
 
 
 

Unit 18: t-SNE Algorithm 
Final Topic of the Course:  
We will wrap up the new content in this course by discussing 
the algorithm and the theory behind the t-SNE algorithm. 

Purpose of this Lecture: 
We will introduce the algorithm and the theory behind the t-SNE algorithm. 
 
In this lecture we will cover the following topics. 
 

• Stochastic neighbor embedding. 

• Drawbacks of stochastic neighbor embedding. 

• What’s different in SNE algorithm vs. t-SNE algorithm? 

• T-SNE algorithm – general  

• Full t-sne algorithm – with gradient descent algorithm. 
 
 

Additional Resources 

 
van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data 
Using t-SNE. Journal of Machine Learning Research 9:2579-2605, 2008. 
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf 
 

 

  

https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf


STOCHASTIC NEIGHBOR EMBEDDING (SNE) 

Input: 

•  Dataset:  𝐗𝐦×𝐧 = [

𝒙𝟏∗

𝒙𝟐∗

⋮
𝒙𝒎∗

]  comprised of m objects, where each object has a complete set of n attributes. 

• Perplexity Values: 𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑃𝑖) for i=1,…,m 

 

 

 

Algorithm 

• Step 1: Define a projected/mapped 2-d coordinates matrix of decision 

variables:  𝐘𝐦×𝟐 = [

𝒚𝟏∗

𝒚𝟐∗

⋮
𝒚𝒎∗

]. 

 

 

  



• Step 2: Create a similarity matrix 𝑷 = [𝒑𝒋|𝒊] between each of the objects in 
𝐗𝐦×𝐧. 
 

(i,j) entries represents:  
similarity between 𝒙𝒊∗ to 𝒙𝒋∗  

 

 

(i,j) entries mathematically: 

 𝑝𝑗|𝑖 =

exp (−
||𝒙𝒊∗ −𝒙𝒋∗||

2

2𝜎𝑖
2 )

∑ exp (−
||𝒙𝒊∗ −𝒙𝒌∗||

2

2𝜎𝑖
2 )𝑘≠𝑖

  

 

 

(j,i) entries graphical interpretation: 

𝑝𝑗|𝑖 =

exp (−
||𝒙𝒊∗ − 𝒙𝒋∗||

2

2𝜎𝑖
2 )

∑ exp (−
||𝒙𝒊∗ − 𝒙𝒌∗||

2

2𝜎𝑖
2 )𝑘≠𝑖
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σi√2𝜋
exp (−

(𝑑𝑖𝑠𝑡(𝒙𝒊∗ , 𝒙𝒋∗) − 0)
2

2𝜎𝑖
2 )

∑
1

σi√2𝜋
exp (−

(𝑑𝑖𝑠𝑡(𝒙𝒊∗ , 𝒙𝒌∗) − 0)2

2𝜎𝑖
2 )𝑘≠𝑖

=
𝑓(𝑑𝑖𝑠𝑡(𝒙𝒊∗ , 𝒙𝒋∗))

∑ 𝑓(𝑑𝑖𝑠𝑡(𝒙𝒊∗ , 𝒙𝒌∗))𝑘≠𝑖
 

Interpretation of f(x): 

▪ 𝑓(𝑥) is the pdf of the ____________________________ distribution with: 

• mean = ______________ 

• Standard deviation = _________________ 

 

Interpretation of 𝑓(𝑑𝑖𝑠𝑡(𝒙𝒊∗ , 𝒙𝒋∗)): 

𝑓(𝑑𝑖𝑠𝑡(𝒙𝒊∗ , 𝒙𝒋∗)) = 𝑔(𝑑𝑖𝑠𝑡(𝒙𝒊∗ , 𝒙𝒋∗)) 

▪ 𝑔(𝑑𝑖𝑠𝑡(𝒙𝒊∗ , 𝒙𝒋∗)) is the ___________________ curve, centered at ______________ with 

standard deviation ______________ 

 

 

Ex: Generate the similarity matrix for the three 1-D data points shown below. 

 

 

 

 

 

 

Read ahead 

for how we 

pick 𝜎𝑖. 

 

 



Properties of 𝑷 = [𝒑𝒋|𝒊] 

• This matrix _________________ to be symmetric. 

• The rows in this matrix form a _________________________. 

 

 

 

 

Step 3: Create a similarity matrix 𝑸 = [𝒒𝒋|𝒊] between each of the decision 

variable objects in 𝐘𝐦×𝟐. 

