Unit 20: More Variable Selection Methods

Case Study: Finding a Parsimonious Model that Predicts Approval
for the President's Foreign Policy

Finally, suppose we would lie to build a logistic regression model that will predict approval for the president's
foreign policy. Out of four possible explanatory variables, we are interested to know which ones to include in our
"final model" such that this final model is the most parsimonious.

Data Preliminaries

In [1]: dimport numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf

In [2]: missing_values = ["NaN", "nan", "Don't know/Refused (VOL.)"]
df = pd.read_csv('Febl7public.csv’,
na_values=missing values)[['age', 'sex', 'q5cfl', 'party','sa
mple']]

In [3]: # and create binary reponse variable
df['y'] = df['q5cf1l'].map({ 'Disapprove’:0, 'Approve’':1})
use cleaned data without records that have missing values
df = df.dropna()

In [4]: df.shape

Out[4]: (679, 6)

In [5]: df.head()

Out[5]:
age sex q5cf1 party sample y

-—

70.0 Female Disapprove Democrat Landline 0.0
69.0 Female Disapprove Independent Landline 0.0
70.0 Female Disapprove Democrat Landline 0.0

89.0 Female Disapprove Independent Landline 0.0

N~ o AN

92.0 Female Approve Republican Landline 1.0

1. Problem: What are some algorithms that can help us efficiently
identify models that have "high parsimony"?

See Unit 20 section 1

2. One ldea: Use Backwards Elimination or Forward Selection
Algorithms

See Unit 20 section 2

Ex. Let's use a backwards elimination algorithm with BIC to try to find a most
parsimonious model that predicts support for the president's foreign policy.

Remember, the lower a model's BIC score is, the more parsimonious we consider the model to be. Therefore,
our goal for using this algorithm should be to find the model that has the lowest BIC score.

Iteration 1 of Backwards Elimination

1.1. First, let's fit the "current model” with ALL four possible explanatory variables and find the BIC
score of this "current model".

In [6]: current_mod=smf.logit('y~age+sex+party+sample’, data=df).fit()
print("ITERATION 1: BIC of the Current Model',current_mod.bic)

Optimization terminated successfully.
Current function value: 0.419629
Iterations 7
ITERATION 1: BIC of the Current Model 622.021657116503

1.2. Next, let's fit four test models and calculate the BIC score for that model, for each test model we
delete one of the possible explanatory variables from the "current model”.

In [7]: #Test model that deletes party
test_mod=smf.logit('y~age+sex+sample', data=df).fit()
print('BIC of Test Model that Deletes PARTY from the Current Model',test_mod.b
ic)

Optimization terminated successfully.
Current function value: 0.616481
Iterations 5
BIC of Test Model that Deletes PARTY from the Current Model 863.2637843537823

In [8]:

In [9]:

In [10]:

#Test model that deletes sex

test_mod=smf.logit('y~age+party+sample’, data=df).fit()

print('BIC of Test Model that Deletes SEX from the Current Model',test mod.bic
)

Optimization terminated successfully.
Current function value: 0.427991
Iterations 7
BIC of Test Model that Deletes SEX from the Current Model 626.8558806309322

#Test model that deletes age

test_mod=smf.logit('y~sex+party+sample’, data=df).fit()

print('BIC of Test Model that Deletes AGE from the Current Model',test_mod.bic
)

Optimization terminated successfully.
Current function value: 0.433090
Iterations 7
BIC of Test Model that Deletes AGE from the Current Model 633.7801450903344

#Test model that deletes sample

test_mod=smf.logit('y~age+sex+party', data=df).fit()

print('BIC of Test Model that Deletes SAMPLE from the Current Model',test mod.
bic)

Optimization terminated successfully.

Current function value: 0.419649

Iterations 7
BIC of Test Model that Deletes SAMPLE from the Current Model 615.528034067722
7

1.3. Because there was at least one "test model” that has a BIC score (615.53) that is lower than the BIC
score of the current model (622.02), we continue on to step 4 in the algorithm.

1.4. The "test model” (from step 2) that had the lowest BIC score was the one that deleted the "sample™
explanatory variable from the "current model”. So we set the new "current model" to be the test model
that does not include "sample" and we go back to step (2). We can call this a new iteration of the

algorithm.

Iteration 2 of Backwards Elimination

In [11]:

current_mod=smf.logit('y~age+sex+party', data=df).fit()
print('ITERATION 2: BIC of the Current Model',current_mod.bic)

Optimization terminated successfully.
Current function value: 0.419649
Iterations 7
ITERATION 2: BIC of the Current Model 615.5280340677227

2.2. Next, let's fit three test models and calculate the BIC score for that model, for each test model we
delete one of the possible explanatory variables from the "current model”.

