regression model to help us identify which substances the mystery substance is

comprised of.

a. We will set the response variable values to be the spectral fingerprint of the mystery substance.
b. We will set the three known spectral fingerprints to be the three explanatory variables.

Ideally, which values of 1, 5, 53 would we want to be non-zero in the linear regression model? Which would
we want to be zero in the linear regression model?
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3. When we fit the linear regression model, we get the following values for the slopes:

B = Bz= -B3=

Why do you think we got a result like this? Do you think that this is evidence that the illicit material 3 is actually
in the unknown substance?

IN GENERAL: Adding Explanatory Variables to a Model

For most fitted linear and logistic regression models, most explanatory variable value slopes £5; will have some

value, regardless of whether

e In alinear regression model, adding an explanatory variable to the model will never

the of the model.

e In a logistic regression model, adding an explanatory variable to the model will never

the of the model.




Ex: Choosing the Right Number of Variables in the Model
Knowing what we know about this example, we can say the following.

. A linear regression model that includes all three explanatory variables (ie. known substances) to predict

the response variable (ie. unknown substance) will the model.

. A linear regression model that includes just explanatory variable 1 (ie. benign substance 1) to predict the

response variable (ie. unknown substance) will the model.




2. SOME PROS AND CONS OF OVERFITTING VS. UNDERFITTING A MODEL (vIA

TOO MANY OR TOO LITTLE EXPLANATORY VARIABLES)

Overfitting a Model: Too many explanatory variables

Pros:

e The model, for the

Cons:

e The model, for the
power.

e The model may

dataset, will have

dataset(s), my not have

predictive power.

predictive

explanatory variables that have no

with the response variable.

Underfitting a Model: Too few explanatory variables

Pros:

e The model, for the

Cons:

e The model, for the
power.

e The model may

dataset, may have

predictive power.

dataset(s), may not have

predictive

explanatory variables that have

with the response variable.




3. THEORY: OVERFITTING VS. UNDERFITTING A MODEL

We want to be able to define “overfitting” and “underfitting” of a model in more mathematically precise terms. Let’s

consider the case of a linear regression model.

3.1. A GENERAL GOAL OF MACHINE LEARNING

Actual Relationship Assumption: For some response variable Y and a set of p predictors X = (X1, X>, ...

we assume there is some underlying relationship between Yand X modeled with:

Properties:
o f(X)is
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Goal of Machine Learning: Come up with an estimation function of f(X), called:

fo =7
Ex: f(X) = By + f1X = 1589.8568 + 0.4985X.
e Inthis example, f(X) is for a given value of X.
e Inthis example, () was determined by using ona
which was a from the population.
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3.2. PROPERTIES OF THE ESTIMATION FUNCTION

More about f(X)

. Many Estimation Functions:

We can create many different estimation functions £ (X) for £ (X) using a variety of different models,
datasets, and algorithms.

. Using Estimation Functions for Prediction:

We can use our estimation function to make a prediction f(xo) = J, of the response variable value for a
given set of explanatory variable value inputs x,.

e  What we want to know about f(xg).:
o How will the predictions f (x,) vary (based on different ways to create £())?

o How far away from f(x,) do we expect f(x,) to be (based on different ways to create f())?
o How far away from y, do we expect f(x,) to be (based on different ways to create £())?



3.3. ESTIMATION FUNCTION DEFINITIONS

In order to quantify how f(xo) will behave based on different datasets and models used to create this
prediction function, we need the following definitions

Random Variable 7(x,) Definition:

e We canalso define f(x,) to be a , defined by the following.

° Random Experiment:

o Randomly sample n observations from the population.
o Fit a new linear regression model f(x) with this random sample.

° Numerical Value Assighed to Outcome in Sample Space:

o Make a prediction ¥, = f(xo) of the response variable for x,.

E[f(x,)] Definition:

If we were to collect many, many random samples of observations from the population and fit a linear

regression model § = B, + B1x; + -+ + Bpxp with each random sample and then predict the response

variable value y = f(xo), then we would call the expected average of these predictions E|At§ Xy) |

We can think of this as:

Var[f(x,)] Definition:

If we were to collect many, many random samples of observations from the population and fit a linear

regression model § = B, + B1x; + -+ + Bpxp with each random sample and then predict the response

variable value y = f(xo), then we would call the expected variance of these predictions Var|2§ Xy) |

We can think of this as:




Bias[f(x,)] Definition:

We define the bias of the random variable f(xg) as:

Bias(7(x))) = E[f(x)] — £ (xo)

We can think of this as:

Expected Mean Squared Error of x, Definition:

We define the expected mean squared error of X with the random variable f(xo) as

E((yo— 7)),

Where y,is the actual response variable value that corresponds to x,.

We can think of this as:

3.4. RELATIONSHIP BETWEEN BIAS, VARIANCE, OVERFITTING, UNDERFITTING,

AND MEAN SQUARED ERROR OF A MODEL.