 

• (j,i) entries represents:  

similarity between 𝒚𝒋∗ to 𝒚𝒊∗  

 

 

• (j,i) entries mathematically: 

 𝑞𝑗|𝑖 =
exp (−||𝒚𝒊∗−𝒚𝒋∗||

2
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∑ exp (−||𝒚𝒊∗−𝒚𝒌∗||
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)𝑘≠𝑖

  

 

 

• (j,i) entries graphical interpretation: 

𝑞𝑗|𝑖 =

exp (− ||𝒚𝒊∗ − 𝒚𝒋∗||
2

)

∑ exp (− ||𝒚𝒊∗ − 𝒚𝒌∗||
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=
ℎ(𝑑𝑖𝑠𝑡(𝒚𝒊∗ , 𝒚𝒋∗))

∑ ℎ(𝑑𝑖𝑠𝑡(𝒚𝒊∗ , 𝒚𝒌∗))𝑘≠𝑖
 

Interpretation of h(x): 

▪ ℎ(𝑥) is the pdf of the ____________________________ distribution with: 

• mean = ______________ 

• Standard deviation = _________________ 

 

Interpretation of ℎ(𝑑𝑖𝑠𝑡(𝒚, 𝒚𝒋∗)): 

ℎ(𝑑𝑖𝑠𝑡(𝒚𝒊∗ , 𝒚𝒋∗)) = ℎ̅(𝑑𝑖𝑠𝑡(𝒚𝒊∗ , 𝒚𝒋∗)) 

▪ ℎ̅(𝑑𝑖𝑠𝑡(𝒚𝒊∗ , 𝒚𝒋∗)) is the ___________________ curve, centered at ______________ with 

standard deviation ______________ 

 



 

 

Properties of 𝑸 = [𝒒𝒋|𝒊] 

• This matrix _________________ to be symmetric. 

• The rows in this matrix form a _________________________. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Local Structure Preservation Idea: 

• If the mapped points in 𝐘𝐦×𝟐 correctly 

model the similarity between the high 

dimensional data points in 𝐗𝐦×𝐧, then we 

would expect: 

 

 



• Step 4: Find the optimal values of the coordinates in 𝐘𝐦×𝟐 that minimize the sum of the 

Kullback-Leibler (KL) divergence over all data points. 

 

Optimization Problem: 𝑚𝑖𝑛Ym×2
𝐶 = 𝑚𝑖𝑛Ym×2

∑ 𝐾𝐿(𝑷𝒊∗||𝑸𝒊∗) = ∑ ∑ 𝑝𝑗|𝑖 log
𝑝𝑗|𝑖

𝑞𝑗|𝑖
𝑗𝑖𝑖  

  
Common Algorithm: Gradient descent methods 

  



 

  

Downsides of this optimization problem: 

• The optimization problem will work harder to avoid scenario ______ errors, at the expense of not caring 

about scenario _______ errors as much. 

• The algorithm will focus harder on preserving the ____________ structure of the original dataset, at the 

expense of preserving the _____________ structure of the original dataset. 

•  

Ex: Below is a visualization of the (i,j) expression in the objective function for the SNE algorithm. With this in 

mind, which scenario will lead to a higher cost in the objective function? 

 

 

o Scenario a: Widely separated data points 𝒙𝒊∗ and 𝒙𝒋∗ and nearby map points 𝒚𝒊∗ and 𝒚𝒋∗, or  

 

 

 

 

 

 

o Scenario b: nearby data points 𝒙𝒊∗ and 𝒙𝒋∗ and widely separated map points 𝒚𝒊∗ and 𝒚𝒋∗? 

 



Additional Consideration: How to pick 𝝈𝒊? 

 

Goal: Pick 𝝈𝒊 to Adapt to Different Cluster Sparsities 

Clusters of different sparsities need different values of 𝜎𝑖 to effectively preserved the local pairwise distances of all 

the objects in the cluster. 

• If we have a cluster that is more dense, then we want the objects in this cluster to have values of 𝜎𝑖 that are 

______________ when calculating 𝑝𝑗|𝑖. 

 

• If we have a cluster that is more sparse, then we want the objects in this cluster to have values of 𝜎𝑖 that are 

______________ when calculating 𝑝𝑗|𝑖. 

 

 

Solution: Perform a binary search for 𝝈𝒊 that satisfies: 

_________ = 𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑃𝑖) = 2− ∑ 𝑝𝑗|𝑖 log2 𝑝𝑗|𝑖𝑗  

 

What 𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑃𝑖)represents: 

 

What − ∑ 𝑝𝑗|𝑖 log2 𝑝𝑗|𝑖𝑗 represents: 

 

_________ ≤ − ∑ 𝑝𝑗|𝑖 log2 𝑝𝑗|𝑖 ≤ __________

𝑗

 

Ex: Let’s assume for now, that we have chosen a perplexity of 1. Use the method described above to estimate a 

value for 𝜎𝑖 corresponding to an observation in cluster 1 below.  