In [12]:

In [13]:

In [14]:

#Test model that deletes party

test_mod=smf.logit('y~age+sex', data=df).fit()

print('BIC of Test Model that Deletes PARTY from the Current Model',test_mod.b
ic)

Optimization terminated successfully.
Current function value: 0.616503
Iterations 5
BIC of Test Model that Deletes PARTY from the Current Model 856.7724827293513

#Test model that deletes sex

test_mod=smf.logit('y~age+party', data=df).fit()

print('BIC of Test Model that Deletes SEX from the Current Model',test mod.bic
)

Optimization terminated successfully.
Current function value: 0.428186
Iterations 7
BIC of Test Model that Deletes SEX from the Current Model 620.600002907382

#Test model that deletes age

test_mod=smf.logit('y~sex+party', data=df).fit()

print('BIC of Test Model that Deletes AGE from the Current Model',test_mod.bic
)

Optimization terminated successfully.
Current function value: 0.434714
Iterations 7
BIC of Test Model that Deletes AGE from the Current Model 629.4647062516452

2.3. Because there were no "test models" that had a lower than the BIC score of the current model
(615.53), we STOP THE ALGORITHM and we return the "current model” (with age, sex, and party as
explanatory variables) as our "final model."

In [15]: final_mod=smf.logit('y~age+sex+party', data=df).fit()
final_mod.summary ()

Optimization terminated successfully.
Current function value: 0.419649
Iterations 7

Out[15]:
[15] Logit Regression Results
Dep. Variable: y No. Observations: 679
Model: Logit Df Residuals: 672
Method: MLE Df Model: 6
Date: Wed, 28 Apr 2021 Pseudo R-squ.: 0.3614
Time: 22:29:49 Log-Likelihood: -284.94
converged: True LL-Null: -446.23
Covariance Type: nonrobust LLR p-value: 1.185e-66
coef stderr z P>|z] [0.025 0.975]

Intercept -4.5635 0.465 -9.807 0.000 -5.475 -3.651

sex[T.Male] 0.7288 0.217 3.363 0.001 0.304 1.154
party[T.Independent] 22604 0.312 7.236 0.000 1.648 2.873
party[T.No preference (VOL.)] 2.5881 0.680 3.808 0.000 1.256 3.920
party[T.Other party (VOL.)] 4.0865 1.212 3.372 0.001 1.711 6.462
party[T.Republican] 4.2985 0.341 12592 0.000 3.629 4.968

age 00272 0.006 4.443 0.000 0015 0.039

Final Interpretation

What this means is that the final model with just sex, age, and party as explanatory variables is more
parsimonious than the model with sample, sex, age, and party, because this final model had a lower BIC score.

However, we do not know for sure that the model with sex, age, and party has the LOWEST BIC score out
of all possible 2t =16 possible models combinations that use (or do not use) the four possible
explanatory variables that we originally considered!

3. An<|)ther Idea: Use a Regularization Term in your Regression
Mode

See Unit 20 section 3
3.1. Recap of Non-Regularized Logistic Regression Models and AIC/BIC
See Unit 20 section 3.1.

3.2. Regularization Term 1: Ridge Regression (L2 Penalty)

See Unit 20 section 3.2.

3.3. Regularization Term 2: LASSO (L1 Penalty)

See Unit 20 section 3.3.
3.4. Comparing LASSO (L1) Penalty to the Ridge Regression (L2) Penalty
See Unit 20 section 3.4.

3.5. Regularization Term 3: Elastic Net (L2 and L1 Penalty Combination)

3.6. Exercise: Let's fit a four types of logistic regression model that predicts the
likelihood that an adult living in the U.S. supports the president's foreign policy
using the following explanatory variables:

» age

* sex

* party

» sample (whether they were contacted for the survey via cellphone or landline)

Specifically, let's fit the following four types of logistic regression models to the
entire dataframe.

1. Basic (ie. non-regularized) Logistic Regression (ie. no penalty)

2. Logistic Regression with L1 penalty (ie. LASSO Logistic Regression)
3. Logistic Regression with L2 penalty (ie. Ridge Logistic Regression)
4. Elastic Net Logistic Regression (Combination of L1 and L2 penalty)

3.6.1 New package and function

In order to fit regularized logistic regression models, we need to use the LogisticRegression() function which is
from the sklearn.linear_model package.

In [16]: from sklearn.linear_model import LogisticRegression

3.6.2. Machine Learning Input for the LogisticRegression() Function

In addition, the LogisticRegression() function takes a different type of inputs and has a different format than
what the ols.logit() function uses.