Here is a special property that links together everything we have talked about in this unit so far:

Bias-Variance Trade-Off Property:

E((yo—7(w)") = [Bias(FG)]” + Var(j(x,)] + Var(e]



An Overfit Model:

E((yo—7(x)") = [Bias(7(x))]” + Var(i(x,)] + Var[e]

e Will have

variables in the model.

e Will have

variance in the values of f(xy).

e Wil have E[f(x,)] be

bias will be

from the true estimate f(x,), so thus the

An Underfit Model:

E((yo — ?(xo))z) = [Bias(?(xo))]2 + Var[f(x,)] + Var[e]

e Will have

variables in the model.

e Will have

variance in the values of f(xy).

e Wil have E[f(x,)] be

bias will be

from the true estimate f(x,), so thus the




3.5. GOAL OF SELECTING A MODEL THAT WILL MAKE GOOD PREDICTIONS ON

NEW DATA

Here are some examples of things you can “select” in a given model of a dataset X with
a response variable Y.

1. Which you have included the model.

2. What type of regression model it is:

3. Some other type of model (not a regression), for example

Goal: In order to select a model that has a low error for new data (measured by

. 2
E ((yo - f(xo)) )), you should select one that will both have bias

and variance for f(x,)




4. GOAL: FIND A “PARSIMONIOUS” MODEL

Definition

Thus, because we do not want to underfit or overfit a model, our goal is to find the
parsimonious model which is a balance of the two. Specifically, a parsimonious model
will find the ideal balance of:

e 2 number of explanatory variables to avoid
and
e a predictive power to avoid

Methods

Depending on the model that we are using, there are various metrics/tests that help us find a parsimonious model.
For logistic regression models, the following metrics/tests can help us find this parsimonious model:

1. Log Likelihood Ratio Test

2. Pick the model with the Lowest AIC Score

3. Pick the model with the Lowest BIC Score



5. MORE ABOUT FITTING A LOGISTIC REGRESSION MODEL

5.1. HOW ARE THE OPTIMAL VALUES OF B¢, B1, .., B, DETERMINED IN A

LOGISTIC REGRESSION MODEL?

1. Logistic Regression Model Assumptions

If we are to fit a logistic regression model to a training dataset with n observations
with response variable y = (y4, 5, ..., ¥»), then we make the following model
assumptions.

a. Independence of Observations: Each response variable observation y;,y,, ..., ¥,
in the training sample is independent.

b. Bernoulli Random Variables: The response variable values follow a Bernoulli
distribution
yi ~ Bern(p;),

where

log (ﬁ;i) = Bo + B1Xix + - + BpXip,

which is equivalent to
pPoth1Xit+BpXip

Pi = 14ePotB1Xig++BpXip’

2. Probability Mass Function of a Single Random Variable y;

p(VilBo By, s BpXi) = p}" (1 —p)' Vi = { — U 1}

_ _ify;=0
eﬁo+31Xi1+“'+3PXip
Where, Pi = 14ePotB1Xiz++BpXip




3. Probability Mass Function of a All Random Variable y,, ..., V.,

In binary response models such as logistic regression the likelihood function (LF) is the joint
probability mass function of the responses viewed as a function of the parameters. For a logit model with
independent Bernoulli responses, the likelihood function has the form

LF(Bo, B, s Bp) = P(¥1s s Y| Bos Brs oo Bpr X1s o) Xir)
= (" (A —p)'™7) - (0321 = p)*2) - s (P (1 — pp)* 1)

pPoth1Xit+BpXip
Where, p; =
P BT L pPotBaiXit o+ BpXip

4. Goal: Find the optimal values of ,@O,ﬁl, ...,ﬁp, that maximize the
likelihood function LF ().

We use the method of maximum likelihood to find the optimal values of
Bo, B, ...,,@p that maximize the likelihood of the data we observed (ie. y4, ..., V).

LF(BO: ,81, ""IBp) = p(yli '"ryn|BOJ ,81, ""Bpixli ""Xn)
= (" (A —p)' ) - (0321 = p)*2) - s (P (1 — pp)* 1)

ePotB1Xi++BpXyp

14 ePotP1Xigt+BpXip

Where, p; =



5. Easier Goal: Find the optimal values of BO, Bl, - Bp, that

maximize the equivalent log-likelihood function.

LLF(Bo, B1, ---» Bp)
= y; log(py) +(1 — 1) log(1 —py)
+ v, log(pz) +(1 — y,) log(1 — py) + -+ + ¥, log(py) + (1 — y,)log(1
- pn)

ePotB1Xi++BpXyp

1+eﬁo+31Xi1+-"+BpXip

Where, p; =

5.2. WHERE DO WE FIND THE OPTIMAL LOG-LIKELIHOOD FUNCTION VALUE

FOR A GIVEN LOGISTIC REGRESSION MODEL?