 

 

 

 

If all objects in the SNE algorithm 

used the same standard deviation 

𝜎 = 𝜎𝑖 in the calculation of 𝑝𝑗|𝑖, 

then the objects in cluster 0 

would have _________________ 

close neighbors than the objects 

in the other 3 clusters. 

 

 



 

 

 

 

 

 

 

 

Ex: Let’s assume for now, that we have chosen a perplexity that is equal to the total number of observation 𝑚 in the 

dataset above. Use the method described above to estimate a value for 𝜎𝑖 corresponding to an observation in 

cluster 2 below.  

 

 

 

 

 

 

 

 

 

 

 

Good guesses for 𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑃𝑖): 

 

 

 

 

 

 

 

 

 

 

 

 

  



DRAWBACKS OF STOCHASTIC NEIGHBOR EMBEDDING (SNE) 

 

1. Because of non-symmetric KL-Divergence Function: 

a. Focuses more on preserving the local structure. 

 

2. Because of non-symmetric distances matrices:  

 

a. Cost function of SNE is computationally inefficient. The gradient descent algorithm needs to be 

run several times to select the right initial parameters such that the algorithm is less likely to 

get stuck in poor local minimum. 

 

3. Because of Gaussian probability in mapped distance matrix Q:  

a. “Crowding problem”: Some types of datasets X have the property that the available area (in 2-

dimensions) to map _______________ distant points isn’t large enough to as the amount of 

available area that accurately maps _____________ points. So ______________ distances tend 

to be mapped much ____________________ than in the original dataset. 

 

b. The exponential function in the cost function of the gradient descent algorithm makes for 

slower run time. 

 

 

 

 

 

 

 

 

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html 

 

WHAT’S DIFFERENT IN T-SNE ALGORITHM VS. SNE ALGORITHM? 

 

1. T-SNE uses a ___________________ version of P and Q (as used in SNE). 

 

2. Uses a _____________________ (as opposed to Gaussian distribution as used in SNE) to measure 

distance between two points in the low dimensional space. 



T-SNE ALGORITHM – GENERAL  

Input: 

•  Dataset:  𝐗𝐦×𝐧 = [

𝒙𝟏∗

𝒙𝟐∗

⋮
𝒙𝒎∗

]  comprised of m objects, where each object has a complete set of n attributes. 

• Parameters Used to Generate Similarity Matrix P: 

o  𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦  

Algorithm 
• Step 1: Define projected/mapped 2-d coordinates matrix of decision variables:  𝐘𝐦×𝟐 =

[

𝒚𝟏∗

𝒚𝟐∗

⋮
𝒚𝒎∗

]. 

 

• Step 2: Create a similarity matrix 𝑷 = [𝒑𝒊𝒋] between each of the objects in 𝐗𝐦×𝐧. 
 

• (j,i) entries represents: similarity between 𝑥𝑗∗ to 𝑥𝑖∗  

• (j,i) entries mathematically: 

▪ 𝑝𝑗|𝑖 =

exp(−
||𝒙𝒊∗ −𝒙𝒋∗||

2

2𝜎𝑖
2 )

∑ exp(−
||𝒙𝒊∗ −𝒙𝒌∗||

2

2𝜎𝑖
2 )𝑘≠𝑖

 

 

▪ 𝑝𝑖|𝑗 =

exp (−
||𝒙𝒊∗ −𝒙𝒋∗||

2

2𝜎𝑗
2 )

∑ exp (−
||𝒙𝒋∗ −𝒙𝒌∗||

2

2𝜎𝑗
2 )𝑘≠𝑗

  

 

▪ 𝑝𝑖𝑗 =
1

2𝑚
(𝑝𝑗|𝑖 + 𝑝𝑖|𝑗) 

• Is 𝑷 = [𝒑𝒊𝒋]symmetric?  

 

 

• Step 3: Create a similarity matrix 𝑸 = [𝒒𝒊𝒋] between each of the objects in 𝐘𝐦×𝟐. 
 

• (j,i) entries represents: similarity between 𝑦𝑗∗ to 𝑦𝑖∗  

• (j,i) entries mathematically: 𝑞𝑖𝑗 =
 (1+||𝑦𝑖∗−𝑦𝑗∗||

2
)

−1

∑ (1+||𝑦𝑘∗−𝑦𝑙∗||
2

)
−1

𝑘≠𝑙

  

 

• Is 𝑸 = [𝒒𝒊𝒋]symmetric?  

 

Finding 𝜎𝑖: 

Perform a binary search for 𝜎𝑖 that 

satisfies:𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 2− ∑ 𝑝𝑗|𝑖 log2 𝑝𝑗|𝑖𝑗  

 

 

Why student t-distribution with df=1? 

• ____________ tails than 

Gaussian. 

• Pairs of mapped points with 

moderate distances will have 

higher similarity (than if you 

had used Gaussian.) Helps with 

the crowding problem. 