First, we need to separate the explanatory variables into a dataframe by themselves which we call a features
matrix, X.

In [17]: X = df.drop(columns=['y', 'q5cfl'])

X.head()
Out[17]:

age sex party sample
1 70.0 Female Democrat Landline
2 69.0 Female Independent Landline
4 70.0 Female Democrat Landline
6 89.0 Female Independent Landline
7 92.0 Female Republican Landline

Next, we need to convert the categorical explanatory variables to indicator variables "ourselves", or by using the

pandas pd.get_dummies() function.

Notice how:

» the "age" variable remains in the dataframe,

o the "sex",

variables.

party", and "sample" variables were dropped,
» and we now have an indicator variable for all but one of the levels for each of our categorical explanatory

The drop_first=True parameter, tells the pd.get_dummies() function to not create an indicator variable for one
level of each categorical variable.

In [18]:

out[18]:

X=pd.get_dummies (X, drop_first=True)

X.head()
party_No
age sex_Male party_Independent preference parr:y_\cl)gf r party_Republican sample_Landlin

1 70.0 0 0 0 0
2 69.0 0 0 0 0
4 70.0 0 0 0 0
6 89.0 0 0 0 0
7 920 0 0 0 1

And finally, we need to separate the 0/1 response variable values into a series by itself, which we calls the target

array, y.

In [19]:

Out[19]:

< <

NOB_NR

1494
1498
1499
1501
1502

=df['y"]

RO R BRPE.

P OO0
OO0

OO0

0

Name: y, Length: 679, dtype: float64

3.6.3 Basic (non-regularized) Logistic Regression (no penalties)

First, let's fit a non-regularized logistic regression model with the following additional function parameters.

« penalty: By selecting 'none' for the penalty, we are indicating that we are just using a basic (non-
regularized) logistic regression model.

» solver: We will use the the 'newton-cg' solver. The newton-cg algorithm is a type of numerical analysis
algorithm that goes about finding an optimal solution to a given objective function.

» max_iter: This algorithm stops after 1000 iterations or when the algorithm has converged.

Additional Information: The 'newton-cg' solver only works for: basic logistic regression and ridge regression.

In [20]: clf@ = LogisticRegression(penalty='none', solver='newton-cg',
max_iter=1000)
clfe.fit(X,y)

Out[20]: LogisticRegression(max_iter=1000, penalty='none', solver='newton-cg')

3.6.4. LASSO (L1 penalty) Logistic Regression

Next, let's fit a LASSO (L1 penalty) Logistic Regression model with the following additional function parameters.

» penalty: By selecting 'l1' for the penalty, we are fitting a LASSO (L1 penalty) logistic regression.

» solver: We will use the the 'liblinear' solver. The liblinear is a tool that solves linear logistic regression
optimization problems.

« max_iter: This algorithm stops after 1000 iterations or when the algorithm has converged.

e C: This value is set to be % Thus if we want our A\ = 3 in this model, we need to set C = % = %

Additional Information: The 'liblinear' solver only works for; LASSO logistic regression and logistic ridge
regression.

In [21]: clfl = LogisticRegression('l1', solver='liblinear',
max_iter=1000, C=1/3)
clfl.fit(X,y)

Out[21]: LogisticRegression(C=0.3333333333333333, max_iter=1000, penalty='1l1",
solver="liblinear")

3.6.5. Ridge Regression (L2 penalty) Logistic Regression

Next, let's fit a Logistic Ridge Regression (L2 penalty) model with the following additional function parameters.

penalty: By selecting 'I2' for the penalty, we are fitting a logistic ridge regression (L2 penalty) model.
solver: We will use the the 'liblinear' solver. The liblinear is a tool that solves linear logistic regression
optimization problems.
max_iter: This algorithm stops after 1000 iterations or when the algorithm has converged.

1 1

C: This value is set to be % Thus if we want our A = 3 in this model, we need to set C = ~ =3

Additional Information: The 'liblinear' solver only works for: LASSO logistic regression and logistic ridge

regression.

In [22]: clf2 = LogisticRegression('12', solver='liblinear',
max_iter=1000, C=1/3)
clf2.fit(X,y)

Out[22]: LogisticRegression(C=0.3333333333333333, max_iter=1000, solver='liblinear')

3.6.6. Elastic Net (L1 and L2 penalty combination) Logistic Regression

Next, let's fit an Elastic Net Logistic Regression model (L1 and L2 penalty) with the following additional function
parameters.

penalty: By selecting 'elasticnet’ for the penalty, we are fitting an elastic net (L1 and L2 penalty) model.
solver: We will use the the 'saga’ solver. aga is a numerical optimization method that only works for specific
types of objective functions.

max_iter: This algorithm stops after 1000 iterations or when the algorithm has converged.