Logit Regression Results

Dep. Variable: y No. Observations: 679

Model: Logit Df Residuals: 672

Method: MLE Df Model: 6

Date: Mon, 26 Apr 2021 Pseudo R-squ.: 0.3614

Time: 21:23:02 Log-Likelihood: -284.94

converged: True LL-Null: -446.23

Covariance Type: nonrobust LLR p-value: 1.185e-66
coef stderr z P>|z] [0.025 0.975]

Intercept -4.5635 0.465 -9.807 0.000 -5.475 -3.651
party[TIndependent] 2.2604 0.312 7.236 0.000 1.648 2.873
party[T.No preference (VOL.)] 2.5881 0.680 3.808 0.000 1.256 3.920
party[T.Other party (VOL.)] 4.0865 1.212 3.372 0.001 1.711 6.462
party[T.Republican] 4.2985 0.341 12.592 0.000 3.629 4.968
sex[T.Male] 0.7288 0.217 3.363 0.001 0.304 1.154

age 0.0272 0.006 4.443 0.000 0.015 0.039



6. MODEL SELECTION WITH THE LOG LIKELIHOOD RATIO TEST

Recall that in linear regression modeling it can be useful to test between two models
using an analysis of variance F test, which compares the residual sums of squares for
two, nested models. It allows us to test multiple parameters within one hypothesis test.

In logistic regression modeling, the F test is no longer applicable. However, the same
general testing idea is possible by comparing log-likelihoods between two nested
models. The change in log-likelihood is used as a large sample chi-square test of the null
hypothesis that the simpler model is adequate.

1. First, we need to define two “nested” sample models.

Full Model (contains all the slopes)

log (1 — /ﬁ> = E) + lel + e +ﬁpxp + Bp+1xp+1 + e Bp+qxp+q

Where llfs,,;; is the optimal log likelihood function value of the full model.

Reduced Model (contains just the slopes that you aren’t testing)
p — I
log (m) = ﬂO + ﬁlxl + .- +Bpxp

Where llf, .4 is the optimal log likelihood function value of the reduced
model.

2. Set up the hypotheses

Hy:The reduced model is correct.

H,:The reduced model is incorrect because at least one missing coef ficient is non
— zero.



3. Calculate the test statistic:
We call the test statistic for this test the log likelihood ratio:

lr = =2(Ufrea — Uffun)

4. Calculate the p-value

p —value = P(Xﬁf=q > test stat)

5. Make a Decision
a. Ifp —value < a, then we “reject the null hypothesis.” And we say that “there IS sufficient evidence to

suggest the alternative hypothesis.”
b. If p—value > «, then we “fail to reject the null hypothesis.” And we say that “there IS NOT sufficient

evidence to suggest the alternative hypothesis.”




6.1. CHI-SQUARED DISTRIBUTION

First, let’s discuss this new distribution and some of it’s properties.

Random Variable that Follows the X%-Distribution:

Definition: A continuous random variable is said to follow the X?-distribution with k degrees

of freedom if it has the following probability density function (pdf).

Short-Hand:

Probability Density Function:

1 kE_, %
f(x) =———x2 e 2,forx >0

Parameters that Dictates Shape:

Properties:

o Always

Shapes: Can take on many different shapes, based on the parameter values.

ElE ol
1 L L L
© OB W N

Go to section 6 in the Unit 19 notebook for application of Log Likelihood Ratio test.



7. MODEL SELECTION WITH THE AIC AND BIC

AIC and BIC are criteria for evaluating a model that combine the likelihood assessment of
fit with a penalty for complex models. Historically they were derived from different
perspectives.

Akaike Information Criterion (AIC)

The AIC of a regression model with p slopes is calculated as:

AIC =—-2-LLF +2p

Using AIC:

e The model with the AIC is considered more of a

How does AIC Help Pick out a Parsimonious Model:

e As the number of slopes in a model...

AIC =—-2-LLF +2p

e As the number of slopes in a model...

AIC = =2 - LLF + 2p

AIC helps us find a model with ideally a number of slopes and a

LLF (ie. predictive power).




Bayes Information Criterion (BIC)
The BIC of a regression model with p slopes is calculated as:

AIC = =2 LLF +1In(n) -p

Using BIC:

e The model with the BIC is considered more of a

How does BIC Help Pick out a Parsimonious Model:

e As the number of slopes in a model...

AIC = =2 -LLF +1In(n) -p

e As the number of slopes in a model...

AIC = —=2-LLF +In(n) -p

AIC helps us find a model with ideally a number of slopes and a

LLF (ie. predictive power).




AIC vs. BIC

BIC tends to favor more heavily than does AIC due to its penalty

for large p.

What AIC and BIC can be used for...

What AIC and BIC cannot be used for...