 



 

 

• (j,i) entries graphical interpretation: 

𝑞𝑖𝑗 =
 (1 + ||𝑦𝑖∗ − 𝑦𝑗∗||

2
)

−1

∑ (1 + ||𝑦𝑘∗ − 𝑦𝑙∗||
2

)
−1

𝑘≠𝑙

=

Γ(
1 + 1

2
)

√1πΓ(
1
2)

 (1 +
||𝑦𝑖∗ − 𝑦𝑗∗||

2

1
)

−
1+1

2
 

∑
Γ(

1 + 1
2

)

√1πΓ(
1
2)

(1 +
||𝑦𝑖∗ − 𝑦𝑗∗||

2

1 )

−
1+1

2  

𝑘≠𝑙

=
𝑓(𝑑𝑖𝑠𝑡(𝒚𝒊∗, 𝒚𝒋∗))

∑ 𝑓(𝑑𝑖𝑠𝑡(𝒚𝒌∗, 𝒚𝒍∗))𝑘≠𝑙

 

One Interpretation of f(x): 

▪ 𝑓(𝑥) is the pdf of the ____________________________ distribution with df = ___________. 
 

Another Interpretation of f(x): 

▪ 𝑓(𝑥) is the curve of the ____________________________ distribution with df = 

___________, shifted to be centered at ______________. 

 

 

• Ex: Generate the similarity matrix for the three 1-d MAPPED data points shown below. 

 

 

 

 

 

 

 

 

 

 

 



• Step 4: Find the optimal values of the coordinates in 𝐘𝐦×𝟐 that minimize the sum of the 

Kullback-Leibler (KL) divergence over all data points. 

 

Optimization Problem: 𝑚𝑖𝑛Ym×2
𝐶 = 𝑚𝑖𝑛Ym×2

𝐾𝐿(𝑃||𝑄) = ∑ ∑ 𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖  

  
Common Algorithm: Gradient descent methods 

  



 

FULL T-SNE ALGORITHM – WITH GRADIENT DESCENT ALGORITHM 

Input: 

• Dataset:  𝐗𝐦×𝐧 = [

𝒙𝟏∗

𝒙𝟐∗

⋮
𝒙𝒎∗

]  comprised of m objects, where each object has a complete set of n attributes. 

• Parameters Used to Generate Similarity Matrix P: 

o  𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦  

• Parameters Used to Generate Similarity Matrix P:  

o Number of iterations T 

o Learning rate 𝜂 

o Momentum 𝛼(𝑡) 

Algorithm 

• Step 1: Create a similarity matrix 𝑷 = [𝒑𝒊𝒋] between each of the objects in 𝐗𝐦×𝐧. 

o 𝑝𝑖𝑗 =
1

2
(𝑝𝑗|𝑖 + 𝑝𝑖|𝑗) 

o 𝑝𝑗|𝑖 =

exp (−
||𝒙𝒊∗ −𝒙𝒋∗||

2

2𝜎𝑖
2 )

∑ exp (−
||𝒙𝒊∗ −𝒙𝒌∗||

2

2𝜎𝑖
2 )𝑘≠𝑖

  

o Perform a binary search for 𝜎𝑖 that satisfies:𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 2− ∑ 𝑝𝑗|𝑖 log2 𝑝𝑗|𝑖𝑗  

• Step 2: Randomly sample projected/mapped 2-d coordinates matrix:  𝐘𝐦×𝟐 = [

𝒚𝟏∗

𝒚𝟐∗

⋮
𝒚𝒎∗

] from 

𝑵(𝟎, 0.0001 ⋅ 𝑰𝟐×𝟐). 
 

• For t=1 to T do: 
o Create a similarity matrix 𝑄 = [𝑞𝑖𝑗] between each of the objects in Ym×2. 

▪ 𝑞𝑖𝑗 =
 (1+||𝑦𝑖∗−𝑦𝑗∗||

2
)

−1

∑ (1+||𝑦𝑘∗−𝑦𝑙∗||
2

)
−1

𝑘≠𝑙

 

▪ Compute cost function gradient as follows (for each i=1,…,m) 

• 
𝛿𝐶

𝛿𝒚𝒊∗
= 4 ∑ (𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝒚𝒊∗ − 𝒚𝒋∗) (1 + ||𝒚𝒊∗ − 𝒚𝒋∗||

2
)

−𝟏

𝑗  

▪ Set 𝐘𝐦×𝟐
(𝒕)

:= 𝐘𝐦×𝟐
(𝒕−𝟏)

+ 𝛾
𝛿𝐶

𝛿𝒀
+ 𝛼(𝑡)(𝐘𝐦×𝟐

(𝒕−𝟏)
− 𝐘𝐦×𝟐

(𝒕−𝟐)) 

End do 
 