C: This value is set to be % Thus if we want our A = 3 in this model, we need to set C = 1_1

A3
The « in sklearn is represented as the "I1_ratio" parameter in the function. With an a =I1_ratio=0.7, this
means that this particular elastic net model will favor solutions that more closely resemble the LASSO model

results than the ridge regression model results.

Additional Information: The 'saga' solver only works for: elastic net logistic regression.

In [23]: clf3 = LogisticRegression('elasticnet’, solver='saga',
max_iter=1000, 11 ratio=0.7, C=1/3)
clf3.fit(X,y)

C:\Users\vellison\Miniconda3\lib\site-packages\sklearn\linear_model_sag.py:3
29: ConvergencelWarning: The max_iter was reached which means the coef_ did no
t converge

warnings.warn("The max_iter was reached which means

Out[23]: LogisticRegression(C=0.3333333333333333, 11 _ratio=0.7, max_iter=1000,
penalty='elasticnet', solver='saga')

3.6.7 Now, let's extract and examine the 7 resulting slopes for each of the 4 models we just fitted.

For instance, below are the slopes for the elastic net model.

In [24]: clf3.coef_

Out[24]: array([[0.01387743, ©.56660825, 1.02616927, 0.09267267, ©.02023501,

2.95058127, ©. 1

And below is the intercept for the elastic net model.

In [25]: clf3.intercept_

Out[25]: array([-2.70654499])

In [26]: dfcoef = pd.DataFrame(
np.concatenate((clfo.coef _.T,
clfl.coef_.T,
clf2.coef .T,
clf3.coef .T),
axis=1),
columns=['"Non_Regularized',
1, index=X.columns)

"LASSO', 'Ridge Regression', 'Elastic_Net'

dfcoef
Out[26]:

Non_Regularized LASSO Ridge_Regression Elastic_Net
age 0.027556 0.017372 0.010142 0.013877
sex_Male 0.725143 0.586283 0.548167 0.566608
party_Independent 2.263231 1.377441 1.030012 1.026169
party_No preference (VOL.) 2.591156 0.410129 0.647457 0.092673
party_Other party (VOL.) 4.082109 0.000000 0.634710 0.020235
party_Republican 4.299563 3.380921 2.881765 2.950581
sample_Landline -0.042271 0.000000 0.041545 0.000000

In [27]: plt.figure(figsize=(20,10))

for i in range(4):
plt.plot(dfcoef.index, dfcoef[dfcoef.columns[i]])

plt.xticks(np.arange(0,7,1))
plt.xlabel('Coefficient index')
plt.ylabel('Slope Estimate')
plt.title('Slope Estimates for all Four Models')
plt.legend(['Non_Regularized', 'LASSO', 'Ridge_Regression','Elastic_Nets'], bbox
_to_anchor=(1,1))
plt.hlines(y=0, xmin=0, xmax=6, linestyles='--")
plt.show()

Slope Estimates for all Four Models

= Non_Regularized
LASSO

~— Ridge_Regression

~— Elastic_Nets

~

Slope Estimate

age sex_Male party_Independent party_No preference (VOL.) party_Other party (VOL.) party_Republican sample_Landline
Coefficient index

In [28]: X.columns

Out[28]: Index(['age', 'sex Male', 'party Independent', 'party No preference (VOL.)',
‘party_Other party (VOL.)', 'party_Republican', 'sample_Landline'],
dtype="object')

General Model Interpretation:

» In general, the slopes in the non-regularized logistic regression model were higher than the slopes for
the other three models. This is what we would expect as the other three models have a penalty for having
slopes that are high.

» The LASSO model has the most amount of slopes that are set to be exactly zero. This is what we would
expect from the LASSO model, as this model favors more slopes that are set to be exactly 0.

» The elastic net model has a slope that is exactly 0 and one that is very close to being 0. This is somewhat
what we would expect as we set the « to be closer to 1, so we would expect this particular elastic net's
slopes to resemble the type of results that we would get with a LASSO model, which tends to have more
slopes set exactly equal to 0.

» The ridge regression model has no slopes that are set to be exactly 0, but has much smaller slopes than
the non-regularized model. This is what we expect from a ridge regression model, that does not favor slopes
that are set to be exactly equal to 0.

Individual Slope Interpretation:

» The age and sex:Male slopes do not change dramatically in all four models. This gives us no indication that
this model should be deleted in a reduced model.

» The sample_Landline slope is set to be exactly 0 in the LASSO model and the elastic net model. This is a
large change from the slope that we see in the non-regularized model. So this gives us an indication that
we should not include the sample slope in the reduced model**

» Finally, the party_Other party (VOL.) slope is set to be exactly 0 in the LASSO model and is very close to 0
in the elastic net model. This is a large change from the slope that we see in the non-regularized model.
However, we don't see much change in the other party variables. Because we cannot delete an indicator
variable without the other corresponding indicator variables (for a given explanatory variable), we will leave
the party slope in the reduced model.

3.6.8. Using these results to create a reduced model(s) and a full model.

Our analysis from 3.6.7 gave us some indications as to what reduced models we should test.

Full Model We can go back to using the smf.logit() function to learn more about the full logistic regression
model (that uses all four explanatory variables we were considering). Unlike the LogisticRegression() function,
the smf.logit() function will give us more information about the model including:

« BIC/AIC
« p-values for conducting inference on the slopes
« the optimal log-likelihood function value of the model.

In [29]: full_mod=smf.logit('y~age+sex+party+sample’, data=df).fit()
full _mod.summary()

Optimization terminated successfully.
Current function value: 0.419629
Iterations 7

Out[29]:
[29] Logit Regression Results
Dep. Variable: y No. Observations: 679
Model: Logit Df Residuals: 671
Method: MLE Df Model: 7
Date: Wed, 28 Apr 2021 Pseudo R-squ.: 0.3615
Time: 22:29:50 Log-Likelihood: -284.93
converged: True LL-Null: -446.23
Covariance Type: nonrobust LLR p-value: 8.965e-66
coef stderr z P>|z] [0.025 0.975]

Intercept -4.5713 0468 -9.771 0.000 -5.488 -3.654

sex[T.Male] 07251 0.218 3.329 0.001 0.298 1.152
party[T.Independent] 2.2632 0.313 7.234 0.000 1.650 2.876
party[T.No preference (VOL.)] 2.5912 0.680 3.813 0.000 1.259 3.923
party[T.Other party (VOL.)] 4.0821 1.212 3.367 0.001 1.706 6.458
party[T.Republican] 4.2996 0.341 12592 0.000 3.630 4.969
sample[T.Landline] -0.0423 0.257 -0.164 0.870 -0.547 0.462

age 0.0276 0.007 4.207 0.000 0.015 0.040

In [30]: print('Full Model AIC:',full mod.aic)
print('Full Model BIC:',full mod.bic)

Full Model AIC: 585.8566880960334
Full Model BIC: 622.021657116503

Reduced Model Our regularized models indicated that the sample explanatory variable might be a useful
variable to leave out of the reduced model for testing. We fit this model below, (now just using a non-regularized
logistic regression model), and find the AIC and BIC of this reduced model.

In [31]: red_mod=smf.logit('y~age+sex+party', data=df).fit()
red_mod. summary ()

Optimization terminated successfully.
Current function value: 0.419649
Iterations 7

Out[31]:
[31] Logit Regression Results
Dep. Variable: y No. Observations: 679
Model: Logit Df Residuals: 672
Method: MLE Df Model: 6
Date: Wed, 28 Apr 2021 Pseudo R-squ.: 0.3614
Time: 22:29:50 Log-Likelihood: -284.94
converged: True LL-Null: -446.23
Covariance Type: nonrobust LLR p-value: 1.185e-66
coef stderr z P>|z] [0.025 0.975]

Intercept -4.5635 0.465 -9.807 0.000 -5.475 -3.651

sex[T.Male] 0.7288 0.217 3.363 0.001 0.304 1.154
party[T.Independent] 22604 0.312 7.236 0.000 1.648 2.873
party[T.No preference (VOL.)] 2.5881 0.680 3.808 0.000 1.256 3.920
party[T.Other party (VOL.)] 4.0865 1.212 3.372 0.001 1.711 6.462
party[T.Republican] 4.2985 0.341 12592 0.000 3.629 4.968

age 00272 0.006 4.443 0.000 0015 0.039

In [32]: print('Reduced Model AIC:',red_mod.aic)
print('Reduced Model BIC:',red_mod.bic)

Reduced Model AIC: 583.8836861748118
Reduced Model BIC: 615.5280340677227

We can see that the reduced model had a lower AIC and BIC score than the full model does. Therefore, the
regularized regression models gave us some useful insights as to which explanatory variables to leave out of our
reduced model(s).

We then compared this reduced model to our full model to verify that this reduced model (without the sample
explanatory variable) was more parsimonious than the full model.

We might use this insight to make the reduced model, our final model.

STAT 207, Victoria Ellison and Douglas Simpson, University of lllinois at Urbana-Champaign

